24.1.3弧、弦、圆心角改
- 格式:doc
- 大小:128.00 KB
- 文档页数:6
人教版数学九年级上册《24.1.3弧、弦、圆心角》教学设计一. 教材分析人教版数学九年级上册《24.1.3弧、弦、圆心角》是本册教材的重要内容之一。
它主要介绍了弧、弦、圆心角的定义及其相互关系。
这部分内容对于学生来说,有助于深化对圆的理解,为后续学习圆的性质和应用打下基础。
教材通过生动的实例和丰富的练习,引导学生探索和发现弧、弦、圆心角之间的规律,培养学生的观察能力、思考能力和动手能力。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和变换有一定的了解。
他们对圆的概念和性质有一定的认识,但弧、弦、圆心角的概念和关系可能还比较模糊。
因此,在教学过程中,教师需要从学生的实际出发,通过直观的教具和生动的实例,帮助学生理解和掌握弧、弦、圆心角的定义和相互关系。
三. 教学目标1.理解弧、弦、圆心角的定义,掌握它们的相互关系。
2.能够运用弧、弦、圆心角的性质解决实际问题。
3.培养学生的观察能力、思考能力和动手能力。
四. 教学重难点1.弧、弦、圆心角的定义及其相互关系。
2.运用弧、弦、圆心角的性质解决实际问题。
五. 教学方法1.直观演示法:通过实物演示和动画展示,让学生直观地理解弧、弦、圆心角的定义和相互关系。
2.引导发现法:教师引导学生观察、思考和探索,发现弧、弦、圆心角之间的规律。
3.练习法:通过丰富的练习题,巩固学生对弧、弦、圆心角的理解和应用。
六. 教学准备1.准备相关的实物教具,如圆板、量角器等。
2.制作课件,包括弧、弦、圆心角的定义和相互关系的动画演示。
3.准备练习题,涵盖各种类型的题目,以便进行巩固和拓展。
七. 教学过程1.导入(5分钟)教师通过实物演示,如拿一个圆板,让学生观察和描述圆板上的弧、弦和圆心角。
引导学生回顾圆的基本概念,为新课的学习做好铺垫。
2.呈现(15分钟)教师利用课件,生动地展示弧、弦、圆心角的定义和相互关系。
通过动画演示,让学生直观地理解弧、弦、圆心角之间的关系。
《弧、弦、圆心角》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对弧、弦、圆心角概念的理解,通过实际操作加深对三者关系的认识,并能够运用这些知识解决简单的几何问题。
二、作业内容本课时的作业内容主要包括以下几个方面:1. 概念复习:要求学生回顾弧、弦、圆心角的定义,并能够准确区分三者之间的关系。
2. 图形分析:提供一系列与弧、弦、圆心角相关的几何图形,要求学生分析各部分元素及其关系,理解在不同情况下如何应用弧、弦和圆心角的概念。
3. 题目练习:设置不同难度的习题,包括选择题、填空题和简答题,内容涉及弧、弦和圆心角的识别、计算和运用。
4. 动手操作:要求学生利用几何工具(如圆规、直尺等)自行绘制与弧、弦、圆心角相关的图形,并测量相关数据,加深对知识的理解。
三、作业要求1. 学生在完成作业时需保持认真细致的态度,保证作业的准确性。
2. 对于图形分析部分,学生需在理解的基础上,准确找出图中的弧、弦和圆心角。
3. 在题目练习中,学生应注重思考,独立完成,并保证答案的准确性。
对于遇到困难的问题,可以寻求老师或同学的帮助。
4. 动手操作部分要求学生亲自实践,真实记录数据,并尝试用所学知识解释所观察到的现象。
四、作业评价1. 评价标准:作业的准确性、解题思路的清晰度、操作的规范性以及学生的独立思考能力等。
2. 评价方式:教师批改作业时需详细记录学生的表现,结合学生的自评、互评和教师评价,给出综合评价。
3. 反馈形式:通过作业反馈表或面谈的方式,及时向学生反馈评价结果,指出学生在作业中的优点和不足,并提供改进建议。
五、作业反馈1. 教师需在批改作业后,对全体学生的作业情况进行总结,并针对共性问题进行讲解。
2. 对于在作业中表现优秀的学生,教师应给予表扬和鼓励,激发其学习积极性。
3. 对于在作业中遇到困难的学生,教师需给予耐心指导,帮助其找到问题所在,并提供解决方法。
4. 作业反馈的结果将作为学生学习情况的重要参考,为后续教学提供依据。
《24.1.3 弧、弦、圆心角》教案【教学目标】1.在实际操作中发现圆的旋转不变性.2.结合图形了解圆心角的概念,学会辨别圆心角.3.能发现圆心角、弦、弧之间的关系,并会初步运用这些关系解决有关的问题.【教学过程】一、情境导入人类为了获得健康和长寿,经过不断的实践探索,到十九世纪末才提出“生命在于运动”的口号.要健康长寿,更重要的是每天要摄取均衡的营养包括蛋白质、糖类、脂肪、维生素、矿物质、纤维和水.根据中国营养学会公布的“中国居民平衡膳食指南”,每人每日摄取量如图.你能求出各扇形的圆心角吗?二、合作探究探究点一:圆心角【类型一】圆心角的识别如图所示的圆中,下列各角是圆心角的是( )A.∠ABC B.∠AOB C.∠OAB D.∠OCB解析:根据圆心角的概念,∠ABC、∠OAB、∠OCB的顶点分别是B、A、C,都不是圆心O,因此都不是圆心角.只有B中的∠AOB的顶点在圆心,是圆心角.故选B.方法总结:确定一个角是否是圆心角,只要看这个角的顶点是否在圆心上,顶点在圆心上的角就是圆心角,否则不是.探究点二:圆心角的性质 【类型一】利用圆心角的性质求角如图,已知:AB 是⊙O 的直径,C 、D 是BE ︵的三等分点,∠AOE =60°,则∠COE 的大小是( )A .40°B .60°C .80°D .120°解析:∵C、D 是BE ︵的三等分点,∴BC ︵=CD ︵=DE ︵,∴∠BOC =∠COD=∠DOE.∵∠AOE=60°,∴∠BOC =∠COD=∠DOE=13×(180°-60°)=40°,∴∠COE =80°.故选C.方法总结:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.探究点三:圆心角、弦、弧之间的关系 【类型一】结合三角形内角和求角如图所示,在⊙O 中,AB ︵=AC ︵,∠B =70°,则∠A=________.解析:由AB ︵=AC ︵,得这两条弧所对的弦AB =AC ,所以∠B=∠C.因为∠B=70°,所以∠C=70°.由三角形的内角和定理可得∠A 的度数为40°.故答案为40°.方法总结:在应用弧、弦、圆心角之间的关系定理时,注意根据具体的需要选择有关部分,本题只需由两弧相等,得到两弦相等就可以了.【类型二】弧相等的简单证明如图所示,已知AB 是⊙O 的直径,M ,N 分别是OA ,OB 的中点,CM ⊥AB ,DN ⊥AB ,垂足分别为M ,N.求证:AC ︵=BD ︵.解析:根据圆心角、弧、弦、弦心距之间的关系,可先证明它们所对的圆心角相等或它们所对的弦相等.证法1:如图所示,连接OC ,OD ,则OC =OD.∵OA=OB.又M ,N 分别是OA ,OB 的中点,∴OM =ON.又∵CM⊥AB,DN ⊥AB ,∴∠CMO =∠DNO=90°.∴Rt △CMO ≌Rt △DNO.∴∠1=∠2.∴AC ︵=BD ︵.证法2:如图①所示,分别延长CM ,DN 交⊙O 于点E ,F.∵OM =12OA ,ON =12OB ,OA =OB ,∴OM =ON.又∵OM⊥CE,ON ⊥DF ,∴CE =DF ,∴CE ︵=DF ︵.又∵AC ︵=12CE ︵,BD ︵=12DF ︵.∴AC ︵=BD ︵.图①图②证法3:如图②所示,连接AC ,BD.由证法1,知CM =DN.又∵AM=BN ,∠AMC =∠BND=90°,∴△AMC ≌△BND.∴AC =BD ,∴AC ︵=BD ︵.方法归纳:在同圆或等圆中,要证明圆心角、弧、弦、弦心距这四组量中的某一组量相等,通常是转化成证明另外三组量中的某一组量相等.三、板书设计【教学反思】教学过程中,强调弧、弦、圆心角及弦心距之间的关系,只要确定一组等量关系,其他三组也随之确定了.《24.1.3 弧、弦、圆心角》教案【教学内容】1.圆心角的概念.2.有关弧、弦、圆心角关系的定理:在同圆或等圆中,•相等的圆心角所对的弧相等,所对的弦也相等.3.定理的推论:在同圆或等圆中,如果两条弧相等,•那么它们所对的圆心角相等,所对的弦相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.【教学目标】了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.【重难点、关键】1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,•所对弦也相等及其两个推论和它们的应用.2.难点与关键:探索定理和推导及其应用. 【教学过程】 一、复习引入(学生活动)请同学们完成下题.已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.老师点评:绕O 点旋转,O 点就是固定点,旋转30°,就是旋转角∠BOB ′=30°.二、探索新知如图所示,∠AOB 的顶点在圆心,像这样顶点在圆心的角叫做圆心角. (学生活动)请同学们按下列要求作图并回答问题: 如图所示的⊙O 中,分别作相等的圆心角∠AOB•和∠A•′OB•′将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置,你能发现哪些等量关系?为什么?=,AB=A ′B ′理由:∵半径OA 与O ′A ′重合,且∠AOB=∠A ′OB ′ ∴半径OB 与OB ′重合∵点A 与点A ′重合,点B 与点B ′重合 ∴与重合,弦AB 与弦A ′B ′重合 ∴=,AB=A ′B ′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?•请同学们现在动手作一作.AB ''A B AB ''A B AB ''A B BAOB '(学生活动)老师点评:如图1,在⊙O 和⊙O ′中,•分别作相等的圆心角∠AOB 和∠A ′O ′B ′得到如图2,滚动一个圆,使O 与O ′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA 与O ′A ′重合.(1) (2) 你能发现哪些等量关系?说一说你的理由? 我能发现:=,AB=A /B /.现在它的证明方法就转化为前面的说明了,•这就是又回到了我们的数学思想上去呢──化归思想,化未知为已知,因此,我们可以得到下面的定理:同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,•所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,•所对的弧也相等.(学生活动)请同学们现在给予说明一下. 请三位同学到黑板板书,老师点评.例1.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么?(2)如果OE=OF ,那么与的大小有什么关系?AB 与CD 的大小有什么关系?•为什么?∠AOB 与∠COD 呢?B'A 'AB''A B AB CD D分析:(1)要说明OE=OF ,只要在直角三角形AOE 和直角三角形COF 中说明AE=CF ,即说明AB=CD ,因此,只要运用前面所讲的定理即可.(2)∵OE=OF ,∴在Rt △AOE 和Rt △COF 中, 又有AO=CO 是半径,∴Rt △AOE ≌Rt•△COF ,∴AE=CF ,∴AB=CD ,又可运用上面的定理得到= 解:(1)如果∠AOB=∠COD ,那么OE=OF 理由是:∵∠AOB=∠COD ∴AB=CD∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AE=CF 又∵OA=OC ∴Rt △OAE ≌Rt △OCF ∴OE=OF (2)如果OE=OF ,那么AB=CD ,=,∠AOB=∠COD 理由是: ∵OA=OC ,OE=OF ∴Rt △OAE ≌Rt △OCF ∴AE=CF又∵OE ⊥AB ,OF ⊥CD ∴AE=AB ,CF=CD ∴AB=2AE ,CD=2CF ∴AB=CD∴=,∠AOB=∠COD三、巩固练习 教材 练习1 四、应用拓展例2.如图3和图4,MN 是⊙O 的直径,弦AB 、CD•相交于MN•上的一点P ,•∠APM=∠CPM .(1)由以上条件,你认为AB 和CD 大小关系是什么,请说明理由. (2)若交点P 在⊙O 的外部,上述结论是否成立?若成立,加以证明;若AB CD 1212AB CD 1212AB CD不成立,请说明理由.(3) (4)分析:(1)要说明AB=CD ,只要证明AB 、CD 所对的圆心角相等,•只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的. 解:(1)AB=CD理由:过O 作OE 、OF 分别垂直于AB 、CD ,垂足分别为E 、F ∵∠APM=∠CPM ∴∠1=∠2 OE=OF连结OD 、OB 且OB=OD ∴Rt △OFD ≌Rt △OEB ∴DF=BE根据垂径定理可得:AB=CD(2)作OE ⊥AB ,OF ⊥CD ,垂足为E 、F ∵∠APM=∠CPN 且OP=OP ,∠PEO=∠PFO=90° ∴Rt △OPE ≌Rt △OPF ∴OE=OF连接OA 、OB 、OC 、OD易证Rt △OBE ≌Rt △ODF ,Rt △OAE ≌Rt △OCF ∴∠1+∠2=∠3+∠4 ∴AB=CD五、归纳总结(学生归纳,老师点评)PN本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,•那么它们所对应的其余各组量都部分相等,及其它们的应用.六、布置作业1.教材P94-95 复习巩固4、5、《24.1.3 弧、弦、圆心角》导学案学习目标:了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧、弦心距中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用.一、导学过程:(阅读教材P82 — 83 , 完成课前预习)1、知识准备(1)圆是轴图形,任何一条所在直线都是它的对称轴.(2)垂径定理推论.2、预习导航。
《弧、弦、圆心角》作业设计方案(第一课时)一、作业目标1. 帮助学生理解和掌握弧、弦、圆心角的概念和关系;2. 通过作业实践,提高学生的数学应用能力和独立思考能力;3. 加深学生对所学知识的理解和记忆。
二、作业内容1. 课堂练习:(1)在圆中画出一条弧,并标出它所对的圆心角和弦;(2)通过测量和计算,验证圆心角、弦和弧之间的关系;(3)尝试画出不同的弧,观察它们所对应的圆心角和弦有何变化。
2. 课后作业:(1)在圆中画出若干条弧,并标出它们所对的圆心角和弦;(2)通过查阅资料或与同学讨论,理解圆心角、弦和弧之间的关系,并总结它们的特征;(3)应用所学知识解决实际问题,例如:一个扇形的圆心角是多少度?它对应的周长和面积是多少?(4)请根据课堂和课后练习的完成情况,反思自己在理解和应用弧、弦、圆心角方面的不足之处。
三、作业要求1. 独立完成作业:要求学生独立思考和完成作业,禁止抄袭和作弊;2. 认真测量和计算:要求学生对测量和计算结果进行认真核对和检查,确保准确无误;3. 按时提交作业:学生应按照规定的时间提交作业,以便教师及时评价和反馈;4. 反思和总结:学生应认真反思自己的作业完成情况,总结在理解和应用弧、弦、圆心角方面的不足之处,并寻求改进方法。
四、作业评价1. 评价标准:根据学生作业的完成情况、正确率、反思总结和分析解决问题的能力进行评价;2. 评价方法:教师对学生作业进行批改和评分,同时与学生进行交流和反馈,鼓励学生不断改进和提高自己的数学应用能力;3. 评价结果:根据评价标准对每位学生的作业进行评价,并给出相应的成绩和改进建议。
五、作业反馈1. 学生应根据教师的反馈和建议,认真分析自己的不足之处,寻求改进方法;2. 学生应积极参与课堂讨论和交流,分享自己的解题思路和方法,促进同学之间的相互学习和共同进步;3. 教师也应根据学生的反馈和作业完成情况,不断改进和完善教学方案,提高教学质量。
作业设计方案(第二课时)一、作业目标1. 学生能够进一步理解弧、弦、圆心角的概念,掌握其基本性质;2. 通过对作业的完成,巩固学生对所学知识的掌握,提高应用能力;3. 培养学生的独立思考能力和合作学习能力。
24.1 圆的有关性质24.1.3 弧、弦、圆心角教学目标:1、理解圆心角的概念.2、掌握在同圆或等圆中,弧、弦、圆心角及弦心距之间的关系.教学重难点:圆的性质的综合应用.知识点一:圆的旋转不变性圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.例题:如图所示的图形绕圆心旋转多少度后能与自身重合?【考点】B4:旋转.【专题】463:图形与变换.【分析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.【解答】解:把图形中的每个阴影部分与相邻的一个部分当作一个部分,因而整个圆周被分成9个完全相同的部分,每个部分对应的圆心角是=45度,因而最少旋转的度数是45度.答:如图所示的图形绕圆心旋转45度后能与自身重合.【点评】考查图形的旋转与重合,理解旋转对称图形的定义是解决本题的关键.变式.如图,△ABC是△O的内接三角形,将△ABC绕圆心O逆时针方向旋转α°(0<α<90),得到△A′B′C′,若,则△B的度数为()A.30°B.45°C.50°D.60°【分析】先根据得出==,,最后根据△A=△B=△C即可得出△B的度数.【解答】解:△,将△ABC绕圆心O逆时针方向旋转α°(0<α<90),得到△A′B′C′,△==,△,△△A=△B=△C=60°.故选D.【点评】此题考查了圆心角、弧、弦的关系和旋转的性质,解题的关键是根据等弧所对的圆周角相等进行解答.知识点二:圆心角定义:角的顶点在圆心的角例题.如图,MN为△O的弦,△M=50°,则△MON等于()A.50°B.55°C.65°D.80°【分析】先运用了等腰三角形的性质求出△N,再根据三角形的内角和是180°即可得.【解答】解:△OM=ON,△△N=△M=50°.再根据三角形的内角和是180°,得:△MON=180°﹣50°×2=80°.故选D.【点评】运用了等腰三角形的性质:等边对等角;考查了三角形的内角和定理.变式1.如图,已知:AB是△O的直径,C、D是上的三等分点,△AOE=60°,则△COE是()A.40°B.60°C.80°D.120°【分析】先求出△BOE=120°,再运用“等弧对等角”即可解.【解答】解:△△AOE=60°,△△BOE=180°﹣△AOE=120°,△的度数是120°,△C、D是上的三等分点,△弧CD与弧ED的度数都是40度,△△COE=80°.故选C.【点评】本题利用了邻补角的概念和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.变式2.已知弦AB把圆周分成2:3的两部分,则弧所对圆心角的度数是()A.72°B.72°或144°C.144°D.144°或216°【分析】由于弦AB把圆周分成1:5的两部分,根据圆心角、弧、弦的关系得到弦AB所对的圆心角为周角的.【解答】解:△弦AB把圆周分成2:3的两部分,△弦AB所对的圆心角的度数=×360°=144°.故选D【点评】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.知识点三:圆心角、弧、弦之间的关系(1)定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.说明:同一条弦对应两条弧,其中一条是优弧,一条是劣弧,而在本定理和推论中的“弧”是指同为优弧或劣弧.(3)正确理解和使用圆心角、弧、弦三者的关系三者关系可理解为:在同圆或等圆中,△圆心角相等,△所对的弧相等,△所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.这源于圆的旋转不变性,即:圆绕其圆心旋转任意角度,所得图形与原图形完全重合.例题1.如图,在△O中=,△AOB=40°,则△COD的度数()A.20°B.40°C.50°D.60°【分析】首先得到=,进而得到△AOB=△COD,即可选择正确选项.【解答】解:△=,△=,△△AOB=△COD,△△AOB=40°,△△COD=40°,故选B.【点评】本题主要考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.例题2.如图,在△O中,已知=,则AC与BD的关系是()A.AC=BD B.AC<BD C.AC>BD D.不确定【分析】由=,得到,于是推出,根据圆心角、弧、弦的关系即可得到结论.【解答】解:△=,△,△,△AC=BD.故选A.【点评】本题考查了圆心角、弧、弦的关系,正确的理解圆心角、弧、弦的关系是解题的关键.例题3.如图,AB是半圆的直径,△BAC=20°,D是的中点,则△DAC的度数是()A.30°B.35°C.45°D.70°【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得△C=90°,继而求得△ABC 的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,△AB是半圆的直径,△△C=90°,△△BAC=20°,△△B=90°﹣△BAC=70°,△D是的中点,△△DAC=△ABC=35°.故选:B.【点评】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.变式1.如图所示,在△O中,,△A=30°,则△B=()A.150°B.75°C.60°D.15°【分析】先根据等弧所对的弦相等求得AB=AC,从而判定△ABC是等腰三角形;然后根据等腰三角形的两个底角相等得出△B=△C;最后由三角形的内角和定理求角B的度数即可.【解答】解:△在△O中,,△△ABC是等腰三角形,△△B=△C;又△A=30°,△△B==75°(三角形内角和定理).故选B.【点评】本题综合考查了圆心角、弧、弦的关系,以及等腰三角形的性质.解题的关键是根据等弧对等弦推知△ABC是等腰三角形.变式2.如图,==,已知AB是△O的直径,△BOC=40°,那么△AOE=()A.40°B.60°C.80°D.120°【分析】由==,△BOC=40°,根据等弧所对的圆周角相等,可求得△EOD与△COD的度数,继而求得答案.【解答】解:△==,△BOC=40°,△△EOD=△COD=△BOC=40°,△AB是△O的直径,△△AOE=180°﹣△EOD﹣△COD﹣△BOC=60°.【点评】此题考查了弧与圆心角的关系.此题难度不大,注意掌握数形结合思想的应用.变式3.如图,已知△O的半径等于2cm,AB是直径,C,D是△O上的两点,且,则四边形ABCD的周长等于()A.8 cm B.10 cm C.12 cm D.16 cm【分析】如图,连接OD、OC.根据圆心角、弧、弦间的关系证得△AOD、△OCD、△COB是等边三角形,然后由等边三角形的性质求得线段AD、DC、CB与已知线段OA间的数量关系.【解答】解:如图,连接OD、OC.△(已知),△△AOD=△DOC=△COB(在同圆中,等弧所对的圆心角相等);△AB是直径,△△AOD+△DOC+△COB=180°,△△AOD=△DOC=△COB=60°;△OA=OD(△O的半径),△△AOD是等边三角形,△AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,△AD=CD=BC=OA,△四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×2cm=10cm;故选B.【点评】本题考查了心角、弧、弦间的关系与等边三角形的判定与性质.在同圆中,等弧所对的圆心角相等.拓展点一:利用圆心角、弧、弦之间的关系进行计算或证明例题1.如图所示,△ABC的三个顶点在△O上,D是上的点,E是上的点,若△BAC=50°.则△D+△E=()A.220°B.230°C.240°D.250°°【分析】连接OA、OB、OC,由圆心角、弧、弦的关系定理得出△BOC=100°,得出△AOB+△AOC=260°,由圆周角定理得出△D=(△BOC+△AOC),△E=(△BOC+△AOB),即可得出结果.【解答】解:连接OA、OB、OC,如图所示:△△BAC=50°,△△BOC=2△BAC=100°,△△AOB+△AOC=360°﹣100°=260°,△△D=(△BOC+△AOC),△E=(△BOC+△AOB),△△D+△E=(△BOC+△AOC+△BOC+△AOB)=(260°+100°+100°)=230°.故选:B.【点评】本题考查了圆心角、弧、弦的关系定理、圆周角定理;熟练掌握圆心角、弧、弦的关系定理,由圆周角定理得出角之间的关系是解决问题的关键.例题2.如图,AB是半圆O的直径,点C、D、E、F在半圆上,AC=CD=DE=EF=FB,则△COF=()A.90°B.100°C.108°D.120°【分析】由圆心角、弧、弦的关系定理得出=,得出△COF=×180°=108°即可.【解答】解:△AC=CD=DE=EF=FB,△=,△△COF=×180°=108°;故选:C.【点评】本题考查了圆心角、弧、弦的关系定理;熟练掌握圆心角、弧、弦的关系定理,由弦相等得出弧相等是解决问题的关键.例题3.如图,AB是△O的直径,若△COA=△DOB=60°,等于线段AO长的线段有()A.3条B.4条C.5条D.6条【分析】易知:△AOC=△COD=△BOD=60°,则△AOC、△COD、△BOD均为等边三角形,可据此判断出与OA相等的线段有几条.【解答】解:△△COA=△DOB=60°,△△AOC=△COD=△BOD=60°;又△OA=OC=OD=OB,△△OAC、△OCD、△BOD是全等的等边三角形;△OA=AC=OC=CD=OD=BD=OB;因此与OA相等的线段由6条,故选D.【点评】能够发现△OAC、△OCD、△BOD是全等的等边三角形是解答此题的关键.变式1.如图,AB是△O的直径,==,△COD=34°,则△AEO的度数是51°.【分析】由==,可求得△BOC=△EOD=△COD=34°,继而可求得△AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求△AEO的度数.【解答】解:如图,△==,△COD=34°,△△BOC=△EOD=△COD=34°,△△AOE=180°﹣△EOD﹣△COD﹣△BOC=78°.又△OA=OE,△△AEO=△OAE,△△AEO=×(180°﹣78°)=51°.故答案为:51°.【点评】此题考查了弧与圆心角的关系.此题比较简单,注意掌握数形结合思想的应用.变式2.如图,AB是△O的直径,点C是半圆上的一个三等分点,点D是的中点,点P是直径AB上一点,若△O的半径为2,则PC+PD的最小值是2.【分析】作D关于AB的对称点E,连接CE交AB于点P′,连接OC,OE,则DP+CP最小,根据解直角三角形求出CE,根据轴对称求出DP′+CP′=CE即可.【解答】解:作D关于AB的对称点E,连接CE交AB于点P′,连接OC,OE,则根据垂径定理得:E在△O上,连接EC交AB于P′,则若P在P′时,DP+CP最小,△C是半圆上的一个三等分点,△△AOC=×180°=60°,△D是的中点,△△AOE=△AOC=30°,△△COE=90°,△CE=OC=2,即DP+CP=2,故答案为2.【点评】本题考查了解直角三角形,圆周角定理,垂径定理,轴对称的性质等知识点的应用,主要考查学生的推理和计算能力.变式3.如图,AB是△O的直径,点C在△O上,△AOC=40°,D是BC弧的中点,则△ACD=125°.【分析】连接OD,由△AOC=40°,可得出△BOC,再由D是BC弧的中点,可得出△COD,从而得出△ACD 即可.【解答】解:连接OD,△AB是△O的直径,△AOC=40°,△△BOC=140°,△ACO=70°,△D是BC弧的中点,△△COD=70°,△△OCD=55°,△△ACD=△ACO+△OCD=70°+55°=125°,故答案为125°.【点评】本题考查了圆心角、弧、弦的关系,在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.变式4.如图,已知AB是△O的直径,PA=PB,△P=60°,则弧CD所对的圆心角等于60度.【分析】先利用PA=PB,△P=60°得出△PAB是等边三角形再求出△COA,△DOB也是等边三角形得出△COA=△DOB=60°可求△COD.【解答】解:连接OC,OD,△PA=PB,△P=60°,△△PAB是等边三角形,有△A=△B=60°,△OA=OC=OD=OB,△△COA,△DOB也是等边三角形,△△COA=△DOB=60°,△△COD=180°﹣△COA﹣△DOB=60度.【点评】本题利用了:有一角等于60度的等腰三角形是等边三角形的判定方法和等边三角形的性质求解.例题4.如图,在△O中,=,CD△OA于D,CE△OB于E,求证:AD=BE.【分析】连接OC,先根据=得出△AOC=△BOC,再由已知条件根据AAS定理得出△COD△△COE,由此可得出结论.【解答】证明:连接OC,△=,△△AOC=△BOC.△CD△OA于D,CE△OB于E,△△CDO=△CEO=90°在△COD与△COE中,△,△△COD△△COE(AAS),△OD=OE,△AO=BO,△AD=BE.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等是解答此题的关键.例题5.已知如图所示,OA、OB、OC是△O的三条半径,弧AC和弧BC相等,M、N分别是OA、OB 的中点.求证:MC=NC.【分析】根据弧与圆心角的关系,可得△AOC=△BOC,又由M、N分别是半径OA、OB的中点,可得OM=ON,利用SAS判定△MOC△△NOC,继而证得结论.【解答】证明:△弧AC和弧BC相等,△△AOC=△BOC,又△OA=OB M、N分别是OA、OB的中点△OM=ON,在△MOC和△NOC中,,△△MOC△△NOC(SAS),△MC=NC.【点评】此题考查了弧与圆心角的关系以及全等三角形的判定与性质;证明三角形全等是解决问题的关键.变式1.如图,AB,CD是△O的两条直径,过点A作AE△CD交△O于点E,连接BD,DE,求证:BD=DE.【分析】连接OE,可得△A=△OEA,再由AE△CD得△BOD=△A,△DOE=△OEA,从而得出△BOD=△DOE,则BD=DE.【解答】证明:连接OE,如图,△OA=OE,△△A=△OEA,△AE△CD,△△BOD=△A,△DOE=△OEA,△△BOD=△DOE,△BD=DE.【点评】此题主要考查了平行线的性质,在同圆中,等弦所对的圆心角相等.变式2.如图,AB是△O的直径,C,E是△O上的两点,CD△AB于D,交BE于F,=.求证:BF=CF.【分析】延长CD交△O于点G,连接BC,根据垂径定理证明即可.【解答】证明:延长CD交△O于点G,连接BC,△AB是△O的直径,CD△AB于D△=,△=△=△△BCF=△CBF,△BF=CF.【点评】本题考查了等腰三角形的性质,垂径定理,圆周角定理等知识点的应用,解此题的关键是作辅助线后根据定理求出△CBE=△BCE,通过做此题培养了学生分析问题和解决问题的能力,题型较好.拓展点二:垂径定理与圆心角、弧、弦之间关系的综合应用例题1.如图,在△O中,若点C是的中点,△A=50°,则△BOC=()A.40°B.45°C.50°D.60°【分析】根据等腰三角形性质和三角形内角和定理求出△AOB,根据垂径定理求出AD=BD,根据等腰三角形性质得出△BOC=△AOB,代入求出即可.【解答】解:△△A=50°,OA=OB,△△OBA=△OAB=50°,△△AOB=180°﹣50°﹣50°=80°,△点C是的中点,△△BOC=△AOB=40°,故选A.【点评】本题考查了圆心角、弧、弦之间的关系,垂径定理,等腰三角形的性质的应用,注意:在同圆或等圆中,两个圆心角、两条弧、两条弦,其中有一对相等,那么其余两对也相等.例题2.如图,AB、AC是△O的弦,直径AD平分△BAC,给出下列结论:△AB=AC;△=;△AD△BC;△AB△AC.其中正确结论的个数有()A.1个B.2个C.3个D.4个【分析】由AB、AC是△O的弦,直径AD平分△BAC,可得=,即可得AD△BC,继而求得:△AB=AC;△=.【解答】解:△AB、AC是△O的弦,直径AD平分△BAC,△=,△AD△BC,故△正确;△=,故△正确;△AB=AC,故△正确.无法判定AB△AC,故错误.故选C.【点评】此题考查了圆周角定理、垂径定理以及弧与弦的关系.此题难度不大,注意掌握数形结合思想的应用.变式1.如图,在△O中,直径CD△弦AB,则下列结论中正确的是()A.AD=AB B.△D+△BOC=90°C.△BOC=2△D D.△D=△B【分析】根据垂径定理得出弧AD=弧BD,弧AC=弧BC,根据以上结论判断即可.【解答】解:A、根据垂径定理不能推出AD=AB,故A选项错误;B、△直径CD△弦AB,△,△对的圆周角是△ADC,对的圆心角是△BOC,△△BOC=2△D,不能推出△D+△BOC=90°,故B选项错误;C、△,△△BOC=2△D,△C选项正确;D、根据已知不能推出△DAB=△BOC,不能推出△D=△B,故D选项错误;故选:B.【点评】本题考查了垂径定理的应用,主要考查学生的推理能力和辨析能力.变式2.如图,AB是△O的直径,点C、D是△O上的点,若△CAB=25°,则△ADC的度数为()A.65°B.55°C.60°D.75°【分析】由AB为△O的直径,根据直径所对的圆周角是直角,可求得△ACB=90°,又由△CAB=25°,得出△B的度数,根据同弧所对的圆周角相等继而求得△ADC的度数.【解答】解:△AB为△O的直径,△△ACB=90°,△△CAB=25°,△△ABC=90°﹣△CAB=65°,△△ADC=△ABC=65°.故选A.【点评】本题考查了圆周角定理以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.变式3.如图是小明完成的.作法是:取△O的直径AB,在△O上任取一点C引弦CD△AB.当C点在半圆上移动时(C点不与A、B重合),△OCD的平分线与△O的交点必()A.平分弧AB B.三等分弧ABC.到点D和直径AB的距离相等D.到点B和点C的距离相等【分析】先求出△DCE=△ECO,再利用内错角相等,两直线平行的OE△CD,再利用角的平分线的性质可解.【解答】解:设△OCD的平分线与△O的交点为E,连接OE,△OE=OC,△△E=△ECO,△△DCE=△ECO,△OE△CD,△CD△AB,△OE△AB,△有弧AE=弧BE,所以点E是弧AB的中点.故选A.【点评】本题利用了:1、等边对等角,2、内错角相等,两直线平行,3、角的平分线的性质求解.易错点:误认为同圆中弧及弧所对的弦有相同的倍数关系例题.如图,△O中,如果△AOB=2△COD,那么()A.AB=DC B.AB<DC C.AB<2DC D.AB>2DC【分析】过点O作OE△AB交△O于点E,连接AE、BE,可得△AOE=△BOE=△AOB,根据△COD=△AOB,知△AOE=△BOE=△COD,即CD=AE=BE,在△ABE中,由AE+BE>AB可得2CD>AB.【解答】解:如图,过点O作OE△AB交△O于点E,连接AE、BE,△△AOE=△BOE=△AOB,又△△COD=△AOB,△△AOE=△BOE=△COD,△CD=AE=BE,△在△ABE中,AE+BE>AB,△2CD>AB,故选:C.【点评】本题主要考查垂径定理和圆心角定理,根据△AOB=2△COD利用垂径定理将角平分,从而根据圆心角定理得出答案是解题的关键.变式1.在同圆中,若AB=2CD,则与的大小关系是()A.AB>2CD B.AB<2CD C.AB=2CD D.不能确定【分析】先根据题意画出图形,找出两相同的弦CD、DE,根据三角形的三边关系得到CE与CD+DE的关系,再比较出AB与CE的长,利用圆心角、弧、弦的关系进行解答即可.【解答】解:如图所示,CD=DE,AB=2CD,在△CDE中,△CD=DE,△CE<CD+DE,即CE<2CD=AB,△CE<AB,△<.【点评】本题考查了圆心角、弧、弦的关系及三角形的三边关系,即在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等.变式2.如图,已知点A,B,C均在△O上,并且四边形OABC是菱形,那么△AOC与2△OAB之间的关系是()A.△AOC>2△OAB B.△AOC=2△OAB C.△AOC<2△OAB D.不能确定【分析】连接OB易证△OAB和△OBC是等边三角形,据此即可判断.【解答】解:连接OB.△四边形OABC是菱形,△OA=AB,又△OA=OB,△△OAB是等边三角形.同理△OBC是等边三角形.△△A=△AOB=△BOC=60°,△△AOC=2△OAB.【点评】本题考查了菱形性质以及等边三角形的判定与性质,正确作出辅助线是关键.。
弧、弦、圆心角注意:在画∠AOB 与∠A ′O ′B ′时,要使OB 相对于OA 的方向与O ′B ′相对于O ′A ′的方向一致,否则当OA 与OA ′重合时,OB 与O ′B ′不能重合。
图1(3)将其中的一个圆旋转一个角度.使得OA 与O ′A ′重合。
通过上面的做一做,你能发现哪些等量关系?同学们互相交流一下,说一说你的理由。
师生活动设计:教师叙述步骤,同学们一起动手操作. 由已知条件可知∠AOB =∠A ′O ′B ′;由两圆的半径相等,可以得到∠OAB =∠OBA =∠O ′A ′B ′=∠O ′B ′A ′;由△AOB ≌△A ′O ′B ′,可得到AB =A ′B ′;由旋转法可知»¼''AB A B =。
在学生分析完毕后,教师指出在上述做一做的过程中发现,固定圆心,将其中一个圆旋转一个角度,使半径OA 与O ′A ′重合时,由于∠AOB =∠A ′O ′B ′.这样便得到半径OB 与O ′B ′重合.因为点A 和点A ′重合,点B 和点B ′重合,所以»AB 和¼''A B 重合,弦AB 与弦A ′B ′重合,即»¼''AB A B =,AB =A ′B ′。
进一步引导学生语言归纳圆心角、弧、弦之间相等关系定理:在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
2.根据对上述定理的理解,你能证明下列命题是正确的吗?(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等;(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的优(劣)弧相等。
师生活动设计:本问题由学生在思考的基础上讨论解决,可以证明上述命题是真命题。
二、主体活动,巩固新知,进一步理解三量关系定理。
活动2:1.如图2,在⊙O 中,»»AB AC =,∠ACB =60°,求证∠AOB =∠AOC =∠BOC 。
“三部五环”教学模式设计《24.1.3 弧、弦、圆心角》教学设计
问题2:圆的旋转不变性的作用是什么?根据圆的旋转不变性能探究出哪些新知识呢?(揭示并板书课题)
活动二 诱导尝试,探究新知 (一)理解概念
1、画图并结合图形说明圆心角、弦的弦心距的概念
2、问题3(即兴演练):(1)判别下列各图中的角是不是圆心角,并说明理由。
(2)在上面的每个图形中作出一条弦及表示弦心距
(二)探究 问题4:(借助PPT 演示旋转过程)如图,将圆心角∠AOB 绕圆心O 旋转到∠A 'OB '的位置,∠AOB 与∠A 'OB '有什么关系,你还能发现哪些等量关系?为什么?
根据旋转的性质,将圆心角∠AOB 绕圆心O 旋转到∠A ′OB ′的位置时,∠AOB =∠A ′
【教师活动】 (1)教师给出圆心角的概念,通过图形直观地讲解。
(2)用电脑演示任意一个圆心角旋转的过程,引导学生发现结论。
(3)引导点拔总结定理,教师点评,注意:“同圆或等圆中”条件的理解
【学生活动】 (1)思考并会辨别圆心角。
(2)学生观察旋转演示,归纳总结结论,相互交流、补充完善。
【媒体使用】 出示圆心角的旋转过程以及定理的展示。
【设计意图】 (1)演示圆心角的旋转,使学生更直观的感受知识存在的价值,激发学生的求知欲望,进而得到成功体验。
(2)通过圆心角、弧、弦、弦心距之间有什么关系这样的问题引导学生探究、发现结论。
(3)历经知识产生过程,更易于理解应用定理,为今后应用打下良好的基础。
让学生平时养成良好的学习思维应用习惯。
O A
B
M
OB′,射线OA与OA′重合,OB与OB′重合.而同圆的半径相等,OA=OA′,OB=OB′,∴点A与A′重合,B与B′重合.
∴弧AB与弧A'B'重合,弦AB与弦A′B′重合
(三)归纳
问题5:你能将前面探究的结论用文字语言表述出来吗?
问题6:若旋转弦AB到弦A'B'处,则∠AOB与∠A'OB'、弧AB与弧A'B'又有什么关系?
问题7:由此你能得出同圆中圆心角、弦、弧之间的关系吗?若将条件换成等圆,这些关系还能成立吗?
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.
在同圆或等圆中,相等的弧所对的圆心角_____,所对的弦________;
在同圆或等圆中,相等的弦所对的圆心角______,所对的弧_________.
活动三变式训练,巩固新知
题组一:填空
1、如图,AB、CD是⊙O的两条弦.
(1)如果AB=CD,那么___________,_________________.
(2)如果,那么____________,_____________.
(3)如果∠AOB=∠COD,那么_____________,_________.
(4)如果AB=CD,OE⊥AB于E,OF⊥CD 于F,OE与OF相等吗?为什么?
题组二:解答下列各题
1、如图, 在⊙O中,弧AB与弧AC相等,∠ACB=60°,
【教师活动】
(1)出示题组一,
老师引导学生分析解
决,并在黑板上演示过
程。
(2)依次出示题组
二,让学生独立思考。
(3)出示思考题,
给予适当的点拔。
(4)关注参与面,
进行适时评价。
【学生活动】
(1)口答题组一,
参与同伴表现情况的评
价。
(2)独立完成题组
二,将自己的答案与他
人分享,练习题1(4)
两名学生演板,关注老
师的点评,关注注意事
项,并关注评价同伴表
现。
【媒体使用】
(1)出示例1,
练习题1、2和思考题。
(2)展示例题及练习
题的答案。
【设计意图】
(1)结合练习进
一步体验数学学习中
充满探索与创造,感
受数学的严谨性和数
学结论的正确性。
(2)通过引导学
生自主、合作、探究、
验证,培养学生分析
问题、解决问题的意
识和能力。
通过拓展
练习,帮助学生熟练
掌握定理的应用,从
而培养学生分析问
题、解决问题的能力。
(3)多媒体的使
用有利于节时增效,
求证∠AOB=∠BOC=∠AOC.
2、如图,AB是⊙O 的直径,
∠COD=35°,D、C是弧BE的三等分点,求∠
AOE 的度数.
3、如图,AB、CD为⊙O的两条弦,弧AD
与弧CB相等,求证:AB=CD
4、在上题中,设弦AB、CD相交于点M,
过点M作⊙O的直径BE,请猜想∠CME和∠
AME的关系,并利用本节所学知识证明你的猜
想。
(3)独立完成练习
2,之后参与集体评价。
(4)按要求积极协
作、应接并尝试完成思
考题。
吸引学生眼球,最大
限度地激发学生的学
习兴趣,优化课堂结
构,提高课堂教学效
率。
活动四全课小结,内化新知
(1)自主小结:①对自己——谈本节课
【教师活动】
引导学生自主小结
【媒体使用】
出示小结内容B
有哪些收获?②对同伴——谈在学习本节内容时应注意什么?③对老师——谈本节课学习中还有哪些疑惑?
(2)教师概括小结,重点强调:
1、圆心角的概念。
2、在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余的各组量都分别相等,及其应用。
的基础上,进行概括小
结,教师应关注学生的
表现,包括知识掌握情
况、情绪状况等。
【学生活动】
按要求,进行自主
小结,注意倾听同伴意
见,反思梳整存在问题。
【设计意图】
使所学知识条理
化、系统化;让学生
在交流中共享,在反
思中提升。
活动五推荐作业,深化新知
1必做题、教材87-89页
习题2,3,10题
2选做题、教材89页习题11、13题3、预习24.1.4
【教师活动】课件
展示作业题
【学生活动】按照
要求自主完成作业
【媒体使用】
出示作业
【设计意图】随
时搜集掌握评定学生
尝试学习效果,及时
回授评定的结果,以
便有针对性地组织质
疑和讲解,帮助学生
克服思维障碍,补救
知识或方法方面的漏
洞。
为使学生的主体
作用得以有效发挥,
尊重学生的个体差
异,为不同学生的发
展创造条件,作业层
推荐、分类要求。
板板
书
设
计
课题
一、圆的特性
二、圆心角定义
(附在图形上)
三、定理:一组量
相等则三组量相
等(简称:同圆或
等圆中等对等)
四、方法:旋转重
合法
屏幕
【设计意图】
看自然,写方便,
展思路,显重点。
学生练习
学生练习。