RAID 技术详解
- 格式:doc
- 大小:77.00 KB
- 文档页数:6
数据库存储的关键技术 raid一、RAID的概述RAID(Redundant Array of Inexpensive Disks)是一种数据存储技术,通过将多个磁盘组合起来形成一个逻辑上的单个磁盘,提高数据的可靠性和性能。
二、RAID的类型1. RAID 0:条带化存储,将数据分块存储到不同的物理磁盘上,提高读写速度。
但是如果其中一个磁盘损坏,则所有数据都无法恢复。
2. RAID 1:镜像存储,将数据同时写入两个物理磁盘中,当一个磁盘损坏时可以从另一个磁盘中恢复数据。
3. RAID 5:带奇偶校验的条带化存储,将数据分块存储到不同的物理磁盘上,并在每个块中加入奇偶校验信息。
当其中一个磁盘损坏时可以通过奇偶校验信息恢复数据。
4. RAID 6:带双重奇偶校验的条带化存储,与RAID 5类似但加入了额外的奇偶校验信息以提高容错能力。
三、RAID的实现方式1. 硬件RAID:使用专门设计的硬件卡来实现RAID功能,具有较高的性能和可靠性,但价格较高。
2. 软件RAID:使用操作系统提供的软件来实现RAID功能,成本较低但性能和可靠性不如硬件RAID。
四、RAID的应用场景1. 数据库服务器:数据库存储对数据的可靠性要求非常高,使用RAID 可以提高数据的容错能力和读写速度。
2. 大型文件服务器:大型文件服务器需要处理大量数据并保证数据的完整性,使用RAID可以提高读写速度和容错能力。
3. 视频监控系统:视频监控系统需要长期存储大量视频数据,并且要保证数据的完整性和可靠性,使用RAID可以提高容错能力和读写速度。
五、RAID的注意事项1. RAID并不是万无一失的,当多个磁盘同时损坏时仍然会导致数据丢失。
2. 在使用RAID时需要选择合适的类型和实现方式,并进行正确配置和管理。
3. 使用硬件RAID时需要注意兼容性问题,不同厂商的硬件卡可能存在兼容性问题。
4. 在进行磁盘更换时需要按照正确的步骤进行操作,否则可能会导致数据丢失。
了解电脑的硬盘RAID技术RAID(Redundant Array of Independent Disks)是一种用于存储数据的技术,通过将多个硬盘组合在一起,提供更高的数据可靠性和性能。
本文将介绍电脑硬盘RAID技术的基本原理、不同级别的RAID以及其应用场景。
一、RAID技术的基本原理RAID技术的基本原理是将多个硬盘组合成一个逻辑盘组,通过数据的分布和备份来提高数据的安全性和性能。
其中最常见的RAID级别包括RAID 0、RAID 1、RAID 5和RAID 10。
RAID 0通过将数据分散存储在多个硬盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份机制,一旦其中一个硬盘损坏,所有数据都将丢失。
RAID 1是一种镜像技术,将数据同时写入两个硬盘,提供冗余备份以提高数据的可靠性。
当其中一个硬盘损坏时,系统可以自动切换到另一个硬盘,保持数据的完整性。
RAID 5通过将数据和奇偶校验码分散存储在多个硬盘上,提高了数据的读写性能,并且具有一定的冗余备份机制。
当其中一个硬盘损坏时,可以通过奇偶校验码恢复数据。
RAID 10是将RAID 1和RAID 0结合起来的技术,通过将数据复制到多个硬盘并分散存储,同时提供了数据的冗余备份和读写性能的提升。
二、不同级别的RAID和应用场景1. RAID 0:适用于需要高速数据读写的应用,如数据处理、视频编辑等。
由于没有冗余备份机制,不适用于对数据可靠性要求较高的场景。
2. RAID 1:适用于对数据可靠性要求较高的场景,如企业数据库、文件服务器等。
由于需要将数据同时写入两个硬盘,磁盘的使用效率较低。
3. RAID 5:适用于需要相对较高的性能和一定冗余备份的场景,如中小型企业的文件存储、邮件服务器等。
由于需要存储奇偶校验码,写入性能相对较低。
4. RAID 10:适用于对数据性能要求较高且对数据可靠性要求较高的场景,如大型数据库、虚拟化环境等。
由于需要将数据复制到多个硬盘,存储成本较高。
服务器的硬盘阵列技术及数据保护在现代信息化社会中,服务器扮演着至关重要的角色,承担着存储和处理大量数据的任务。
而服务器的硬盘阵列技术及数据保护则成为了保障数据安全和提升性能的关键。
本文将深入探讨服务器的硬盘阵列技术以及数据保护措施,帮助读者更好地了解和应用这些技术。
一、硬盘阵列技术硬盘阵列技术是一种通过将多个硬盘组合在一起,形成一个逻辑上的存储单元,以提升数据读写速度、容量和可靠性的技术。
常见的硬盘阵列技术包括RAID(Redundant Array of Independent Disks)技术,下面将介绍几种常见的RAID级别:1. RAID 0RAID 0采用数据分条方式将数据块分散存储在多个硬盘中,可以显著提升数据读写速度。
然而,RAID 0并不提供数据冗余功能,一旦其中一个硬盘损坏,所有数据都将丢失。
因此,RAID 0更适合对数据备份要求不高的场景。
2. RAID 1RAID 1采用镜像方式将数据同时写入两个硬盘中,确保数据的冗余备份。
虽然RAID 1的读取速度可能略低于RAID 0,但在硬盘损坏时可以实现无缝切换,保障数据的安全性。
RAID 1适合对数据可靠性要求较高的场景。
3. RAID 5RAID 5通过将数据和校验信息分布存储在多个硬盘中,实现数据的冗余备份和容错能力。
RAID 5至少需要三块硬盘来组建,其中一块硬盘存储校验信息。
当其中一块硬盘损坏时,系统可以通过校验信息进行数据恢复。
RAID 5在提供数据冗余的同时,也能充分利用硬盘空间,是一种性能和容量兼顾的选择。
4. RAID 6RAID 6在RAID 5的基础上增加了第二个独立的奇偶校验信息,提供了更高的容错能力。
RAID 6至少需要四块硬盘来组建,可以同时容忍两块硬盘的损坏。
RAID 6适合对数据安全性要求极高的场景,如金融、医疗等领域。
二、数据保护除了硬盘阵列技术外,数据保护也是服务器运维中至关重要的一环。
以下是几种常见的数据保护措施:1. 定期备份定期备份是最基本的数据保护手段,通过将数据备份到独立的存储介质中,可以在数据丢失或损坏时进行恢复。
raid技术详解(raid大全)一、RAID 概述1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文“A Case of Redundant Array of Inexpensive Disks”中提出了 RAID 概念[1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。
由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。
随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘,“廉价”已经毫无意义。
因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用“独立”替代“廉价”,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。
但这仅仅是名称的变化,实质内容没有改变。
RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,已经得到了非常广泛的应用。
RAID 主要利用数据条带、镜像和数据校验技术来获取高性能、可靠性、容错能力和扩展性,根据运用或组合运用这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。
D. A. Patterson 等的论文中定义了 RAID1-RAID5 原始 RAID 等级, 1988 年以来又扩展了 RAID0 和 RAID6 。
近年来,存储厂商不断推出诸如 RAID7 、 RAID10/01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。
目前业界公认的标准是 RAID0-RAID5 ,除 RAID2外的四个等级被定为工业标准,而在实际应用领域中使用最多的 RAID 等级是RAID0 、 RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。
raid介绍与容量计算
RAID(冗余磁盘阵列)是一种将多个磁盘驱动器组合在一起
以提供可靠性和性能的技术。
通过将数据分散存储在多个磁盘上,RAID可以实现数据冗余和增加读写速度。
RAID有几种不同的级别,每个级别都有不同的特点和适用场景。
以下是一些常见的RAID级别:
1. RAID 0:数据分条带存储在多个磁盘上,提高了读写速度,但没有冗余备份。
容量计算使用所有磁盘的总和。
2. RAID 1:数据写入两个磁盘,实现数据的完全备份。
读取
性能略高于单个磁盘,但写入性能相对较差。
容量计算为总容量的一半,因为数据是完全冗余的。
3. RAID 5:数据和奇偶校验信息分布在多个磁盘上,提供了
数据的冗余和读写性能的提升。
至少需要三个磁盘。
容量计算为总容量减去一个磁盘的空间。
4. RAID 6:类似于RAID 5,但提供了更高的数据冗余性。
需
要至少四个磁盘。
容量计算为总容量减去两个磁盘的空间。
容量计算取决于RAID级别、磁盘大小和数量。
例如,如果有四个2TB的磁盘,并使用RAID 5,那么总容量为2TB * 3 =
6TB,因为一个磁盘用于奇偶校验。
需要注意的是,RAID的容量计算不包括操作系统或RAID控
制器的开销,因此实际可用容量可能会略有不同。
此外,RAID还提供了其他的优点,如故障容错和数据保护。
电脑硬盘RAID技术与配置RAID(Redundant Array of Independent Disks)技术是一种常见的计算机存储方案,通过将多个硬盘组合起来,提供高可靠性和高性能的数据存储解决方案。
在当今信息爆炸的时代,越来越多的用户对于数据存储和备份的需求也越来越迫切。
本文将会为大家介绍电脑硬盘RAID技术的原理和配置方法,以及其在不同应用场景下的优势。
1. RAID技术的原理RAID技术通过将多个硬盘组合起来,形成一个逻辑上的存储单元,利用数据分片和冗余校验等方式来提高数据的可靠性和性能。
常见的RAID级别包括RAID0、RAID1、RAID5和RAID10等。
RAID0采用数据条带化的方式将数据均匀地分布在多个硬盘上,提高了数据的读写速度。
然而,由于数据没有冗余备份,一旦其中一块硬盘发生故障,整个RAID0阵列的数据将会丢失。
RAID1通过在多个硬盘上实时镜像数据,提供了较高的数据冗余和可靠性。
即使其中一块硬盘发生故障,其它硬盘上的数据仍然完好。
然而,RAID1无法提供数据读写性能的提升,且成本较高。
RAID5则是在数据存储单元中加入了奇偶校验数据,通过对数据进行分块和分散存储,提高了数据的读写速度和可靠性。
当其中一块硬盘发生故障时,RAID5可以通过奇偶校验数据来重建丢失的数据。
RAID5具有较高的数据可靠性和读写性能,在普通用户和小型企业应用中被广泛采用。
RAID10则是RAID0和RAID1的结合,将多个RAID1阵列通过RAID0方式连接起来,既提高了数据的读写速度,又保留了RAID1的数据冗余和可靠性。
2. 如何配置RAID技术在配置RAID技术之前,我们需要选择合适的RAID控制器和硬盘。
RAID控制器是一个硬件设备,负责管理和控制硬盘阵列。
RAID控制器通常会提供多种RAID级别的支持,以及热插拔和热备份等功能。
硬盘则需要具备相同容量和规格,以保证数据的协调性和一致性。
硬盘RAID技术详解一.Raid定义RAID(Redundant Array of Independent Disk 独立冗余磁盘阵列)技术是加州大学伯克利分校1987年提出,最初是为了组合小的廉价磁盘来代替大的昂贵磁盘,同时希望磁盘失效时不会使对数据的访问受损失而开发出一定水平的数据保护技术。
RAID就是一种由多块廉价磁盘构成的冗余阵列,在操作系统下是作为一个独立的大型存储设备出现。
RAID可以充分发挥出多块硬盘的优势,可以提升硬盘速度,增大容量,提供容错功能够确保数据安全性,易于管理的优点,在任何一块硬盘出现问题的情况下都可以继续工作,不会受到损坏硬盘的影响。
二、RAID的几种工作模式1、RAID0即Data Stripping数据分条技术。
RAID 0可以把多块硬盘连成一个容量更大的硬盘群,可以提高磁盘的性能和吞吐量。
RAID 0没有冗余或错误修复能力,成本低,要求至少两个磁盘,一般只是在那些对数据安全性要求不高的情况下才被使用。
(1)、RAID 0最简单方式就是把x块同样的硬盘用硬件的形式通过智能磁盘控制器或用操作系统中的磁盘驱动程序以软件的方式串联在一起,形成一个独立的逻辑驱动器,容量是单独硬盘的x倍,在电脑数据写时被依次写入到各磁盘中,当一块磁盘的空间用尽时,数据就会被自动写入到下一块磁盘中,它的好处是可以增加磁盘的容量。
速度与其中任何一块磁盘的速度相同,如果其中的任何一块磁盘出现故障,整个系统将会受到破坏,可靠性是单独使用一块硬盘的1/n。
(2)、RAID 0的另一方式是用n块硬盘选择合理的带区大小创建带区集,最好是为每一块硬盘都配备一个专门的磁盘控制器,在电脑数据读写时同时向n块磁盘读写数据,速度提升n倍。
提高系统的性能。
2、RAID 1RAID 1称为磁盘镜像:把一个磁盘的数据镜像到另一个磁盘上,在不影响性能情况下最大限度的保证系统的可靠性和可修复性上,具有很高的数据冗余能力,但磁盘利用率为50%,故成本最高,多用在保存关键性的重要数据的场合。
raid(独立冗余磁盘阵列)基础知识RAID(独立冗余磁盘阵列)基础知识一. 什么是RAID?RAID是独立冗余磁盘阵列(Redundant Array of Independent Disks)的缩写,是一种通过将多个磁盘组合在一起来提供高数据性能和冗余存储的技术。
RAID技术通过将数据分散存储在多个磁盘上,实现数据的冗余备份和提高系统性能。
二. RAID的基本原理RAID通过将数据切分成多个块,并将这些块分别存储在不同的磁盘上,以实现数据的冗余备份和提高读写性能。
常见的RAID级别包括RAID 0、RAID 1、RAID 5、RAID 6等。
1. RAID 0:条带化(Striping)RAID 0将数据切分成固定大小的块,并将这些块依次存储在多个磁盘上,提高了数据的读写性能。
然而,RAID 0没有冗余备份功能,一旦其中一个磁盘损坏,所有数据都将丢失。
2. RAID 1:镜像化(Mirroring)RAID 1将数据同时写入两个磁盘,实现了数据的冗余备份。
当其中一个磁盘损坏时,另一个磁盘仍然可以正常工作,保证数据的可靠性。
然而,RAID 1并没有提高数据的读写性能。
3. RAID 5:条带化加分布式奇偶校验(Striping with Distributed Parity)RAID 5将数据切分成固定大小的块,并在多个磁盘上存储数据和奇偶校验位。
奇偶校验位用于恢复损坏的数据。
RAID 5的读写性能较高,并且具有冗余备份功能。
然而,当多个磁盘损坏时,数据恢复的时间和复杂度较高。
4. RAID 6:双分布式奇偶校验(Double Distributed Parity)RAID 6是在RAID 5的基础上增加了第二个奇偶校验位,提高了数据的冗余备份能力。
RAID 6可以同时容忍两个磁盘的损坏,提供了更高的数据可靠性。
三. RAID的优缺点RAID技术具有以下优点:1. 提高数据的读写性能:通过条带化技术,数据可以同时从多个磁盘读取或写入,提高了系统的读写性能。
第1章RAID技术详解自从计算机问世以来,存储技术就伴随着计算机的发展而飞速发展,但从重要性和影响力方面来说,没有哪项存储技术的发明能够与RAID相提并论,RAID技术理念引发了数据存储的重大变革,也成为现在虚拟化存储技术的奠基石。
RAID技术有各种级别之分,包括RAID-0、RAID-1、RAID-10、RAID-1E、RAID-2、RAID-3、RAID-4、RAID-5、RAID-5E、RAID-5EE、RAID双循环、RAID-6、JBOD等,本章将详细讲解各个级别RAID的数据组织原理、故障原因分析及其数据恢复思路。
1.1 什么是RAID这一节首先对RAID做一个基本介绍,包括RAID的概念、RAID的作用、RAID级别的分类、软RAID和硬RAID的组建方法,同时还会对RAID中常用的一些专业术语进行讲解。
1.1.1 RAID基础知识RAID最初是1987年在加利福尼亚大学进行的一个科研项目,后来由伯克利分校的D.A. Patterson教授在1988年正式提出。
RAID(Redundant Array of Inexpensive Disks),直译为“廉价冗余磁盘阵列”,最初是为了组合多块小容量的廉价磁盘来代替大容量的昂贵磁盘,同时希望在磁盘失效时不会对数据造成影响而开发出的一种磁盘存储技术。
后来随着硬盘研发技术的不断提升,硬盘的容量越来越大,成本却在不断下降,所以RAID中Inexpensive(廉价)一词已经失去意义,于是将这个词用Independent(独立)来替代,RAID就成了“独立冗余磁盘阵列”,也简称为“磁盘阵列”,但这只是名称的变化,实质性的内容并没有改变。
1.1.2 RAID能解决什么问题通俗地说,RAID就是通过将多个磁盘按照一定的形式和方案组织起来,通过这样的形式能够获取比单个硬盘更高的速度、更好的稳定性、更大的存储能力的存储解决方案,用户不必关心磁盘阵列究竟由多少块硬盘组成,使用中整个阵列就如同一块硬盘一样。
RAID系列技术详解1、RAID 0 RAID 0是把n个物理磁盘虚拟成⼀个逻辑磁盘,即形成RAID 0的各个物理磁盘会组成⼀个逻辑上连续,物理上也连续的虚拟磁盘。
⼀级磁盘控制器(指使⽤这个虚拟磁盘的控制器,如果某台主机使⽤配适卡链接外部盘阵,则指的就是主机上的磁盘控制器)对这个虚拟磁盘发出的指令,都被RAID控制器收到并分析处理,根据Block映射关系算法公式转换成对组成RAID0的各个物理盘的真实物理磁盘IO请求指令,收集或写⼊数据之后,再提交给主机磁盘控制器。
RAID 0也称为条带化存储,它代表了所有RAID级别中最⾼的存储性能。
⽆数据校验,下⾯分析从上到下访问RAID 0磁盘的过程。
假如某⼀时刻,主机控制器发出指令:读取初始扇区10000长度128 RAID控制器接收到这个指令之后,⽴即进⾏计算,根据对应公式算出10000号逻辑扇区所对应的物理磁盘的扇区号,然后依次算出逻辑上连续的下128个扇区所在物理磁盘的扇区号。
分别向对应这些扇区的磁盘再次发出指令。
这次是真是的读取数据了,磁盘接受到指令,各⾃将数据提交给RAID控制器,经过控制器在Cache中的组合,再提交给主机控制器。
经过以上过程,发现如果这128个扇区都落在同⼀个Segment中的话,也就是说条带深度容量⼤于128个扇区的容量(64KB),则这次IO就只能真实地从这⼀块物理盘上读取,性能和单盘相⽐会减慢,因为没有任何优化,反⽽还增加了RAID控制器额外的计算开销。
所以,在某种特定条件下要提升性能,让⼀个IO尽量扩散到多块物理盘上,就要减⼩条带深度。
在磁盘数量不变的条件下,也就是减⼩条带⼤⼩(Stripe SIZE,也就是条带长度),让这个IO的数据被控制器分割,同时放满⼀个条带的第⼀个Segment、第⼆个Segment等,以此类推,这样就能极⼤地占⽤多块物理盘。
所以RAID 0要提升性能,条带做的越⼩越好。
但是有⼀个⽭盾出现了,就是条带太⼩,导致并发IO⼏率降低,因为如果条带太⼩,则每次IO⼀定会占⽤⼤部分物理盘,队列中的IO就只能等待这次IO结束后才能使⽤物理盘,⽽条带太⼤,⼜不能充分提⾼传输速度。
RAID 技术详解计算机技术的发展,已使的CPU的速度进入GHz 时代。
而计算机的内存也由66MHz发展到 100MHz 甚至133MHz。
显卡的速度也日新月异。
计算机制造商们全面打起了提速战。
作为计算机最重要的外部存储设备,硬盘当然也不甘落后,也相继推出了ATA66和ATA100 硬盘。
即便如此,硬盘存储仍然摆脱不了系统性能瓶颈的角色,甚至由于其它计算机部件幅度大得多的性能提升,使得硬盘速度虽有提升,但依旧陷入了更为尴尬的境地。
而且由于硬盘速度很大程度上依赖于机械部分,因此基于现在的硬盘技术,要想大幅提速非常困难。
不仅如此,硬盘存储在数据安全上也是问题多多。
现在人们的工作已无法摆脱计算机,这一方面使得人们的工作效率大大提高,但潜在的危险也是明摆着的:一旦硬盘的数据损坏,人们长时间的工作就可能毁于一旦。
那么,有没有基于现在的硬盘提升存储性能和数据安全的技术呢?有,它就是RAID技术。
RAID是英文Redundant Array of Independent Disks的缩写,翻译成中文即为独立磁盘冗余阵列,或简称磁盘阵列。
简单的说,RAID是一种把多块独立的硬盘(物理硬盘)按不同方式组合起来形成一个硬盘组(逻辑硬盘),从而提供比单个硬盘更高的存储性能和提供数据冗余的技术。
组成磁盘阵列的不同方式成为RAID级别(RAID Levels)。
数据冗余的功能是在用户数据一旦发生损坏后,利用冗余信息可以使损坏数据得以恢复,从而保障了用户数据的安全性。
在用户看起来,组成的磁盘组就像是一个硬盘,用户可以对它进行分区,格式化等等。
总之,对磁盘阵列的操作与单个硬盘一模一样。
不同的是,磁盘阵列的存储性能要比单个硬盘高很多,而且可以提供数据冗余。
细心的读者可以注意到,一部分文章把RAID 解释为 Redundant Array of Inexpensive Disks,即廉价磁盘冗余阵列。
那么,到底是Independent 还是Inexpensive呢?说到这里,我们要看一看RAID的历史了。
1988年,由加州大学Berkeley 分校的David A. Patterson等人在原有技术的基础上进行了扩充,提出几种新的磁盘组织方式,目的是用多个用于个人电脑上的廉价磁盘替代当时数据中心系统普遍采用的价格昂贵的SLEDs磁盘(Single Large Expensive Disks)。
根据这一目的,David A. Patterson 等人首次使用了Redundant Array of Inexpensive Disks这一名称。
RAID被提出后,引起了人们的极大兴趣,并获得了成功。
但是随着存储技术的发展,SLEDs磁盘已经成为过去。
现在普遍采用的磁盘在价格和性能上相差不多,因此如果再用廉价(Inexpensive)来形容组成RAID的磁盘就不合适了。
为了适应技术的发展,委员会开始普遍把RAID解释为Redundant Array of Independent Disks。
RAID技术经过不断的发展,现在已拥有了从 RAID 0 到 6 七种基本的RAID 级别。
另外,还有一些基本RAID级别的组合形式,如RAID 10(RAID 0与RAID 1的组合),RAID 50(RAID 0与RAID 5的组合)等。
不同RAID 级别代表着不同的存储性能、数据安全性和存储成本。
下面就针对一些最为常用的 RAID级别做简单介绍。
RAID 0 :RAID 0又称为Stripe或Striping,它代表了所有RAID级别中最高的存储性能。
RAID 0提高存储性能的原理是把连续的数据分散到多个磁盘上存取,这样,系统有数据请求就可以被多个磁盘并行的执行,每个磁盘执行属于它自己的那部分数据请求。
这种数据上的并行操作可以充分利用总线的带宽,显著提高磁盘整体存取性能。
图一如图1所示:系统向三个磁盘组成的逻辑硬盘(RADI 0 磁盘组)发出的I/O数据请求被转化为3项操作,其中的每一项操作都对应于一块物理硬盘。
我们从图中可以清楚的看到通过建立RAID 0,原先顺序的数据请求被分散到所有的三块硬盘中同时执行。
从理论上讲,三块硬盘的并行操作使同一时间内磁盘读写速度提升了3倍。
但由于总线带宽等多种因素的影响,实际的提升速率肯定会低于理论值,但是,大量数据并行传输与串行传输比较,提速效果显著显然毋庸置疑。
RAID 0的缺点是不提供数据冗余,因此一旦用户数据损坏,损坏的数据将无法得到恢复。
RAID 0具有的特点,使其特别适用于对性能要求较高,而对数据安全不太在乎的领域,如图形工作站等。
对于个人用户,RAID 0也是提高硬盘存储性能的绝佳选择。
RAID 1:RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。
RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。
如图2所示:图二当读取数据时,系统先从RAID 0的源盘读取数据,如果读取数据成功,则系统不去管备份盘上的数据;如果读取源盘数据失败,则系统自动转而读取备份盘上的数据,不会造成用户工作任务的中断。
当然,我们应当及时地更换损坏的硬盘并利用备份数据重新建立Mirror,避免备份盘在发生损坏时,造成不可挽回的数据损失。
由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。
同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mirror虽不能提高存储性能,但由于其具有的高数据安全性,使其尤其适用于存放重要数据,如服务器和数据库存储等领域。
RAID 0+1:正如其名字一样RAID 0+1是RAID 0和RAID 1的组合形式,也称为RAID 10。
以四个磁盘组成的RAID 0+1为例,其数据存储方式如图3所示:图三RAID 0+1是存储性能和数据安全兼顾的方案。
它在提供与RAID 1一样的数据安全保障的同时,也提供了与RAID 0近似的存储性能。
由于RAID 0+1也通过数据的100%备份提供数据安全保障,因此RAID 0+1的磁盘空间利用率与RAID 1相同,存储成本高。
RAID 0+1的特点使其特别适用于既有大量数据需要存取,同时又对数据安全性要求严格的领域,如银行、金融、商业超市、仓储库房、各种档案管理等。
RAID 5:RAID 5 是一种存储性能、数据安全和存储成本兼顾的存储解决方案。
以四个硬盘组成的RAID 5为例,其数据存储方式如图4所示:图四图中,P0为D0,D1和D2的奇偶校验信息,其它以此类推。
由图中可以看出,RAID 5不对存储的数据进行备份,而是把数据和相对应的奇偶校验信息存储到组成RAID5的各个磁盘上,并且奇偶校验信息和相对应的数据分别存储于不同的磁盘上。
当RAID5的一个磁盘数据发生损坏后,利用剩下的数据和相应的奇偶校验信息去恢复被损坏的数据。
RAID 5可以理解为是RAID 0和RAID 1的折衷方案。
RAID 5可以为系统提供数据安全保障,但保障程度要比Mirror低而磁盘空间利用率要比Mirror高。
RAID 5具有和RAID 0相近似的数据读取速度,只是多了一个奇偶校验信息,写入数据的速度比对单个磁盘进行写入操作稍慢。
同时由于多个数据对应一个奇偶校验信息,RAID 5的磁盘空间利用率要比RAID 1高,存储成本相对较低。
JBOD:JBOD(Just Bundle Of Disks)译成中文可以是"简单磁盘捆绑",通常又称为Span。
JBOD 不是标准的RAID级别,它只是在近几年才被一些厂家提出,并被广泛采用。
三个硬盘组成的Span为例,其数据存储方式如图5所示:图五Span是在逻辑上把几个物理磁盘一个接一个串联到一起,从而提供一个大的逻辑磁盘。
Span上的数据简单的从第一个磁盘开始存储,当第一个磁盘的存储空间用完后,再依次从后面的磁盘开始存储数据。
Span存取性能完全等同于对单一磁盘的存取操作。
Span也不提供数据安全保障。
它只是简单的提供一种利用磁盘空间的方法,Span的存储容量等于组成Span的所有磁盘的容量的总和。
IDE和SCSI是计算机的两种不同的接口,前者普遍用于PC计算机,而后者一般用于Apple Macintosh系统和UNIX操作系统。
RAID技术问世时是基于SCSI接口,因其成本高,因此主要面向服务器等高端应用。
普通用户根本无缘拥有RAID。
随着计算机的大众化,由此带动PC计算机的空前繁荣。
相应的,在市场的带动下,用于PC计算机的IDE接口设备价格大幅降低,同时性能大幅提高。
以30G 容量硬盘为例,IDE接口的硬盘现在只需1000元左右,而SCSI接口的硬盘则需5000到6000元,而它们的性能则相差无几。
但是,RAID技术仍只基于SCSI接口,普通的PC用户在羡慕RAID技术的好处的同时,却无法拥有RAID。
可喜的是,近来一些厂商看到了 RAID 在低端用户中的巨大市场,开始把RAID技术移植到IDE 接口上,推出了基于IDE接口的RAID应用,称为IDE RAID。
而基于SCSI接口的RAID应用则相应称为SCSI RAID。
与SCSI RAID相比,IDE RAID具有极低的价格,和一点也不逊色的性能表现,相应的,IDE RAID 解决方案就具有SCSI RAID无法比拟的高性价比。
因此IDE RAID自推出后,受到普通PC用户和普通商业应用的普遍欢迎。
RAID对于普通的用户来说,再也不是什么奢侈的技术了。
x206/226/236/306/346 - SCSI机型配置集成的RAID-1适用机型:所有xSeries 206; 所有xSeries 226; 所有xSeries 236; 所有xSeries 306; 所有xSeries 346文档内容:在BIOS中可以用SCSISelect Utility工具启动RAID0和RAID1的功能。
这个集成的SCSI RAID功能在默认情况下是关闭的,按照下面的步骤操作开启SCSI RAID(SCSI HostRAID):1 开机2 屏幕提示 press <CTRL><A> for SCSISelect Utility 时,按 Ctrl+A3 选择要设置的SCSI Channel4 选择Configure/View SCSI Controller Settings,然后选HostRAID5 选择Enabled6 按Esc,并选择yes保存退出使用SCSI HostRAID实现RAID-1:1 从SCSISelect主菜单选择Configure/View HostRAID settings2 从ready drives的列表中,按“C”创建阵列3 选择RAID-14 从ready drives的列表中,选择需要配置raid-1的两块硬盘5 选择Creat new RAID-16 给该阵列写标识identifier7 选择Yes8 按Esc9 重新启动服务器如何查看配置:使用SCSI Select Utility program查看SCSI控制器的信息,选择可用的阵列,回车。