第四节函数的概念和表示方法
- 格式:doc
- 大小:192.50 KB
- 文档页数:4
第四节 函数y =A sin(ωx +φ)的图象及简单应用考试要求:1.结合具体实例,了解函数y =A sin(ωx +φ)的实际意义.2.能借助图象理解参数A ,ω,φ的意义,了解参数的变化对函数图象的影响.3.会用三角函数解决一些简单的实际问题,体会三角函数是描述周期变化现象的重要函数模型.一、教材概念·结论·性质重现1.y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0,x ≥0)振幅周期频率相位初相A T =f ==ωx + φ φ2.用五点法画y =A sin(ωx +φ)(A >0,ω>0,x ∈R )在一个周期内的简图时,要找五个特征点,如下表所示:ωx +φ0π2πxy =A sin(ωx+φ)0A 0-A 01.五点法作简图要取好五个关键点,注意曲线凹凸方向.3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)(A >0,ω>0)的图象的两种途径:由函数y =sin x 的图象经过变换得到y =sin(ωx +φ)的图象,如先伸缩,再平移时,要平移个单位长度,而不是|φ|个单位长度.二、基本技能·思想·活动经验1.判断下列说法的正误,对的打“√”,错的打“×”.(1)将y=sin 2x的图象向右平移个单位长度,得到y=sin的图象.( × )(2)函数f(x)=A sin(ωx+φ)(A≠0)的最大值为A,最小值为-A.( × )(3)若函数y=A sin(ωx+φ)(A≠0)为偶函数,则φ=kπ+(k∈Z).( √ )(4)函数y=A cos(ωx+φ)的最小正周期为T,那么函数图象的两个相邻对称中心之间的距离为.( √ ) 2.(2021·常州一模)已知函数f(x)=2sin x,为了得到函数g(x)=2sin的图象,只需( )A.先将函数f(x)图象上所有点的横坐标变为原来的2倍,再向右平移个单位长度B.先将函数f(x)图象上所有点的横坐标变为原来的,再向右平移个单位长度C.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的D.先将函数f(x)的图象向右平移个单位长度,再将所有点的横坐标变为原来的2倍B 解析:将f(x)=2sin x的图象上各点的横坐标缩短到原来的,纵坐标不变,得到的函数解析式为f(x)=2sin 2x;再将函数f(x)=2sin 2x图象上所有的点向右平移个单位长度,得到函数f(x)=2sin.3.函数f(x)=cos(ω>0)的最小正周期是π,则其图象向右平移个单位长度后得到的图象对应函数的单调递减区间是( )A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)B 解析:由题意知ω==2,将函数f(x)的图象向右平移个单位长度后得到函数g(x)=cos=cos=sin 2x的图象,由2kπ+≤2x≤2kπ+(k∈Z),解得函数的单调递减区间为(k∈Z).4.(2021·东城区一模)已知函数f(x)=A sin(2x+φ),其中x和f(x)部分对应值如表所示:x-0f(x)-2-2-222那么A=________.4 解析:由题意得f(0)=A sin φ=-2,f=-A cos φ=-2,所以A2(sin2φ+cos2φ)=16,因为A>0,所以A=4.5.函数y=A sin(ωx+φ)(A,ω,φ为常数,A>0,ω>0)在闭区间[-π,0]上的图象如图所示,则ω= .3 解析:观察函数图象可得周期T=,故T==,所以ω=3.考点1 由图象确定y=A sin ωx+φ 的解析式——基础性1.(2022·银川模拟)已知函数y=sin(ωx+φ)的图象如图所示,则此函数的解析式可以是( )A.y=sinB.y=sinC.y=sinD.y=sinC 解析:由函数y=sin(ωx+φ)的图象知,T=2×=π,ω==2,由五点法画图知,是函数图象的第三个关键点,即2×+φ=π,解得φ=,所以此函数的解析式是y=sin.2.若函数f(x)=sin(ωx+φ)满足f=f(x),且f(x)的图象如图所示,则φ=( )A. B.-C. D.-D 解析:因为函数f(x)=sin(ωx+φ)满足f=f(x),所以函数f(x)的图象关于直线x=对称,结合图象,-=×,所以ω=2.结合五点法作图可得,2×+φ=,所以φ=-.3.(2021·全国甲卷)已知函数f(x)=2cos(ωx+φ)的部分图象如图所示,则f =________.- 解析:由题意可得T=-=,所以T=π,ω==2,当x=时,ωx+φ=2×+φ=2kπ,所以φ=2kπ-π(k∈Z),令k=1可得φ=-,据此有f(x)=2cos,f =2cos=2cos=-.4.如图,某地一天6~14时的温度变化曲线近似满足函数T=A sin(ωt+φ)+b,则这段曲线对应的函数解析式为____________.y=10sin+20,x∈[6,14] 解析:从题图中可以看出,6~14时是函数y=A sin(ωx+φ)+b的半个周期,所以A=×(30-10)=10,b=×(30+10)=20.又×=14-6,所以ω=.又×10+φ=2π+2kπ,k∈Z,取φ=,所以y=10sin+20,x∈[6,14].1.由图象求解析式问题,求①代入法:把图象上的一个已知点代入(此时A,ω,b已知)或代入图象与直线y=b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx+φ=+kπ,k∈Z;“最小值点”(即图象的“谷点”)时ωx+φ=+kπ,k∈Z.考点2 函数y=A sin ωx+φ 的图象变换——综合性(1)(2021 ·全国乙卷)把函数y=f(x)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度,得到函数y=sin的图象,则f(x)=( )A.sin B.sinC.sin D.sinB 解析:由已知的函数y=sin逆向变换,第一步:向左平移个单位长度,得到y=sin=sin的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到y=sin的图象,即为y=f(x)的图象,所以f(x)=sin.(2)(2021·山西二模)将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度得到y =cos 2x的图象,则φ的值可能为( )A. B.C. D.A 解析:将函数y=sin的图象沿x轴向右平移φ(φ>0)个单位长度,得到y=sin=sin=cos=cos=cos.若要得到y=cos 2x的图象,则-2φ-=2kπ,即φ=-kπ-,k∈Z.因为φ>0,所以当k=-1时,φ=.本例(1)若改为:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,再把所得曲线向右平移个单位长度得到函数y=f(x)的图象,则f(x)=________.sin 解析:函数y=sin的图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin,向右平移个单位长度得到函数f(x)=sin=sin.1.由函数y移后伸缩”与“先伸缩后平移”.要特别注意这两种情况下平移的单位长度.2.当变换前后解析式三角函数名称不同时,要注意利用诱导公式转化.1.(2022·泰安模拟)已知函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C上所有点的( )A.横坐标伸长到原来的2倍,纵坐标不变B.纵坐标缩短到原来的倍,横坐标不变C.纵坐标伸长到原来的2倍,横坐标不变D.横坐标缩短到原来的倍,纵坐标不变D 解析:函数f(x)=4sin的图象为C,为了得到函数g(x)=4sin的图象,只要把C 上所有点横坐标缩短到原来的倍,纵坐标不变,即可.2.已知函数f(x)=cos是偶函数,要得到函数g(x)=sin 2x的图象,只需将函数f(x)的图象( )A.向左平移个单位长度B.向右平移个单位长度C.向右平移个单位长度D.向左平移个单位长度C 解析:因为函数f(x)=cos是偶函数,所以φ-=kπ(k∈Z).因为|φ|<,所以φ=,所以f(x)=cos 2x,要得到函数g(x)=sin 2x=cos的图象,只需将函数f(x)=cos 2x的图象向右平移个单位长度.考点3 三角函数模型及其应用——应用性(2021·上海模拟)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面1米,点O在地面上的射影为A.风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达P点,则点P到点A的距离与点P的高度之和为( )A.5米B.(4+)米C.(4+)米D.(4+)米D 解析:以圆心O1为原点,以水平方向为x轴正方向,以竖直方向为y轴正方向建立平面直角坐标系,则根据大风车的半径为2米,圆上最低点O离地面1米,12秒转动一圈.设∠OO1P=θ,运动t(秒)后与地面的距离为f(t).又T=12,所以θ=t,所以f(t)=3-2cos t,t≥0;风车圆周上一点M从最低点O开始,逆时针方向旋转40秒后到达点P,θ=6π+,P(,1),所以点P的高度为3-2×=4(米).因为A(0,-3),所以AP==,所以点P到点A的距离与点P的高度之和为(4+)米.三角函数模型的应用体现在两方面:一是已知函数模型求解数模型,再利用三角函数的有关知1.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中使用.假设在水流量稳定的情况下,筒车上的每一个盛水筒都做逆时针匀速圆周运动.现将筒车抽象为一个几何图形,如图所示,圆O的半径为4 m,P0在水平面上,盛水筒M 从点P0处开始运动,OP0与水平面所成角为30°,且2分钟恰好转动1圈,则盛水筒M距离水面的高度H(单位:m)与时间t(单位:s)之间的函数关系式是( )A.H=4sin+2B.H=4sin+2C.H=4sin+2D.H=4sin+2A 解析:以O为原点,过点O的水平直线为x轴,建立如图所示平面直角坐标系,因为∠xOP0=30°=,所以OM在 t(s) 内转过的角度为t=t,所以以x轴为始边,以OM为终边的角为t-,则点M的纵坐标为4sin,所以点M距水面的高度H(m)表示为时间 t(s) 的函数是H=4sin+2.2.据市场调查,某种商品一年内每件出厂价在7 000元的基础上,按月呈f(x)=A sin(ωx+φ)+B的模型波动(x为月份).已知3月份达到最高价9 000元,9月份价格最低,为5 000元,则7月份的出厂价格为________元.6 000 解析:作出函数简图如图:三角函数模型为y=A sin(ωx+φ)+B,由题意知A=(9 000-5 000)=2 000,B=7 000,T=2×(9-3)=12,所以ω==.将(3,9 000)看成函数图象的第二个特殊点,则有×3+φ=,所以φ=0,故f(x)=2 000sin x+7 000(1≤x≤12,x∈N*).所以f(7)=2 000×sin+7 000=6 000(元).故7月份的出厂价格为6 000元.考点4 三角函数图象与性质的综合问题——综合性(1)(多选题)将函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x),则下列结论正确的是( )A.函数g(x)的图象关于直线x=对称B.函数g(x)的图象关于点对称C.函数g(x)在上单调递减D.函数g(x)在[0,2π]上恰有4个极值点AD 解析:函数f(x)=2sin的图象向右平移个单位长度后,所得图象对应的函数为y=g(x)=2sin的图象,对于A:当x=时,g=2,故A正确.对于B:当x=时,g=2sin=,故B错误.对于C:当x∈时,2x-∈,故函数在该区间上单调递增,故C错误.对于D:令2x-=kπ+(k∈Z),解得x=+(k∈Z),当k=0,1,2,3时,x=,,,,正好有4个极值点,故D正确.(2)已知关于x的方程2sin2x-sin 2x+m-1=0在上有两个不同的实数根,则m的取值范围是( )A. B.(-2,2)C.(-2,-) D.(-2,-1)D 解析:方程2sin2x-sin 2x+m-1=0可转化为m=1-2sin2x+sin 2x=cos 2x+sin 2x=2sin,x∈.设2x+=t,则t∈,题目条件可转化为=sin t,t∈,有两个不同的实数根.所以y=和y=sin t,t∈的图象有两个不同交点,如图:由图象观察知,的范围为,故m的取值范围是(-2,-1).已知关于x的方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则实数m的取值范围是________.1≤m<2 解析:2sin2x-sin 2x+m-1=-cos 2x-sin 2x+m=-2sin+m.因为x∈,所以2x+∈.要使方程2sin2x-sin 2x+m-1=0在x∈上有两个不同的实数根,则2x+∈且2x +≠,此时2sin∈[1,2),所以1≤m<2.1.研究y=1.(2021·运城模拟)函数f(x)=2sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,则下列结论错误的是( )A.f(x)=2sinB.若把f(x)的横坐标缩短为原来的,纵坐标不变,则得到的函数在[-π,π]上是增函数C.若把函数f(x)的图象向左平移个单位长度,则所得图象对应的函数是奇函数D.函数y=f(x)的图象关于直线x=-4π对称B 解析:由图象可得T=-2π=,所以T=6π,所以ω==.因为f(2π)=2,所以f(2π)=2sin=2,即sin=1,所以+φ=2kπ+(k∈Z),所以φ=2kπ-(k∈Z).因为|φ|<π,所以φ=-.所以f(x)=2sin,故A正确.把f(x)的横坐标缩短为原来的,纵坐标不变,得到的函数为y=2sin.因为x∈[-π,π],所以-≤x-≤,所以y=2sin在[-π,π]上不单调递增,故B错误.把函数f(x)的图象向左平移个单位长度,得到的函数为y=2sin=2sin x,是奇函数,故C正确.f(-4π)=2sin=2,是最值,故x=-4π是f(x)的对称轴,故D正确.2.若将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后得到的图象关于y轴对称,则函数f(x)在上的最大值为( )A.2 B.C.1 D.A 解析:将函数f(x)=2sin(2x+φ)的图象向左平移个单位长度后,得到的y=2sin的图象关于y轴对称,所以φ=,函数f(x)=2sin.因为x∈,所以2x+∈,则当2x+=时,函数f(x)在上的最大值为2.将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A .B .C .D .[四字程序]思路参考:构造正弦型函数的解析式.B 解析:y =cos x +sin x =2sin ,函数的图象向左平移m (m >0)个单位长度,得y =2sin 的图象.由x +m +=k π+(k ∈Z ),得函数y =2sin 的图象的对称轴为x =-m +k π(k ∈Z ).因为所得的图象关于y 轴对称,所以-m +k π=0(k ∈Z ),即m =k π+(k ∈Z ),则m 的最小值为.思路参考:构造余弦型函数的解析式.B 解析:函数y =cos x +sin x =2cos 的图象向左平移m (m >0)个单位长度得到y =2cos 的图象.因为此函数图象关于y 轴对称,所以y =2cos 为偶函数,易知m 的最小值为.思路参考:根据图象对称轴与函数最值的关系.B 解析:由解法1,得y =2sin .因为所得的图象关于y 轴对称,可得当x =0时,y =±2,进而sin =±1,易知m 的最小值为.思路参考:利用函数图象.B 解析:y=cos x+sin x=2sin,可得此函数图象的对称轴为x=kπ+(k∈Z),可知离y轴最近的对称轴为x=和x=-.由图象向左平移m(m>0)个单位长度后关于y轴对称,易知m的最小值为.1.基于课程标准,解答本题一般需要提升运算求解能力、逻辑推理能力,体现逻辑推理、数学运算的核心素养.2.基于高考数学评价体系,本题涉及三角恒等变换、三角函数的图象与性质等知识,渗透了转化与化归思想方法,有一定的综合性,属于中低档难度题.将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,所得函数g(x)的图象关于原点对称,则函数f(x)在上的最大值为( )A.0 B.C. D.1D 解析:将函数f(x)=sin(2x+φ)的图象向左平移个单位长度后,可得函数g(x)=sin的图象.根据所得图象关于原点对称,可得+φ=kπ.因为|φ|<,所以φ=,f(x)=sin.在上,2x+∈,故当2x+=时,f(x)取得最大值为1.。
第四节函数单一性、凹凸性与极值我们已经会用初等数学的方法研究一些函数的单一性和某些简单函数的性质,法使用范围狭窄,而且有些需要借助某些特别的技巧,因此不拥有一般性. 工具,介绍判断函数单一性和凹凸性的简易且拥有一般性的方法. 但这些方本节将以导数为散布图示★ 单一性的鉴别法★例 1★ 单一区间的求法★例 2 ★例 3 ★例4★例5 ★例 6 ★例 7 ★例 8 ★ 曲线凹凸的观点★例 9 ★例10★ 曲线的拐点及其求法★例11 ★例12 ★例13★ 函数极值的定义★函数极值的求法★例14 ★例15 ★例16★第二充足条件下★例17 ★例18 ★例19★ 内容小结★ 讲堂练习★习题 3-4 ★ 返回内容重点一、函数的单一性:设函数y f ( x) 在 [a, b]上连续 , 在 (a, b)内可导 .(1) 若在 (a, b)内 f (x) 0 , 则函数 y f ( x) 在 [a, b] 上单一增添 ;(2) 若在 (a, b)内 f (x) 0 , 则函数 y f ( x) 在 [a, b] 上单一减少 .二、曲线的凹凸性:设 f ( x) 在 [a, b] 上连续 , 在 (a, b)内拥有一阶和二阶导数, 则(1) 若在 (a, b)内, f ( x) 0, 则 f (x) 在 [a, b]上的图形是凹的 ;(2) 若在 (a, b)内, f ( x) 0, 则 f (x) 在 [a, b]上的图形是凸的 .三、连续曲线上凹弧与凸弧的分界点称为曲线的拐点判断曲线的凹凸性与求曲线的拐点的一般步骤为:(1)求函数的二阶导数 f ( x) ;(2)令 f ( x) 0 ,解出所有实根,并求出所有使二阶导数不存在的点;(3) 对步骤 (2)中求出的每一个点,检查其周边左、右双侧 f (x) 的符号,确立曲线的凹凸区间和拐点.四、函数的极值极值的观点;极值的必需条件;第一充足条件与第二充足条件;求函数的极值点和极值的步骤:( 1)确立函数 f ( x) 的定义域,并求其导数 f ( x) ;( 2)解方程 f (x) 0 求出 f (x) 的所有驻点与不行导点;( 3)议论 f ( x) 在驻点和不行导点左、右双侧周边符号变化的状况,确立函数的极值点;( 4)求出各极值点的函数值,就获得函数 f ( x) 的所有极值 .例题选讲函数单一性的判断例 1 (E01) 议论函数 y e x x 1的单一性 .解y e x 1. 又 D:( , ). 在( ,0) 内, y 0, 函数单一减少;在 (0, ) 内, y 0, 函数单一增添 .注:函数的单一性是一个区间上的性质,要用导数在这一区间上的符号来判断,而不可以用一点处的导数符号来鉴别一个区间上的单一性.例 2 (E02) 议论函数 y 3 x2的单一区间 .解 D : ( , ). y2( x 0), 当 x 0 时,导数不存在 .33 x当x 0 时, y 0, 在 ( ,0] 上单一减少;当 0 x 时, y 0, 在 0, 上单一增添;单一区间为 ( ,0] , [0, ) .注意 : 区间内个别点导数为零不影响区间的单一性. 比如,y x3 , y x 0 0, 可是( , ) 上单一增添 .注:从上述两例可见,对函数 y f ( x) 单一性的议论,应先求出使导数等于零的点或使导数不存在的点,并用这些点将函数的定义域区分为若干个子区间,而后逐一判断函数的导数 f ( x) 在各子区间的符号,进而确立出函数y f ( x) 在各子区间上的单一性,每个使得f (x) 的符号保持不变的子区间都是函数y f ( x) 的单一区间 .求单一区间例 3 (E03) 确立函数 f ( x) 2 x3 9x 2 12x 3 的单一区间 .解 D : ( , ). f ( x) 6 x2 18x 12x 6( x 1)( x 2),解方程 f ( x) 0 得 x1 1, x2 2.当x 1 时, f ( x) 0, f ( x) 在,1 上单一增添;当 1 x 2 时, f ( x) 0, f ( x) 1,2 上单一减少;当 2 x 时, f ( x) 0, f ( x) 在 [ 2, ) 上单一增添;单一区间为 ( ,1], [1,2], [ 2, ).例4求函数y 3 ( 2x a )(a x)2 ( a 0) 的单一区间 .解y 2 2a 3x, 3 3 a )2 (a(2 x x)令 y0, 解得 x2a, 在 x 2a , x 3 a 处 y 不存在 .132在, a内, y 0, 函数单一增添 .在 a, 2 a 内, y0, 函数单一增添 .22 3在 2a, a 内, y0, 函数单一减少 .在 a,内, y0, 函数单一增添 .3例 5 当 x 0 时, 试证 x ln(1 x) 建立 .证 设 f ( x) x ln(1 x), 则 f( x) 1 x .xf ( x) 在 [ 0, ] 上连续,且在 (0,) 内可导, f (x) 0,f (x) 在 [ 0, ] 上单一增添,f ( 0) 0,当 x0 时, x ln(1 x) 0, 即 x ln(1 x). 证毕 .应用单一性证明例 6 (E04) 试证明:当 x0 时 , ln(1 x)x 1 2 .x2证 作协助函数f ( x) ln(1 x)x 1 x 2 ,2由于 f ( x) 在 [ 0, ) 上连续,在 (0,) 内可导,且 f ( x)1x 2 ,1 x1 x1 x当 x 0 时, f (x) 0, 又 f (0) 0.故当 x 0 时, f (x)f (0) 0,所以 ln(1 x)x 1 x 2.2例 7 (E05) 证明方程 x5x 10在区间 ( 1,0) 内有且只有一个实根 .证 令 f ( x)x 5x 1, 因 f ( x) 在闭区间 [ 1,0] 持续,且 f ( 1) 1 0, f (0) 1 0.依据零点定理 f ( x) 在 ( 1,0) 内有一个零点 .另一方面, 关于随意实数 x, 有 f ( x) 5 x 41 0,所以 f ( x) 在 (,) 内单一增添,所以曲线 y f ( x) 与 x 轴至多只有一个交点 .综上所述可知,方程 x5x 1 0在区间 ( 1,0) 内有且只有一个实根 .例 8 证明方程 ln xx 1在区间 (0, ) 内有两个实根 .e证 令 f ( x)ln xx 1, 欲证题设结论等价于证f (x) 在 (0, ) 内有两个零点 .e令 f (x)1 1 0x e. 因 f (e)1, lim f ( x), 故 f (x) 在 (0,e) 内有一零点 .x ex又因在 (0,e) 内 f (x) 0, 故 f ( x) 在 (0, e) 内单一增添,这零点独一 .所以 , f ( x) 在 (0,) 内有且仅有两个零点 , 证毕 .例 9 (E06)判断yx ln(1x) 的凹凸性.解 由于y 1 1 , y 11 (1 x)2x所以,题设函数在其定义域( 1, ) 内是凹的 .例 10 (E07) 判断曲线 y x3的凹凸性.解y 3x2 , y 6x, 当 x 0 时, y 0, 曲线在 ( ,0] 为凸的;当 x 0 时, y 0, 曲线在 [ 0, ) 为凹的;注意到点 (0,0) 是曲线由凸变凹的分界点 .例 11 (E08) 求曲线 y 3 x4 4 x3 1 的拐点及凹、凸区间 .解易见函数的定义域为( , ),y 12x3 12x2 , y2 36x x.3令 y 0, 得 x1 0, x2 2 .3x ( ,0) 0 (0, 2 3) 2/3 (2/3, )f ( x) + 0 -0 +f ( x) 凹的拐点(0,1) 凸的拐点 ( 2/ 3,11/ 27) 凹的所以,曲线的凹区间为( ,0] ,[2 3, ) 凸区间为 [0,2 3] 拐点为(0,1)和(2 / 3,11/ 27) .例 12 求曲线 y sin x cos x( x ( 0,2 )) 的拐点 .解y c o xs si nx, y s i nx c o sx, y c o sx s i nx.令 y 0, 得 x1 3, x2 7 .4 432 0, f 72 0,f4 4在 [0,2 ] 内曲线有拐点为3,0 ,7,0 .4 4注:若 f ( x0 ) 不存在,点 ( x0 , f ( x0 )) 也可能是连续曲线y f (x) 的拐点 .曲线凹凸性判断例 13 (E09) 求函数 y a 2 3 x b 的凹凸区间及拐点 .解y 1 1 , y 2 ,3 3( x b)2 93 (x b )5函数 y 在x b 处不行导,但 x b 时, y 0, 曲线是凸的,x b 时, y 0, 曲线是凹的 . 故点 (b,a 2 ) 为曲线 y a 2 3 x b 的拐点例 14(E10) 求出函数f ( )x3 3x2 9x5的极值 . x解f ( ) 3 2 6 x 9 3( x 1)( x 3) ,令f (x) 0, 得驻点 x 1 1, x 2 3.x x列表议论以下:x(, 1)1( 1,3)3(3,)f ( x) + 0 - 0 + f ( x)↑极大值↓极小值↑所以 , 极大值 f ( 1) 10, 极小值 f (3)22.例 15 (E11) 求函数 f ( x) ( x 4) 3 ( x 1) 2的极值 .解 (1) 函数 f ( x) 在 (,) 内连续,除 x1 外到处可导,且 f (x)5(x 1) ;33 x 1( 2) 令 f (x)0, 得驻点 x 1; x1 为 f ( x) 的不行导点 ;(3) 列表议论以下 :x( ,1)1( 1,1)1(1,)f ( x)+ 不存在 - 0 + f ( x)↑极大值↓极小值↑( 4) 极大值为 f ( 1) 0, 极小值为 f (1)33 4.例 16 求函数 f x x3 x22 / 3的单一增减区间和极值.解 求导数 f ( x) 1 x 1/ 3 , 当 x 1 时 f (0) 0, 而 x 0 时 f ( x) 不存在 ,所以,函数只可能在这两点获得极值. 列表以下 :x(,0)(0, 1)1(1,)f ( x)+ 不存在 - 0 +f ( x)↗极大值 0↘ 极小值1↗2由上表可见:函数 f ( x) 在区间 ( ,0), (1, ) 单一增添 , 在区间 (0,1) 单一减少 .在点x 0 处有极大值 , 在点 x1处有极小值 f (1) 1,如图.2例 17 (E12) 求出函数f ( x ) x 33 224 x 20 的极值 .x解f( ) 3 2 6 x 24 3( x 4)( x 2), 令 f ( x) 0, 得驻点 x4, x 2.x x12又 f (x) 6 x 6, f ( 4) 18 0,故极大值 f ( 4) 60, f (2)18 0,故极小值 f (2)48.注意: 1. f ( x0 ) 0 时, f ( x) 在点x0处不必定取极值, 仍用第一充足条件进行判断.2.函数的不行导点 ,也可能是函数的极值点 .例 18 (E13) 求函数 f ( x) ( x2 1)3 1的极值 .解由f ( ) 6 ( 2 1)2 0, 得驻点x 1, x 0, x 1. f ( x) 6(x 2 1)(5x 2 1).x x x31 2因 f (x) 6 0, 故 f ( x) 在 x 0 处获得极小值,极小值为 f (0) 0.因 f ( 1) f (1) 0, 故用定理 3 没法鉴别 .观察一阶导数 f (x) 在驻点 x1 1 及 x3 1左右周边的符号 :当 x 取 1 左边周边的值时, f (x) 0;当 x 取1右边周边的值时, f ( x) 0;因 f (x) 的符号没有改变,故 f ( x) 在 x 1 处没有极值 . 同理, f (x) 在x 1处也没有极值 . 以下图 .例 19 求出函数 f ( x) 1 (x 2) 2/ 3的极值 .2( x 1解 f ( x) 2) 3 (x 2). x 2 是函数的不行导点 .3当 x 2 时 , f ( x) 0; 当 x 2 时 , f (x) 0.f (2) 1 为 f (x) 的极大值 .讲堂练习1. 若f (0) 0, 能否能判断 f (x) 在原点的充足小的领域内单一递加?2.设函数 f ( x) 在 (a, b) 内二阶可导, 且 f ( x0 ) 0, 此中x0 (a, b) , 则 (x0 , f (x0 )) 能否一定为曲线 f (x) 的拐点 ?举例说明 .。
第四节 函数的概念和表示方法
【2015年会这样考】
1.通过具体问题(几何问题、实际应用题)找出变量间的函数关系,再求出函数的定义域、值域,进而研究函数性质,寻求问题的结果。
2.高考对函数概念与表示考察是以选择或填空为主,以解答题形式出现的可能性相对较小,本节知识作为工具和其他知识结合起来命题的可能性依然很大 【基础知识、基本方法】 1.函数的概念
⑴定义:设A ,B 是_______,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x 在集合B 中都有___________和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数,记作)(x f y =,
A x ∍,其中x 叫做自变量,x 的取值范围A
叫做函数的__________;与x 相对应的y 的值叫做函数值,函数值的集合{
x x f )(∈A}
叫做函数的________,值域是集合B 的 。
⑵.函数的三要素: 、
及 。
在函数三要素中起决定性作用的是
______________及____________,定义域和对应法则确定了,这个函数就确定了。
2.映射
设A,B 是两个集合,如果按照某种确
定的对应关系f ,使对于集合A 中的任意一
个元素在集合B 中都有唯一确定的元素和它
对应,那么这样的对应就称为从集合A 到集
合B 的一个映射,记作B A f →:
映射是特殊的对应:
____________________________________,
函数是特殊的映射:
_____________________________________
.
3.函数的表示方法
函数的表示方法主要有三
种: 、 、 。
分段函数:在定义域的不同区域有不同
的解析式,这样的函数称为分段函数。
4.定义域的求法 ⑴通常情况下,定义域是由使表达式有意义的所有自变量的值组成的集合,常见的情况有:
①)
()
(x f x g : , ②
)(x f :
③)
(log x f a : ,
④0)(x f : ⑵x x f )((∈A )形式的函数其定义域为A,而不是由使函数表达式有意义的所有自变量的值构成的集合。
⑶当变量有实际意义时,要考虑自变量的实际意义。
5.求函数值域或最值的方法
①单调性法;②配方法;③换元法;④判别式法;⑤图像法;⑥不等式法;⑦导数法 【典例补充】
例1.
⑴求函数x
x x y -+=
0)1(的定义域。
⑵若函数)12(-x f 的定义域为[0,1],求)(x f 的定义域。
⑶若函数法(x)的定义域为[0,
1],求)12(-x f 的定义域。
例2.求下列函数的值域:
⑴21)(x x x f -+=
⑵)3(31)(>-+
=x x x x f
⑶)2
1
(1)(2-≤+=x x x x f ⑷4
5)(22++=
x x x f
⑸x x x f 2cos sin )(-= ⑹1
1
)(2
+-=
x x x f
例3.(1)已知函数2211()f x x x x
+=+,求:()f x
(2)已知函数(1)2f x x x +=+,求
()f x
(3)已知32)(2)(32-=--x x f x f ,求f(x)的表达式。
例4.
(1)设
d cx bx ax x x f ++++=234)(,其
中a 、b 、c 、d 是常数。
如果,
30)3(,20)2(,10)1(===f f f 求的值)6()10(-+f f ; (2)若不等式)1(122
->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的取值范围。
例5.⑴已知函数
⎩⎨⎧≥+<+=1
,1
,23)(2
x ax x x x x f ,若a f f 4))0((=,则实数a=_______.
⑵已知函数⎩⎨⎧<≥+=0,10
,1)(2x x x x f 则
满足不等式)2()1(2x f x f >-的x 的取值范围是_______________________.
_____________2012级2部高三理科数学课时作业(4)_____
1.[2014·江西卷] 函数f (x )=ln(x 2-x )的定义域为( )
A .(0,1]
B .[0,1]
C .(-∞,0)∪(1,+∞)
D .(-∞,0]∪[1,+∞)
2,[2014·山东卷] 函数f (x )=1
(log 2x )2-1
的定义域为( )
A.⎝⎛⎭
⎫0,1
2 B .(2,+∞) C. ⎝⎛⎭⎫0,12∪(2,+∞) D. ⎝⎛⎦⎤0,12∪[2,+∞)
3.已知a 、b 为实数,集合M ={b
a ,1},N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +
b 等于( )
A .-1
B .0
C .1
D .±1 4.下列各组函数中表示同一函数的是( )
A .f (x )=x 与g (x )=(x )2
B .f (x )=|x |与g (x )=3x 3
C .f (x )=x |x |与g (x )=⎩
⎪⎨⎪⎧
x 2 (x >0)
-x 2 (x <0)
D .f (x )=x 2-1
x -1
与g (t )=t +1(t ≠1)
5.已知f (x )=⎩
⎪⎨⎪⎧
2x , x >0f (x +1), x ≤0,则f (4
3)+
f (-4
3
)=( )
A .-2
B .4
C .2
D .-4
5已知函数f (x )满足f (2
x +|x |)=log 2x |x |,则
f (x )的解析式是( )
A .f (x )=log 2x
B .f (x )=-log 2x
C .f (x )=2-
x D .f (x )=x -
2
6.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =
(a -b )2,则函数f (x )=2⊕x
(x ⊗2)-2
的解析式
为( )
A .f (x )=4-x 2
x ,x ∈[-2,0)∪(0,2]
B .f (x )=x 2-4
x ,x ∈(-∞,-2]∪[2,+∞)
C .f (x )=-x 2-4
x
,x ∈(-∞,-2]
∪[2,+∞)
D .f (x )=-4-x 2
x ,x ∈[-2,0)∪(0,2] 7.某地一年内的气温Q (t )(单位:℃)与时间t (月份)之间的关系如图所示,已知该年的平均气温为10℃.令C (t )表示时间段[0,t ]的平均气温,C (t )与t 之间的函数关系用下列图像表示,则正确的应该是
( )
8.若函数f(x)=
x
ax+b
(a≠0),f(2)=1,又方
程f(x)=x有唯一解,则f(x)的解析式为_____。