课时作业(二十五)
- 格式:doc
- 大小:148.00 KB
- 文档页数:6
课时作业(二十五)1.如图是函数y=f(x)的图象,则此函数的单调递减区间的个数是()A.1B.2C.3D.42.【多选题】下列四个函数中为减函数的是()A.f(x)=-2x+1B.f(x)=1xC.f(x)=x+1D.f(x)=2x2(x<0)3.已知函数f(x)的定义域为(a,b),且对定义域内任意实数x1,x2,均有(x1-x2)·[f(x1)-f(x2)]<0,则关于f(x)在(a,b)上的单调性,下列判断正确的是()A.单调递增B.单调递减C.先单调递减再单调递增D.先单调递增再单调递减4.【多选题】已知函数f(x)=8+2x-x2,那么下列结论中正确的是()A.f(x)在(-∞,-1]上单调递增B.f(x)在(-∞,1]上单调递增C.f(x)在[-1,+∞)上单调递减D.f(x)在[-1,+∞)上单调递增5.若y=(2k-1)x+b是R上的减函数,则有()A.k>12B.k>-12C.k<12D.k<-126.若y=f(x)是R上的减函数,对于x1<0,x2>0,则f(-x1)与f(-x2)的大小关系是() A.f(-x1)>f(-x2)B.f(-x1)<f(-x2)C.f(-x1)=f(-x2)D.无法确定7.【多选题】下列函数中,在区间(0,2)上单调递增的是()A.y=3+x B.y=x2+1C.y=1xD.y=-|x|8.函数y=1x+1的单调递减区间为________.9.若函数f(x)=|2x+a|的单调递增区间是[3,+∞),则a=________.10.写出下列函数的单调区间.(1)y=|2x-1|;(2)y=-x2+ax;(3)y=-1x+2;(4)y=-x2+2|x|.11.若函数y=x2+bx+c在区间[0,+∞)上是单调函数,则b的取值范围是() A.[0,+∞)B.(-∞,0]C.(0,+∞)D.(-∞,0)12.函数f(x)=1-1x-1()A.在(-1,+∞)上单调递增B.在(1,+∞)上单调递增C.在(-1,+∞)上单调递减D.在(1,+∞)上单调递减13.若函数f(x)=2x2-mx+3,当x∈[-2,+∞)时是增函数,当x∈(-∞,-2]时是减函数,则f(1)等于________.(a>b>0),求f(x)的单调区间,并证明f(x)在其单调区间上的单调性.14.设函数f(x)=x+ax+b15.画出函数y=|x2-x-6|的图象,并求此函数的单调区间.16.讨论函数f(x)(-2,+∞)上的单调性.。
课时作业(二十五)温馨提示对应课时作业49页(时间:30分钟满分:100分)一、选择题1.(2010·温州质检)对细菌耐药性产生机理的叙述,不正确的是()A.细菌耐药性的获得是由于基因突变等方式获得耐药性基因并表达的结果B.抗生素的使用使病原微生物产生了适应性的变异C.耐药性增强是由于抗生素对细菌的变异定向选择的结果D.耐药性增强的过程中细菌耐药性基因频率增大答案:B2.(2010·西安联考)狼和鹿是捕食和被捕食的关系,从进化的角度分析下列说法,不正确的是()A.狼在客观上起着促进鹿发展的作用B.狼的存在有利于增加物种多样性C.鹿奔跑速度的加快可加速狼的进化D.鹿的进化速度比狼的进化速度快答案:D3.(2010·江西九江第一次联考,)使种群的基因频率定向改变的因素是()A.自然选择B.生殖隔离C.基因突变D.生存斗争解析:本题考查现代生物进化理论。
生物进化的实质是种群基因频率的定向改变,而自然选择决定生物进化方向。
答案:A4.(2010·江苏仪征一调)下列关于生物进化与多样性的叙述中,正确的是()A.一个物种的形成或绝灭,不会影响到其他物种的进化B.物种之间的共同进化都是通过生存斗争实现的C.生物多样性的形成也就是新物种的不断形成过程D.有性生殖出现推动了生物进化是因为增强了生物的变异解析:本题考查生物进化与多样性的关系。
任何一个物种都不是单独进化的,而是不同物种之间、生物与无机环境之间在相互影响中不断进化的。
相同物种之间的关系包括种内斗争和种内互助两个方面。
不同生物之间、生物与无机环境的影响是相互的,即捕食者与被捕食者之间是相互选择、共同进化的。
答案:D5.(2010·广东珠海摸底)下列各项中符合现代生物进化理论观点的是()A.绵羊和山羊之间不能进行基因交流B.东北虎和华南虎经过生殖隔离形成两个亚种C.马和驴交配产生骡以完成物种间基因交流D.二倍体西瓜和四倍体西瓜属于同一物种解析:本题考查现代生物进化理论内容及有关概念。
课时作业(二十五)1.已知a 、b 、c 是三个非零向量,则下列命题中假命题是( ) A .|a ·b |=|a |·|b |⇔a ∥b B .a 、b 反向⇔a ·b =-|a |·|b | C .a ⊥b ⇔|a +b |=|a -b |D .|a |=|b |⇔|a ·c |=|b·c |答案 D解析 需对以上四个命题逐一判断,依据有两条,一是向量数量积的定义;二是向量加法与减法的平行四边形法则.A 中∵a·b =|a |·|b |·cos θ,∴由|a·b |=|a |·|b |及a 、b 为非零向量可得|cos θ|=1,∴θ=0或π,∴a ∥b 且以上各步均可逆,故命题A 是真命题.B 中若a 、b 反向,则a 、b 的夹角为π,∴a ·b =|a |·|b |cos π=-|a |·|b |且以上各步均可逆,故命题B 是真命题.C 中当a ⊥b 时,将向量a 、b 的起点确定在同一点,则以向量a 、b 为邻边作平行四边形,则该平行四边形必为矩形,于是它的两对角线长相等.即有|a +b |=|a -b |.反过来,若|a +b |=|a -b |,则以a 、b 为邻边的四边形为矩形,所以有a ⊥b ,因此命题C 是真命题.D 中当|a |=|b |但a 与c 的夹角和b 与c 的夹角不等时,就有|a·c |≠|b·c |,反过来由|a·c |=|b·c |也推不出|a |=|b |.故命题D 是假命题.2.已知|a |=3,|b |=5,且〈a ,b 〉=45°,则向量a 在向量b 上的投影为( ) A.322B .3C .4D .5 答案 A解析 向量a 在向量b 上的投影为|a |·cos θ=3×22=322. 3.(2015·山东)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD →·CD →=( ) A .-32a 2B .-34a 2C.34a 2D.32a 2 答案 D解析 因为BD →·CD →=BD →·BA →=(BA →+BC →)·BA →=(BA →)2+BC →·BA →=a 2+a 2cos60°=32a 2,故选D项.4.在△OAB 中,OA →=a ,OB →=b ,OD 是AB 边上的高,若AD →=λAB →,则实数λ等于( )A.a ·(b -a )|a -b |2B.a ·(a -b )|a -b |2C.a ·(b -a )|a -b |D.a ·(a -b )|a -b |答案 B5.若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为( ) A .30° B .60° C .120°D .150°答案 C解析 (2a +b )·b =2a ·b +b 2=2|a |2cos 〈a ,b 〉+a 2=0⇒cos 〈a ,b 〉=-12,所以a ,b 的夹角为120°,故选C.6.已知a ·b =0,|a |=2,|b |=3,且(3a +2b )·(k a -b )=0,则实数k 的值为( ) A.32 B.-32 C .±32D .1 答案 A7.如图,在△ABC 中,AD ⊥AB ,BC →=3BD →,|AD →|=1,则AC →·AD →=( ) A .2 3 B .3 2 C .3 3D. 3 答案 D解析 ∵AB →·AD →=0,∴AC →·AD →=(AB →+BC →)·AD →=(AB →+3BD →)·AD →=AB →·AD →+3BD →·AD →=3·|BD →||AD →|·cos ∠ADB =3|AD →|2= 3.8.设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则〈a ,b 〉=( ) A .150° B .120° C .60°D .30° 答案 B解析 设|a |=m(m>0),则由a +b =c 得(a +b )2=c 2,2m 2+2m 2cos 〈a ,b 〉=m 2,cos 〈a ,b 〉=-12.又0°≤〈a ,b 〉≤180°,因此〈a ,b 〉=120°,选B.9.已知两个单位向量e 1,e 2的夹角为π3,若向量b 1=e 1-2e 2,b 2=3e 1+4e 2,则b 1·b 2=________. 答案 -6解析 由题设知|e 1|=|e 2|=1,且e 1·e 2=12,所以b 1·b 2=(e 1-2e 2)·(3e 1+4e 2)=3e 12-2e 1·e 2-8e 22=3-2×12-8=-6.10.已知|a |=|b |=2,(a +2b )·(a -b )=-2,则a 与b 的夹角为________. 答案π3解析 由|a |=|b |=2,(a +2b )·(a -b )=-2,得a ·b =2,cos 〈a ,b 〉=a ·b |a ||b |=22×2=12,所以〈a ,b 〉=π3.11.已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a·b =0,则实数k的值为________. 答案54解析 由题意知:a·b =(e 1-2e 2)·(k e 1+e 2)=0,即k e 12+e 1·e 2-2k e 1·e 2-2e 22=0,即k +cos2π3-2kcos 2π3-2=0,化简可求得k =54.12.已知向量a 、b 的夹角45°,且|a |=4,(12a +b )·(2a -3b )=12,则|b |=______;b 在a方向上的投影等于______. 答案2;1解析 a·b =|a |·|b |cos 〈a ,b 〉=4|b |cos45°=22|b |,又(12a +b )·(2a -3b )=|a |2+12a ·b -3|b |2=16+2|b |-3|b |2=12, 解得|b |=2或|b |=-232(舍去). b 在a 上的投影为|b |cos 〈a ,b 〉=2cos45°=1.13.设向量a ,b 满足|a |=|b |=1及|3a -2b |=3,求|3a +b |. 解析 ∵|a |=|b |=1,∴|a |2=|b |2=1.又∵|3a -2b |2=9|a |2-12a ·b +4|b |2=13-12a ·b =32,∴6a ·b =2. ∵|3a +b |2=9|a |2+6a ·b +|b |2=12,∴|3a +b |=2 3.►重点班·选做题14.若向量a 与b 不共线,a ·b ≠0,且c =a -(a·aa·b )b ,则a 与c 的夹角为( )A .0 B.π6 C.π3 D.π2答案 D解析 a·c =a ·[a -(a·a a·b )b ]=a·a -a ·b ·(a·aa·b )=a·a -a·a =0,则a 与c 的夹角为π2.15.判断下列命题的真假,并说明理由.(1)在△ABC 中,若AB →·BC →<0,则△ABC 是锐角三角形; (2)在△ABC 中,若AB →·BC →>0,则△ABC 是钝角三角形; (3)△ABC 为直角三角形⇔AB →·BC →=0. 解析 (1)∵AB →·BC →=|AB →||BC →|cos θ<0,∴θ即AB →与BC →的夹角为钝角,而AB →与BC →的夹角是∠B 的补角.∴∠B 为锐角.∵∠A 、∠C 可能有一个为钝角(或直角),∴△ABC 不一定为锐角三角形. 故命题①为假命题.(2)∵AB →·BC →>0,∴AB →与BC →的夹角为锐角,从而夹角的补角∠B 为钝角. ∴△ABC 为钝角三角形.故命题②是真命题.(3)△ABC 是直角三角形,则直角可以是∠A ,也可以是∠B 或∠C.当∠A 或∠C 为直角时,∠B 一定为锐角,这时AB →·BC →<0.故命题(3)是假命题.16.若(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),求非零向量a ,b 的夹角的正弦值. 解析 设a ,b 的夹角为θ.由(a +b )⊥(2a -b ),(a -2b )⊥(2a +b ),得⎩⎪⎨⎪⎧(a +b )·(2a -b )=0,(a -2b )·(2a +b )=0,∴⎩⎪⎨⎪⎧2a 2+a·b -b 2=0, ①2a 2-3a·b -2b 2=0. ②①×3+②,得a 2=58b 2.∴|a |2=58|b |2,即|a |=58|b |.由①得,a ·b =b 2-2a 2=-14|b |2.∴cos θ=a·b|a ||b |=-14|b |258|b |2=-1010.∴sin θ=31010,∴a ,b 夹角的正弦值为310101.下列等式中不恒成立的是( ) A .a ·b =b·a B .(k·a )·b =k(a·b ) (k ∈R ) C .(a -b )·c =a·c -b·cD .(a·b )·c =a ·(b·c )答案 D2.已知|a |=2,|b |=2,a 与b 夹角为45°,则(b -a )·a =________. 答案 -23.已知不共线的三个向量a 、b 、c 两两的夹角都为120°,且|a |=1,|b |=2,|c |=3,求a +b +c 与a 的夹角.思路 分析 先平移向量a 、b 、c ,使其起点相同,再求作向量a +b +c ,通过解三角形可求得其夹角.解析 如图,作向量OA →=a ,OB →=b ,OC →=c ,由已知,|OA|=1,|OB|=2,|OC|=3,∠AOB =∠BOC =∠AOC =120°.以OA →、OB →为邻边作▱OADB ,则OD →=a +b .以OC →、OD →为邻边作▱OCED , 则OE →=OD →+OC →=a +b +c . ∴∠AOE 为所求的夹角.在△AOD 中,∵OA =1,AD =OB =2,∠OAD =180°-∠AOB =60°,∴△AOD 为直角三角形,且∠AOD =90°.从而∠BOD =30°,∠COD =∠BOC +∠BOD =150°.∴∠ECO =30°.在△OEC 中,CE =OD =3,OC =3, 从而可得△OEC 为等腰三角形,∴∠COE =30°. ∴∠AOE =120°+30°=150°. 故a +b +c 与a 的夹角为150°.4.已知a ⊥b ,且|a |=2,|b |=1,若对两个不同时为零的实数k 、t ,使得a +(t -3)b 与-k a +t b 垂直,试求k 的最小值. 解析 因为a ⊥b ,所以a ·b =0. 又由已知得[a +(t -3)b ]·(-k a +t b )=0, 所以-k a 2+t(t -3)b 2=0,因为|a |=2,|b |=1,所以-4k +t (t -3)=0,所以k =14(t 2-3t)=14(t -32)2-916(t ≠0),故当t =32时,k 取最小值-916.。
课时作业(二十五)选择性必修第二册Unit 1Growing upⅠ.阅读理解A[2024·广东省四校联考高三上学期期中]I live in Xizhou in Yunnan Province, on the historic Tea Horse Road. I have to admit that when I first heard that Paul Salopek was going to walk the entire globe on his own two feet, I was blown away. I couldn't imagine that there could be such an unusual person in the world.Last May, I met Paul. He told me that it was his first time in China. He talked to me with great excitement about the history, migrations, and discoveries in my region of China. He spoke of the ShuYandu Dao (the Southern Silk Road), the travels of the 17thcentury Chinese explorer Xu Xiake, the Tea Horse Road and the early 20thcentury American botanist Joseph Rock. He also talked of Xuanzang. Paul considered many of them heroes and in a sense Chinese pioneers of slow journalism.I decided to accompany Paul on his walk toward Yunnan. On September 28, 2021, we set out. Our days were simple: walk, eat, sleep, and repeat. We woke up at sunrise, set off in high spirits, and rested at sunset, dragging ourselves into exhausted sleep.We met many people on the road. Some were curious, surrounding us and watching us; some gave us directions; some invited us into their home to take a rest; some spoke of the charm of their hometown. We met many beautiful souls, simple souls and warm souls. We were walking with our minds.Together, we were impressed by the biodiversity of the Gaoligong Mountains. As I walked on ancient paths through mountains, I seemed to hear the antique voices of past travelers urging me to be careful on the road.Looking back on the more than 200 miles I walked with Paul, I came to a realization. Walking for its own sake, while healthy and admirable, is only a small part of the benefit of moving with our feet. A deeper reward is rediscovering the world around us, shortening the distance between each other, and sharing each other's cultures.1.How did the writer first respond to Paul's travel plan?A.Puzzled. B.Scared.C.Surprised. D.Disappointed.2.What can we learn about Paul Salopek from Paragraph 2?A.He had a knowledge of China.B.He was a western journalist.C.He came to China several times.D.He was Joseph Rock's acquaintance.3.What does Paragraph 4 tell us about the writer and Paul?A.They built bonds with people.B.They satisfied the locals' curiosity.C.They set off in high spirits.D.They honored the ancestors.4.What is the main purpose of the writer's writing the text?A.To suggest a new way of travel.B.To share and reflect on a journey.C.To advocate protection of biodiversity.D.To introduce and promote Chinese culture.B[2024·浙江省名校协作体高三上学期试题]The success of many North American cropspartly depends on ground beetles, small insects that eat pests and weed seeds that could otherwise damage crops. But a new study by researchers in the US and Canada suggests not all of the nearly 2,000 species of ground beetles found in North America will survive climate change. Some could decline. And that could have a farreaching impact on agriculture, forestry, and conservation.By analyzing data on 136 different ground beetle species across continental North America, Puerto Rico and Hawaii, the researchers found that a species' chance of success in a changing climate depends on several important factors, such as its habitat preference, body size, and whether it flies, climbs or runs.“We found that less mobile, nonflying ground beetles, which are critical pest control agents, are more likely to decline over time in a warmer, dryer climate.” said Tong Qiu, who led the study. “That means you're going to have more pests that can impact agricultural and forest ecosystems.” But there is reason for hope, Qiu added, because the analysis also showed that habitat conservation can lessen these effects and reverse the trends in some areas.“We hope conservation biologists will use this information and the online map that we created to better manage habitats for insects in general. Ground beetles are very beneficial to ecosystems, but they're largely invisible to the average person. In this paper we're showing the broad impacts they have on whole communities in forest and agricultural ecosystems.” said Qiu.The researchers used ground beetle count data from the National Science Foundation's National Ecological Observatory Network (NEON) and from 11 previously published studies to measure and map the beetles' distribution across North America. Habitat information, such as the location of gaps in forest canopies and the density of plants on a forest floor, was obtained by using NEON's imaging instruments to create detailed threedimensional images of landscapes. They then entered the data collected into a computer model to simulate (模拟) climate changes to study how the insects would respond.5.What does the new study in North America show?A.Pests could destroy crops.B.Some ground beetles will not survive climate change.C.The survival of ground beetles only depends on its habitat.D.Some ground beetles will destroy crops in a warmer climate.6.What does Tong Qiu intend to convey in Paragraphs 3 and 4?A.There is no way to stop the decline of ground beetles.B.Critical pests are more adaptable in a warmer, drier climate.C.Ground beetles will become less mobile in a warmer climate.D.The importance of ground beetles should be widely recognized.7.How did the research team carry out the study?A.By analyzing data.B.By studying documents.C.By doing field research.D.By performing experiments.8.What can be the best title for the text?A.North American Agriculture Crops at RiskB.A Catastrophic Climate Change on the WayC.Cropsaving Beetles under Climate ThreatD.New Breakthrough in Biodiversity ResearchⅡ.七选五[2024·河北省邯郸市高三上学期期中]There's no need to be ashamed about dozing off in class. It is actually a natural phenomenon. Studies have shown that people can only stay completely focused on something for a maximum of 10 minutes. __1__ Dozing off during an important activity or event on a regular basis can develop into a habit that you might carry into other areas of your life.Scientists have found that avoiding overeating before class is one of the most effective ways to beat class sleepiness. Most people have experienced “food coma (昏迷)” after eating a large meal. Eating too much results in a feeling of heaviness that uses up your energy. This happens because the body releases chemicals that signal drowsiness after eating. __2__Carbohydrates (碳水化合物) release more serotonin (血清素) from the brain, which makes you feel good. __3__ Basically, not all foods have the same impact on your body. While some foods can increase your energy, others can make you sleepy. Also, tasking your body with digesting a large meal is exhausting. Eating large portions—especially of unhealthy foods—will leave your body with little energy to use elsewhere.__4__ This gives your body the opportunity to digest smaller amounts of food at a time, leaving you feeling energized instead of tired after your meals.Also, avoid heavy foods and choose healthy, balanced meals instead. __5__ An example of a wellrounded breakfast to have before class would be a glass of milk, an egg and a salad containing at least three vegetables.A.Finally, it helps deliver oxygen to your vital organs.B.However, too much serotonin can lead to drowsiness.C.Unfortunately, most classes last longer than 10 minutes.D.Falling asleep in class can cause poor academic performance.E.A healthy meal should include fruit, vegetables and healthy fats.F.This is particularly true if you eat a meal that is high in carbohydrates.G.It is recommended that you keep a stable level of energy by eating smaller meals.[答题区]1.____________ 2.____________ 3.____________ 4.____________ 5.____________Ⅲ.语法填空[2024·江苏省镇江市高三上学期试题]Huizhou enjoys a timehonored history. In 2,000, Xidi and the nearby Hongcun village weredeclared World Heritage sites by UNESCO for their outstanding preservation of rural architecture 1.________ (date) back to the Ming and Qing dynasties.Huizhou houses are often wooden structures with brick walls, which require a lot of maintenance. Moreover, daylight is valued in Huizhou houses, which is reflected in the building of open interior courtyards, 2.________ (allow) sunshine to enter the rooms. Now, walking along the bluestone streets there, visitors can appreciate the distinctive Huizhoustyle houses featuring white walls, dark tiles (瓦片) and layered horsehead roofs, 3.________ feel like they are immersed in a traditional Chinese ink painting.The tourism boom helps to protect and breathe life into the ancient village. A 4.________ (symbol) paifang, standing at the entrance to Xidi, 5.________ (build) in the 16th century in memory of Hu Wenguang, 6.________ Ming Dynasty official born in the village who made great 7.________ (contribute) to local education and livelihoods. It is the local people's desire to protect the local historical characteristics that leads to the buildings 8.________ (preserve) to this day. Besides ancient dwellings and paifang, there stand some ancestral halls 9.________ clans (宗族,家族) will gather to make sacrifices to their ancestors. With their own unique and marketable value, all these old Huizhou buildings are giving full play 10.________ their distinctive cultural charm.[答题区]1.____________ 2.____________ 3.____________ 4.____________ 5.____________6.____________7.____________8.____________9.____________ 10.____________。
课时作业(二十五)1.若log x 4=2,则x 的值为( ) A.±2 B.2 C.-2 D. 2答案 B2.若b =a 2(a >0且a ≠1),则有( ) A.log 2b =a B.log 2a =b C.log b a =2 D.log a b =2答案 D3.在对数式log (x -1)(3-x)中,实数x 的取值范围应该是( ) A.1<x <3 B.x >1且x ≠2 C.x >3 D.1<x <3且x ≠2答案 D解析 ⎩⎪⎨⎪⎧3-x>0,x -1>0,x -1≠1,解得1<x<3且x ≠2.4.若log x 3y =4,则x ,y 之间的关系正确的是( ) A.x 4=3y B.y =64x C.y =3x 4 D.x =3y 2答案 A解析 log x 3y =4=log x x 4,则x 4=3y.5.下列指数式与对数式互化不正确的一组是( ) A.100=1与lg1=0 B.27-13=13与log 2713=-3C.log 39=2与32=9D.log 55=1与51=5答案 B6.已知log 2x =4,则x -12=( )A.13B.123C.33D.14答案 D 7.与函数y =10lg(x -1)的图像相同的函数是( )A.y =x -1B.y =|x -1|C.y =x 2-1x +1D.y =⎝ ⎛⎭⎪⎫x -1x -12答案 D 解析 y =10lg(x-1)=x -1(x>1).8.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2 C.5-2或5+2 D.2- 5答案 B9.若f(10x )=x ,则f(3)等于( ) A.log 310 B.lg3 C.103 D.310 答案 B10.21+12·log 25的值等于( )A.2+ 5B.2 5C.2+52D.1+52 答案 B 11.log333=________.答案 312.求下列各式的值.(1)log 1515; (2)log 0.41; (3)log 981; (4)log 2.56.25; (5)log 7343; (6)log 3243. 答案 (1)1 (2)0 (3)2 (4)2 (5)3 (6)5 13.求x 的值.(1)x =log 124; (2)x =log 93; (3)x =71-log 75;(4)log x 8=-3; (5)log 12x =4.答案 (1)-2 (2)14 (3)75 (4)12 (5)11614.求值:(1)log 84; (2)2log 23-2.解析 (1)设log 84=x ,则8x =4,即23x =22,∴3x =2,x =23,故log 84=23.(2)∵alog a N =N ,∴2log 23=3. ∴2log 23-2=2log 23÷22=3÷4=34.15.若log 2[log 0.5(log 2x)]=0,求x 的值. 解析 由条件知log 0.5(log 2x)=1=log 0.50.5, 得log 2x =12=log 22,从而x = 2.►重点班·选做题16.求2log 412-3log 927+5log 2513的值 .解析 原式=4log 412-9log 927+25log 2513=12-27+13=23-33+13=-233.1.若5lgx =25,则x 的值为________. 答案 1002.设集合A ={5,log 2(a +3)},集合B ={a ,b},若A ∩B ={2},则A ∪B =__________. 答案 {1,2,5}解析 由A ∩B ={2},知log 2(a +3)=2, 得a =1,由此知b =2.故A ∪B ={1,2,5}. 3.设x =log 23,求23x -2-3x2x -2-x 的值.解析 23x -2-3x 2x -2-x =(2x -2-x )(22x +1+2-2x)2x -2-x=22x +1+2-2x=919. 4.已知6a =8,试用a 表示下列各式: (1)log 68; (2)log 62; (3)log 26. 解析 (1)log 68=a.(2)由6a=8,得6a=23,即6a3=2,所以log 62=a3.(3)由6a 3=2,得23a =6,所以log 26=3a.5.已知log a b =log b a(a>0且a ≠1;b>0且b ≠1),求证:a =b 或a =1b.证明 令log a b =log b a =t ,则a t =b ,b t =a. ∴(a t )t =a ,则at 2=a ,∴t 2=1,t =±1. 当t =1时,a =b ;当t =-1时,a =1b .所以a =b 或a =1b .。
课时作业(二十五)一、选择题1.(2013·石家庄质检)下列应用与盐类的水解无关的是() A.明矾净水B.NaCl可用作防腐剂和调味剂C.泡沫灭火器的灭火原理D.FeCl3饱和溶液滴入沸水中制备Fe(OH)3胶体答案 B解析A选项,明矾净水的原理为Al3++3H2O Al(OH)3+3H+,是利用了Al3+的水解;C选项,泡沫灭火器是利用Al3+和HCO-3的双水解反应,离子方程式为:Al3++3HCO-3===Al(OH)3↓+3CO2↑;D选项,Fe(OH)3胶体的制备是利用Fe3+水解,离子方程式为:Fe3++3H2O===Fe(OH)3(胶体)+3H+。
2.对于0.1 mol·L-1 Na2SO3溶液,正确的是() A.升高温度,溶液pH降低B.c(Na+)=2c(SO2-3)+c(HSO-3)+c(H2SO3)C.c(Na+)+c(H+)=2c(SO2-3)+2c(HSO-3)+c(OH-)D.加入少量NaOH固体,c(SO2-3)与c(Na+)均增大答案 D解析升高温度会促进SO2-3的水解,溶液碱性增强,pH升高,A项错误;根据物料守恒,c(Na+)=2c(SO2-3)+2c(HSO-3)+2c(H2SO3),B项错误;根据电荷守恒,c(Na+)+c(H+)=2c(SO2-3)+c(HSO-3)+c(OH-),C项错误;加入少量NaOH 固体,c(Na+)、c(OH-)均增大,平衡SO2-3+H2O HSO-3+OH-逆向移动,c(SO2-3)增大,D项正确。
3.(2013·青岛二中月考)盐MN溶于水存在如下过程:下列有关说法中不正确的是() A.MN是强电解质B.N-结合H+的能力一定比OH-强C.该过程使溶液中的c(OH-)>c(H+)D.溶液中存在c(HN)=c(OH-)-c(H+)答案 B解析由MN===M++N-可看出MN是强电解质,A正确。
课时作业(二十五) 平面向量的基本原理及坐标表示A 级1.设向量a =(m,1),b =(1,m ),如果a 与b 共线且方向相反,则m 的值为( ) A .-1 B .1 C .-2D .22.(2011·广东卷)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ=( )A.14B.12 C .1D .23.(2012·德州模拟)设OB →=xOA →+yOC →,x ,y ∈R 且A ,B ,C 三点共线(该直线不过点O ),则x +y =( )A .-1B .1C .0D .24.已知点A (2,1),B (0,2),C (-2,1),O (0,0),给出下面的结论: ①直线OC 与直线BA 平行;②AB →+BC →=CA →; ③OA →+OC →=OB →;④AC →=OB →-2OA →. 其中正确结论的个数是( ) A .1 B .2 C .3D .45.如图,在平行四边形ABCD 中,O 是对角线AC ,BD 的交点,N 是线段OD 的中点,AN 的延长线与CD 交于点E ,则下列说法错误的是( )A.AC →=AB →+AD →B.BD →=AD →-AB →C.AO →=12AB →+12AD →D.AE →=53AB →+AD →6.(2012·聊城模拟)已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.7.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .8.已知向量a =(3,1),b =(sin α-m ,cos α),且a ∥b ,则实数m 的最小值为________.9.(2012·广州模拟)在▱ABCD 中,A B →=a ,A D →=b ,A N →=3NC →,M 为BC 的中点,则M N →=________.(用a ,b 表示)10.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标.11.(2012·广州模拟)已知点O (0,0),A (1,2),B (4,5),OP →=t 1OA →+t 2AB →, (1)求点P 在第二象限的充要条件.(2)证明:当t 1=1时,不论t 2为何实数,A ,B ,P 三点共线;(3)试求当t 1,t 2满足什么条件时,O ,A ,B ,P 能组成一个平行四边形.B 级1.(2012·烟台模拟)已知a =(-1,3),OA →=a -b ,OB →=a +b ,若△AOB 是以O 为直角顶点的等腰直角三角形,则△AOB 的面积为( )A. 2 B .2 C .2 2D .42.已知向量O A →=(3,-4),O B →=(0,-3),O C →=(5-m ,-3-m ),若点A 、B 、C 能构成三角形,则实数m 满足的条件是__________.3.已知P 为△ABC 内一点,且3AP →+4BP →+5CP →=0,延长AP 交BC 于点D ,若AB →=a ,AC →=b ,用a ,b 表示向量AP →,AD →.答案课时作业(二十五)A 级1.A 设a =λb ,则⎩⎪⎨⎪⎧m =λ,1=mλ,即λ=±1,又∵a 与b 共线且方向相反, ∴λ<0,即λ=-1.2.B 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,∴λ=12.3.B如图,设AB →=λAC →,则OB →=OA →+AB →=OA →+λAC →=OA →+λ(OC →-OA →) =OA →+λOC →-λOA →=(1-λ)OA →+λOC → ∴x =1-λ,y =λ,∴x +y =1.4.C ∵OC →=(-2,1),BA →=(2,-1),∴OC →=-BA →, ∴OC →∥BA →.又由坐标知点O ,C ,A ,B 不共线,∴OC ∥BA ,①正确; ∵AB →+BC →=AC →,∴②错误; ∵OA →+OC →=(0,2)=OB →,∴③正确;∵OB →-2OA →=(-4,0),AC →=(-4,0),∴④正确.故选C.5.D 由向量加法的三角形法则知:BD →=AD →-AB →正确,排除B ; 由向量加法的平行四边形法则知:AC →=AB →+AD →, AO →=12AC →=12AB →+12AD →,排除A ,C ,故选D.6.解析: ∵a =(2,-1),b =(-1,m ),∴a +b =(1,m -1),由(a +b )∥c 得:1-1=m -12,∴m =-1. 答案: -17.解析: 由题意,设e 1+e 2=m a +n b .又因为a =e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m (e 1+2e 2)+n (-e 1+e 2)=(m -n )e 1+(2m+n )e 2.由平面向量基本定理,得⎩⎪⎨⎪⎧m -n =1,2m +n =1,所以⎩⎨⎧m =23,n =-13.答案: 23 -138.解析: ∵a ∥b ,∴3cos α-sin α+m =0, ∴m =sin α-3cos α=2sin ⎝⎛⎫α-π3≥-2. 答案: -29.解析: M N →=M C →+C N →=12A D →-14A C →=12b -14(a +b )=-14a +14b 答案: -14a +14b10.解析: 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2), 由题意得AC →=(x 1+1,y 1-2),AB →=(3,6), DA →=(-1-x 2,2-y 2),BA →=(-3,-6).因为AC →=13AB →,DA →=-13BA →,所以有⎩⎪⎨⎪⎧ x 1+1=1,y 1-2=2,和⎩⎪⎨⎪⎧-1-x 2=1,2-y 2=2.解得⎩⎪⎨⎪⎧ x 1=0,y 1=4,和⎩⎪⎨⎪⎧x 2=-2,y 2=0.所以点C ,D 的坐标分别是(0,4),(-2,0),从而CD →=(-2,-4). 11.解析: (1)OP →=t 1(1,2)+t 2(3,3)=(t 1+3t 2,2t 1+3t 2),P 在第二象限的充要条件是⎩⎪⎨⎪⎧t 1+3t 2<02t 1+3t 2>0有解.∴-32t 2<t 1<-3t 2且t 2<0.(2)证明:当t 1=1时,有OP →-OA →=t 2AB →,∴AP →=t 2AB →,∴不论t 2为何实数,A ,B ,P 三点共线.. (3)由OP →=(t 1+3t 2,2t 1+3t 2),得点P (t 1+3t 2,2t 1+3t 2),∴O ,A ,B ,P 能组成一个平行四边形有三种情况.当OA →=BP →,有⎩⎪⎨⎪⎧ t 1+3t 2-4=12t 1+3t 2-5=2⇒⎩⎪⎨⎪⎧t 1=2t 2=1;当OA →=PB →,有⎩⎪⎨⎪⎧t 1+3t 2-4=-12t 1+3t 2-5=-2⇒⎩⎪⎨⎪⎧t 1=0t 2=1;当OP →=BA →,有⎩⎪⎨⎪⎧t 1+3t 2=-32t 1+3t 2=-3⇒⎩⎪⎨⎪⎧t 1=0,t 2=-1.B 级1.D 由题意得OA →·OB →=a 2-b 2=0,b 2=a 2=4,|AB →|2=|OB →-OA →|2=2|OA →|2,因此有4b 2=2(a -b )2,由此得a ·b =0,|OA →|2=(a -b )2=a 2+b 2=8,故△AOB 的面积等于12|OA →|2=12×8=4.2.解析: 由题意得A B →=(-3,1),A C →=(2-m,1-m ), 若A 、B 、C 能构成三角形,则A B →,A C →不共线, 则-3×(1-m )≠1×(2-m ),解得m ≠54.答案: m ≠543.解析: ∵BP →=AP →-AB →=AP →-a ,CP →=AP →-AC →=AP →-b , 又3AP →+4BP →+5CP →=0,∴3AP →+4(AP →-a )+5(AP →-b )=0.∴AP →=13a +512b .∴设AD →=tAP →(t ∈R ),则AD →=13t a +512t b .①又设BD →=kBC →(k ∈R ),由BC →=AC →-AB →=b -a ,得BD →=k (b -a ). 而AD →=AB →+BD →=a +BD →.∴AD →=a +k (b -a )=(1-k )a +k b .②由①②得⎩⎨⎧13t =1-k ,512t =k ,解得t =43.代入①得AD →=49a +59b .。
课时作业(二十五)一、选择题1.设a 是任一向量,e 是单位向量,且a ∥e ,则下列表示形式中正确的是( )A .e =a|a |B .a =|a |eC .a =-|a |eD .a =±|a |e 答案 D解析 对于A ,当a =0时,a|a |没有意义,错误对于B 、C 、D 当a =0时,选项B 、C 、D 都对; 当a ≠0时,由a ∥e 可知,a 与e 同反或反向,选D.2.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a =-bC .|a |=|b |D .以上都不对 答案 C 3.如图所示,D 是△ABC 的边AB 上的中点,则向量CD →等于( )A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D.BC →+12BA →答案 A解析 ∵D 是AB 的中点,∴BD →=12BA →.∴CD →=CB →+BD →=-BC →+12BA →4.(2011·山东师大附中)设a 、b 为不共线的非零向量,AB →=2a +3b ,BC →=-8a -2b ,CD →=-6a -4b ,那么( )A.AD →与BC →同向,且|AD →|>|BC →|B.AD →与BC →同向,且|AD →|>|BC →|C.AD →与BC →反向,且|AD →|>|BC →|D.AD →∥BD → 答案 A解析 AD →=AB →+BC →+CD →=2a +3b +(-8a -2b )+(-6a -4b )=-12a -3b , BC →=-8a -2b ,∴AD →=32BC →,∴AD →与BC →同向,且|AD →|=32|BC →|.∴|AD →|>|BC →|.故选A.5.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,那么一定有( ) A.PB →=2CP → B.CP →=2PB → C.AP →=2PB → D.PB →=2AP → 答案 D解析 由题意得P A →+PB →+PC →=PC →-P A →,即PB →=-2P A →=2AP →,选D.6.(2010·湖北卷,理)已知ΔABC 和点M 满足M A →+M B →+M C →=0.若存在实数m 使得A B →+A C →=mAM →成立,则m =( )A .2B .3C .4D .5 答案 B解析 由M A →+M B →+M C →=0得点M 是ΔABC 的重心,可知AM →=13(A B →+A C →),A B→+A C →=3AM →,则m =3,选B.7.(2010·四川卷)设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|A B →+A C →|=|A B →-A C →|,则|AM →|=( ) A .8 B .4 C .2 D .1 答案 C解析 由|A B →+A C →|=|A B →-A C →|可知,A B →⊥A C →,则AM 为Rt ΔABC 斜边BC 上的中线,因此|AM →|=12|B C →|=2,选C.二、填空题8.设e 是与向量AB →共线的单位向量,AB →=3e ,又向量BC →=-5e ,若AB →=λAC →,则λ=________.答案 -32解析 AC →=AB →+BC →=3e -5e =-2e 由AB →=λ·AC →得3e =λ·(-2)·e∴λ=-329.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1 2 解析如图,取AC 中点D . OA →+OC →=2OD → ∴OD →=BO →∴O 为BD 中点,∴面积比为高之比.10.(2011·苏北四市调研)已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为________.答案 λ1λ2-1=0解析 A 、B 、C 三点共线⇔AB →∥AC →⇔λ1λ2-1×1=0⇔λ1λ2=1,故选C11.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为________. 答案 45°解析 如右图所示,作向量OA →=a ,OB →=b ,则BA →=a -b .∵OA =1,OB =2,OA ⊥BA ,∴cos ∠AOB =22,∴∠AOB =45°,故a 与b 的夹角为45°.12.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是________.答案 0 解析CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →.∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0.13.(09·安徽)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.答案 43解析 AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,于是得⎩⎨⎧12λ+μ=1λ+12μ=1,所以λ+μ=43三、解答题14.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:EF →=12(AB →+DC →).证明 如图所示,∵E 、F 是AD 与BC 的中点,∴EA →+ED →=0,FB →+FC →=0,又∵AB →+BF →+FE →+EA →=0, ∴EF →=AB →+BF →+EA →,①同理 EF →=ED →+DC →+CF →,②由①+②得,2EF →=AB →+DC →+(EA →+ED →)+(BF →+CF →)=AB →+DC →, ∴EF →=12(AB →+DC →)15.如右图所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,求OP →.答案 -13OA →+43OB →解析 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=43OB →-13OA →.16.设a 、b 是不共线的两个非零向量,(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b , 求证:A 、B 、C 三点共线;(2)若8a +k b 与k a +2b 共线,求实数k 的值.解析 (1)∵AB →=(3a +b )-(2a -b )=a +2b , 而BC →=(a -3b )-(3a +b )=-2a -4b =-2AB →, ∴AB →与BC →共线,且有公共端点B , ∴A 、B 、C 三点共线.(2)∵8a +k b 与k a +2b 共线, ∴存在实数λ,使得 (8a +k b )=λ(k a +2b )⇒(8-λk )a +(k -2λ)b =0, ∵a 与b 不共线, ∴⎩⎪⎨⎪⎧8-λk =0k -2λ=0⇒8=2λ2⇒λ=±2, ∴k =2λ=±4.1.(09·湖南)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( ) A.AD →+BE →+CF →=0 B.BD →-CF →+DF →=0 C.AD →+CE →-CF →=0 D.BD →-BE →-FC →=0 答案 A解析 ∵AD →=12AB →,BE →=12BC →,CF →=12CA →,∴AD →+BE →+CF →=12(AB →+BC →+CA →)=12(AC →+CA →)=12×0=0,故选A.2.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 答案 A解析 求解本题应先建立向量AD →+BE →+CF →与BC →的线性关系,再根据平面向量的平行和垂直的充要条件进行判断.由题意,得DC →=DA →+AC →,BD →=BA →+AD →. 又DC →=2BD →,所以DA →+AC →=2(BA →+AD →).所以AD →=13AC →+23AB →.同理,得BE →=13BC →+23BA →,CF →=13CA →+23CB →.将以上三式相加,得AD →+BE →+CF →=-13BC →.故选A.3.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C )的充要条件是AP →=λ(AB →+AD →),则λ的取值范围是( )A .λ∈(0,1)B .λ∈(-1,0)C .λ∈(0,22)D .λ∈(-22,0)答案 A解析 如图,∵点P 在对角线AC 上(不包括端点A ,C ), ∴AP →=λAC →=λ(AB →+AD →),由AP →与AC →同向知,λ>0; 又|AP →|<|AC →| ∴AP →AC →=|AP →||AC →|=λ<1, ∴λ∈(0,1),反之亦然.4.设M 、N 、P 是△ABC 三边上的点,它们使BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.分析 取a 、b 作为一组基底,根据向量的线性运算表示出向量MN →、NP →、PM →即可. 解析 如右图所示,MN →=CN →-CM →=-13AC →-23CB →=-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a .→=13a-23b,同理可得NP。
课时分层作业(二十五)牛顿运动定律的应用A组基础巩固练1.假设洒水车的牵引力不变且所受阻力与车重成正比,未洒水时匀速行驶,洒水时它的运动将是()A.做变加速运动B.做初速度不为零的匀加速直线运动C.做匀减速运动D.继续保持匀速直线运动2.质量为1 kg的物体,受水平恒力F的作用,由静止开始在光滑的水平面上做加速运动,它在1 s内的位移为2 m,则力F的大小为()A.1 N B.2 NC.4 N D.6 N3.用30 N的水平外力F拉一个静止在光滑水平面上的质量为20 kg的物体,力F作用3 s后消失,则第5 s末物体的速度和加速度分别是()A.v=m/s,a=m/s2B.v=m/s,a=m/s2C.v=m/s,a=0D.v=m/s,a=04.在交通事故的分析中,刹车线的长度是很重要的依据,刹车线是汽车刹车后,停止转动的轮胎在地面上发生滑动时留下的滑动痕迹.在某次交通事故中,汽车的刹车线长度是14 m,假设汽车轮胎与地面间的动摩擦因数恒为,g取10 m/s2,则汽车刹车前的速度为() A.7 m/s B.14 m/sC.10 m/s D.20 m/s5.新疆长绒棉因质量美誉世界,长绒棉从犁地、播种、植保到采收,已基本实现全自动化.如图为无人机为棉花喷洒农药.无人机悬停在某一高度,自静止开始沿水平方向做匀加速运动,2 s达到作业速度,开始沿水平方向匀速作业,已知作业前无人机和农药总质量为20 kg,无人机作业速度为6 m/s,重力加速度为10 m/s2,则在加速阶段空气对无人机的作用力约为()A.60 N B.200 NC.209 N D.220 N6.如图在设计三角形的屋顶时,使雨水尽快地从屋顶流下,并认为雨水是从静止开始由屋顶无摩擦地流动.试分析:在屋顶宽度(2L)一定的条件下,屋顶的倾角应该多大?雨水流下的最短时间是多少?7.航模兴趣小组设计出一架遥控飞行器,其质量m=2 kg,动力系统提供的恒定升力F =28 N.试飞时,飞行器从地面由静止开始竖直上升.设飞行器飞行时所受的阻力大小不变,g取10 m/s2.(1)第一次试飞,飞行器飞行t1=8 s时到达高度H=64 m,求飞行器所受阻力F阻的大小.(2)第二次试飞,飞行器飞行t2=6 s时遥控器出现故障,飞行器立即失去升力,求飞行器能达到的最大高度h .B 组 能力提升练8.如图,某同学用恒力通过与水平面成37°角的绳子拉动质量为46 kg 的木箱,使木箱从静止开始沿粗糙水平路面运动了2 m ,速度达到2 m/s.已知木箱与路面的动摩擦因数为(sin 37°=,cos 37°=,g 取10 m/s 2),则( )A .木箱加速度的大小为2 m/s 2B .地面对木箱的弹力大小为370 NC .该同学对木箱的拉力大小为120 ND .木箱受到的摩擦力大小为92 N9.如图所示,质量为m =3 kg 的木块放在倾角为θ=30°的足够长的固定斜面上,木块可以沿斜面匀速下滑.若用沿斜面向上的力F 作用于木块上,使其由静止开始沿斜面向上加速运动,经过t =2 s 时间木块沿斜面上升4 m ,g 取10 m/s 2,则推力F 的大小为( )A .42 NB .6 NC .21 ND .36 N10.第24届冬奥会于2022年2月4日在北京和张家口成功举行.如图甲所示为一位滑雪爱好者,人与装备的总质量为50 kg ,在倾角为37°的雪坡上,以2 m·s -1的初速度沿斜坡匀加速直线滑下.他运动的v t 图像如图乙所示.g 取10 m·s -2,sin 37°= ,cos 37°=0.8.求:(1)滑雪者(包括装备)受到雪坡的支持力大小;(2)滑雪者(包括装备)与雪坡之间的动摩擦因数μ.11.[2022·浙江6月]物流公司通过滑轨把货物直接装运到卡车中,如图所示,倾斜滑轨与水平面成24°角,长度l 1=4 m ,水平滑轨长度可调,两滑轨间平滑连接.若货物从倾斜滑轨顶端由静止开始下滑,其与滑轨间的动摩擦因数均为μ=29,货物可视为质点(取cos 24°=,sin 24°=).(1)求货物在倾斜滑轨上滑行时加速度a 1的大小;(2)求货物在倾斜滑轨末端时速度v 的大小;(3)若货物滑离水平滑轨末端时的速度不超过2 m/s ,求水平滑轨的最短长度l 2.。
课时作业(二十五) 椭圆的标准方程[练基础]1.[2022·湖南长郡中学高二月考]椭圆x 225+y 2=1上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为( )A .5B .6C .7D .82.椭圆C :x 2+y 2k=1的一个焦点是(0,2),则k 的值是( ) A .5 B .3C .9D .253.[2022·湖南邵东一中高二期中]2<m <6是方程x 2m -2 +y 26-m=1表示椭圆的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.[2022·湖南长沙一中高二期中]过点A (3,-2)且与椭圆x 29 +y 24=1有相同焦点的椭圆的方程为( )A .x 215 +y 210 =1B .x 225 +y 220=1 C .x 210 +y 215 =1 D .x 220 +y 215=1 5.[2022·湖南衡阳高二期末]P 为椭圆C :x 217 +y 213=1上一动点,F 1,F 2分别为左、右焦点,延长F 1P 至点Q ,使得|PQ |=|PF 2|,则动点Q 的轨迹方程为( )A .(x +2)2+y 2=34B .(x +2)2+y 2=68C .(x -2)2+y 2=34D .(x -2)2+y 2=686.(多选)将一个椭圆绕其对称中心旋转90°,若所得椭圆的两顶点恰好是旋转前椭圆的两焦点,则称该椭圆为“对偶椭圆”.下列椭圆的方程中,是“对偶椭圆”的方程的是( )A .x 28 +y 24 =1B .x 23 +y 25=1 C .x 26 +y 23 =1 D .x 26 +y 29=1 7.在△ABC 中,点A (-3,0),B (3,0),点C 在椭圆x 225 +y 216=1上,则△ABC 的周长为________.8.已知椭圆中心在坐标原点,焦点在x 轴上,椭圆与x 轴的一个交点到两焦点的距离分别为3和1,则椭圆的标准方程为________,其焦点坐标为________.9.求满足下列条件的椭圆的标准方程.(1)两个焦点的坐标分别为F 1(-2,0),F 2(2,0),并且椭圆经过点(52 ,-32). (2)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0),四点P 1(1,1),P 2(0,1),P 3(-1,32),P 4(1,32)中恰有三点在椭圆C 上,求C 的方程.[提能力]10.[2022·湖南临澧一中高二期中]已知点A (4,0)和B (2,2),M 是椭圆x 225 +y 29=1上动点,则|MA |+|MB |最大值是( )A .10+210B .10+42C .10+43D .10+21111.[2022·山东师范大学附中高二期中](多选)设椭圆C :x 27 +y 216=1的焦点为F 1、F 2,M 在椭圆上,则( )A .|MF 1|+|MF 2|=8B .|MF 1|的最大值为7,最小值为1C .|MF 1||MF 2|的最大值为16D .△MF 1F 2面积的最大值为1012.已知椭圆x2sin α-y2cos α=1(0≤α<2π)的焦点在y轴上,则α的取值范围是________.13.已知椭圆x212+y26=1的左、右焦点为F1、F2,P在椭圆上,且△PF1F2是直角三角形,这样的P点有________个.14.已知圆M:(x+3)2+y2=64圆心为M,定点N(3,0),动点A在圆M上,线段AN 的垂直平分线交线段MA于点P(1)求动点P的轨迹C的方程;(2)若点Q是曲线C上一点,且∠QMN=60°,求△QMN的面积.[培优生]15.设AB是椭圆x2a2+y2b2=1(a>b>0)的长轴,若把AB一百等分,过每个分点作AB的垂线,交椭圆的上半部分于P1、P2、…、P99 ,F1为椭圆的左焦点,则|F1A|+|F1P1|+|F1P2|+…+|F1P99|+|F1B|的值是()A.98a B.99aC.100a D.101a。
课时作业(二十五)一、选择题1.设a 是任一向量,e 是单位向量,且a ∥e ,则下列表示形式中正确的是( )A .e =a|a |B .a =|a |eC .a =-|a |eD .a =±|a |e 答案 D解析 对于A ,当a =0时,a|a |没有意义,错误对于B 、C 、D 当a =0时,选项B 、C 、D 都对; 当a ≠0时,由a ∥e 可知,a 与e 同反或反向,选D.2.a 、b 、a +b 为非零向量,且a +b 平分a 与b 的夹角,则( ) A .a =b B .a =-bC .|a |=|b |D .以上都不对 答案 C 3.如图所示,D 是△ABC 的边AB 上的中点,则向量CD →等于( )A .-BC →+12BA →B .-BC →-12BA →C.BC →-12BA →D.BC →+12BA →答案 A解析 ∵D 是AB 的中点,∴BD →=12BA →.∴CD →=CB →+BD →=-BC →+12BA →4.(2011·山东师大附中)设a 、b 为不共线的非零向量,AB →=2a +3b ,BC →=-8a -2b ,CD →=-6a -4b ,那么( )A.AD →与BC →同向,且|AD →|>|BC →|B.AD →与BC →同向,且|AD →|>|BC →|C.AD →与BC →反向,且|AD →|>|BC →|D.AD →∥BD → 答案 A解析 AD →=AB →+BC →+CD →=2a +3b +(-8a -2b )+(-6a -4b )=-12a -3b , BC →=-8a -2b ,∴AD →=32BC →,∴AD →与BC →同向,且|AD →|=32|BC →|.∴|AD →|>|BC →|.故选A.5.已知P ,A ,B ,C 是平面内四点,且P A →+PB →+PC →=AC →,那么一定有( ) A.PB →=2CP → B.CP →=2PB → C.AP →=2PB → D.PB →=2AP → 答案 D解析 由题意得P A →+PB →+PC →=PC →-P A →,即PB →=-2P A →=2AP →,选D.6.(2010·湖北卷,理)已知ΔABC 和点M 满足M A →+M B →+M C →=0.若存在实数m 使得A B →+A C →=mAM →成立,则m =( )A .2B .3C .4D .5 答案 B解析 由M A →+M B →+M C →=0得点M 是ΔABC 的重心,可知AM →=13(A B →+A C →),A B→+A C →=3AM →,则m =3,选B.7.(2010·四川卷)设点M 是线段BC 的中点,点A 在直线BC 外,BC →2=16,|A B →+A C →|=|A B →-A C →|,则|AM →|=( ) A .8 B .4 C .2 D .1 答案 C解析 由|A B →+A C →|=|A B →-A C →|可知,A B →⊥A C →,则AM 为Rt ΔABC 斜边BC 上的中线,因此|AM →|=12|B C →|=2,选C.二、填空题8.设e 是与向量AB →共线的单位向量,AB →=3e ,又向量BC →=-5e ,若AB →=λAC →,则λ=________.答案 -32解析 AC →=AB →+BC →=3e -5e =-2e 由AB →=λ·AC →得3e =λ·(-2)·e∴λ=-329.已知O 为△ABC 内一点,且OA →+OC →+2OB →=0,则△AOC 与△ABC 的面积之比是________.答案 1 2 解析如图,取AC 中点D . OA →+OC →=2OD → ∴OD →=BO →∴O 为BD 中点,∴面积比为高之比.10.(2011·苏北四市调研)已知a ,b 是不共线的向量,若AB →=λ1a +b ,AC →=a +λ2b (λ1,λ2∈R ),则A 、B 、C 三点共线的充要条件为________.答案 λ1λ2-1=0解析 A 、B 、C 三点共线⇔AB →∥AC →⇔λ1λ2-1×1=0⇔λ1λ2=1,故选C11.已知|a |=1,|b |=2,且a -b 与a 垂直,则a 与b 的夹角为________. 答案 45°解析 如右图所示,作向量OA →=a ,OB →=b ,则BA →=a -b .∵OA =1,OB =2,OA ⊥BA ,∴cos ∠AOB =22,∴∠AOB =45°,故a 与b 的夹角为45°.12.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是________.答案 0 解析CD →=AD →-AC →,DB →=AB →-AD →.∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →.∴32CD →=AB →-AC →, ∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0.13.(09·安徽)在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ、μ∈R ,则λ+μ=________.答案 43解析 AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,于是得⎩⎨⎧12λ+μ=1λ+12μ=1,所以λ+μ=43三、解答题14.已知:任意四边形ABCD 中,E 、F 分别是AD 、BC 的中点,求证:EF →=12(AB →+DC →).证明 如图所示,∵E 、F 是AD 与BC 的中点,∴EA →+ED →=0,FB →+FC →=0,又∵AB →+BF →+FE →+EA →=0, ∴EF →=AB →+BF →+EA →,①同理 EF →=ED →+DC →+CF →,②由①+②得,2EF →=AB →+DC →+(EA →+ED →)+(BF →+CF →)=AB →+DC →, ∴EF →=12(AB →+DC →)15.如右图所示,已知AP →=43AB →,AQ →=13AB →,用OA →、OB →表示OP →,求OP →.答案 -13OA →+43OB →解析 OP →=OA →+AP →=OA →+43AB →=OA →+43(OB →-OA →)=43OB →-13OA →.16.设a 、b 是不共线的两个非零向量,(1)若OA →=2a -b ,OB →=3a +b ,OC →=a -3b , 求证:A 、B 、C 三点共线;(2)若8a +k b 与k a +2b 共线,求实数k 的值.解析 (1)∵AB →=(3a +b )-(2a -b )=a +2b , 而BC →=(a -3b )-(3a +b )=-2a -4b =-2AB →, ∴AB →与BC →共线,且有公共端点B , ∴A 、B 、C 三点共线.(2)∵8a +k b 与k a +2b 共线, ∴存在实数λ,使得 (8a +k b )=λ(k a +2b )⇒(8-λk )a +(k -2λ)b =0, ∵a 与b 不共线, ∴⎩⎪⎨⎪⎧8-λk =0k -2λ=0⇒8=2λ2⇒λ=±2, ∴k =2λ=±4.1.(09·湖南)如图,D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则( ) A.AD →+BE →+CF →=0 B.BD →-CF →+DF →=0 C.AD →+CE →-CF →=0 D.BD →-BE →-FC →=0 答案 A解析 ∵AD →=12AB →,BE →=12BC →,CF →=12CA →,∴AD →+BE →+CF →=12(AB →+BC →+CA →)=12(AC →+CA →)=12×0=0,故选A.2.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直 答案 A解析 求解本题应先建立向量AD →+BE →+CF →与BC →的线性关系,再根据平面向量的平行和垂直的充要条件进行判断.由题意,得DC →=DA →+AC →,BD →=BA →+AD →. 又DC →=2BD →,所以DA →+AC →=2(BA →+AD →).所以AD →=13AC →+23AB →.同理,得BE →=13BC →+23BA →,CF →=13CA →+23CB →.将以上三式相加,得AD →+BE →+CF →=-13BC →.故选A.3.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C )的充要条件是AP →=λ(AB →+AD →),则λ的取值范围是( )A .λ∈(0,1)B .λ∈(-1,0)C .λ∈(0,22)D .λ∈(-22,0)答案 A解析 如图,∵点P 在对角线AC 上(不包括端点A ,C ), ∴AP →=λAC →=λ(AB →+AD →),由AP →与AC →同向知,λ>0; 又|AP →|<|AC →| ∴AP →AC →=|AP →||AC →|=λ<1, ∴λ∈(0,1),反之亦然.4.设M 、N 、P 是△ABC 三边上的点,它们使BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB→=a ,AC →=b ,试用a ,b 将MN →、NP →、PM →表示出来.分析 取a 、b 作为一组基底,根据向量的线性运算表示出向量MN →、NP →、PM →即可. 解析 如右图所示,MN →=CN →-CM →=-13AC →-23CB →=-13AC →-23(AB →-AC →)=13AC →-23AB →=13b -23a .→=13a-23b,同理可得NP。