2.插值法-2
- 格式:pdf
- 大小:577.78 KB
- 文档页数:50
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
插值法题目1:对函数在区间[-1,1]作下列插值逼近,并和的图像进行比较,并对结果进行分析。
(1)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的20次Newton 插值多项式的图像。
(2)用节点)20,,2,1,0(,)4212cos(⋅⋅⋅=+=i i x i π,绘出它的20次Lagrange 插值多项式的图像。
(3)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的分段线性插值函数的图像。
(4)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的三次自然样条插值函数的图像。
程序及分析:(1)用等距节点,200,1.0,-1≤≤=+=i h ih x i 绘出它的20次Newton 插值多项式的图像。
Matlab 程序如下:%计算均差x=[-1::1];n=length(x);syms zfor i=1:ny(i)=1/(1+25*x(i)*x(i));endN=zeros(n,n);N(:,1)=y';for j=2:nfor k=j:nN(k,j)=(N(k,j-1)-N(k-1,j-1))/(x(k)-x(k-j+1));endendfor t=1:nc(t)=N(t,t)end%构造插值多项式f=N(1,1);for k=2:na=1;for r=1:(k-1)a=a*(z-x(r));endf=f+N(k,k)*a;end%作图a=[-1::1];n=length(a);for i=1:nb(i)=1/(1+25*a(i)*a(i));endfx=subs(f,z,a);subplot(2,1,1);plot(a,b,'k',a,fx,'r');c=[::];n=length(c);for i=1:nd(i)=1/(1+25*c(i)*c(i));endfx=subs(f,z,c);subplot(2,1,2);plot(c,d,'k',c,fx,'r');结果与分析:由下图可以看出,在区间[,]上,插值多项式可以很好的逼近被插值函数。
插值研究1 插值法的应用在函数的近似求解中,插值方法非常的重要。
当我们知道了函数在有限个点处的取值状况后,就可以估算出该函数在其他点处的函数值,进而求解函数的更多相关信息。
插值法除了函数求值的应用之外,其他方面的用法也比较多。
包括:数值微分方法,数值积分方法,数据拟合,以及在图像处理方面的应用。
(1)数值积分法:在进行积分的求解时,经常会遇到被积函数不清楚,即使被积函数已知,然而被积函数的原函数求并不好求,在这种情况下,一般根据)(x f 在积分区间的已知数据,通过构造插值多项式)(x p 替代)(x f ,由于)(x p 为多项式,则)(x f 的积分值就能够比较容易求出。
(2)数值微分方法:通常意义上的数值微分方法,也即是根据距离相等的节点上的插值多项式,求解函数的导数值。
我们知道,两点公式是通过分段线性插值得出的,三点公式是通过分段抛物插值得出的。
然而这两种公式仅仅适合对节点处求导数值。
如果在区间内的其它点求导数值的话,样条插值函数是比较好的选择。
(3)数据拟合:在获得一组测定的离散的数据之后,我们最想获得的就是这些离散数据的数学表达式,探讨这些数据的内在规律。
如果无法求解到精确的数学表达式,尽可能好的去近似得出函数解析式,也会帮助我们获得意想不到的结果。
关于插值法的近似标准是这样规定的:原函数和插值函数在插值点处的误差为零,在实际的应用当中,有些点的误差并不一定为零,只需考虑整体的误差限制即可,因而所求函数并不需要通过所有点,我们所要求的是最好的反应原函数的变化趋势。
通过插值法的求解,便可以求得最优的拟合函数。
(4)图像处理:数字图像的处理涉及到社会生活的很多领域,而图像的放大作为数字图像处理的基本操作,具有很强的重要性。
通过插值法,可以实现图像的放大。
图像处理中,图像之间的转换是通过坐标变换来实现的。
这样做的问题就是目标点的坐标一般不会是常数,因此要解决非整数坐标处的点应该是怎样的。