变压器零序差动保护介绍
- 格式:pdf
- 大小:1.22 MB
- 文档页数:21
西门子7UT6131装置零序差动保护原理及故障分析摘要:当变压器发生区内故障时,变压器零序差动保护能够瞬速切除故障,保护变压器不被损坏。
所以学习零差保护的基本原理、极性整定、保护回路接线类型及故障处理方法,对于预防保护误动具有十分重要的意义。
关键词:零序差动保护;中性点CT极性;故障分析;零差回路接线方式1引言随着电力行业的高速发展,相应地对相关电气设备的继电保护有了更广阔的应用,如西门子继电保护装置由于其高口碑的质量,在国内外应用就非常广泛,但是在调试此保护装置或者需要对此装置进行故障分析时,有特别需要注意的地方,故借本文的分析,供大家遇到相似问题时候能够提供参考。
2零序差动保护的特点零序电流差动保护探测中性点低阻接地或者固定接地的发电机和变压器的接地故障,零序电流差动保护具有选择性,并且比传统的电流差动保护具有更高的灵敏度。
零序差动保护具有不平衡电流小,动作整定电流小,仅涉及Yn绕组本身,与磁路无关,与励磁涌流也无直接关系等特点。
3零序差动保护(REF)原理及其动作特性3.1 零序差动保护两侧电流矢量的定义:定义电流流向保护区域方向为保护正方向。
当零序电流差动保护发生区内故障时,变压器中性点侧电流互感器会出现零序电流,线路侧会产生自产零序电流流向故障点。
由于电流方向定义的原因,自产零序电流()与中性点电流()在相位上同方向。
当零序电流差动保护发生区外故障时,也会有中性点电流()流经中性点侧电流互感器以及自产零序电流()流经线路侧电流互感器,进入装置的两侧电流大小是一致的,由于电流的方向定义为流向保护区域为正方向,所以中性点电流()与自产零序电流()在相位上方向相反。
3.3 零序差动保护的比幅跳闸特性:零序差动保护的动作电流只与中性点电流有关。
定义动作电流,同时定义稳定电流,其中 K 是制动系数,可假设为 l。
对系统故障分下面三种情况进行分析:区外故障时,与幅值相等相位相反,,此时,,;区内三相接地故障时,区内发生接地故障,零序电流由变压器中性点提供,因此,此时,,;3)区内不平衡接地故障时区内发生接地故障,零序电流由变压器中性点和系统提供,假设与幅值以及相位均相等,= ,此时,,;由于制动电流不可能为负数,此时认为.当发生区内故障时制动电流均为零,此时零序差动对中性点电流非常敏感,流过中性点电流一旦达到定值保护马上就动作。
自耦变压器零序差动保护问题0引言在超高压电力系统中,自耦变压器因体积小、效率高、用材省等优点而得到了广泛应用。
在为自耦变压器配置保护时,其相间差动保护、匝间保护、瓦斯保护及相间后备保护与普通变压器基本相同,一般不需作特殊考虑,但其零序保护及过负荷保护却有着不同于普通变压器保护的特点。
对于过负荷保护,曾有许多专家及工程技术人员进行过大量的论述[1],本文将主要讨论自耦变压器的零序差动保护。
众所周知,自耦变压器与普通变压器的功率传递方式不尽相同,在普通变压器中,高、中压线圈之间没有电的联系,全部是由电磁感应的作用进行功率传递的,而在自耦变压器中,高、中压线圈之间有电的联系,其功率传递除一部分是靠电磁感应的作用外,另一部分则是靠电的直接传导传递的;并且由自耦变压器的原理、结构所定,其高、中压侧的中性点必须连在一起,且同时接地。
这是自耦变压器与普通变压器的主要差异[2]。
在超高压系统中,大多数大容量的自耦变压器都是分相式。
显而易见,对于分相式的自耦变压器而言,其内部发生接地故障的概率远大于相间故障,因此,对于自耦变压器的接地故障必须有高可靠系数的零序保护。
1自耦变压器单相接地故障时的电流分析为了更清楚地说明自耦变压器的特殊性,首先可以利用图1中500 kV/220 kV自耦变压器作为原型,对其中压侧、高压侧发生区外接地故障时的零序电流分布进行分析。
图1 自耦压器主接线图Fig.1 Connection diagram of autotransformera.当自耦变压器的中压侧发生区外接地故障时,对折合到中压侧的零序等效电路(如图2)进行分析,可以得到式(1)、式(2)。
图2自耦变压器中压侧区外单相短路电流分析Fig.2Current analysis of autotransformerwhen single phase ground fault occurs outsideof the protected zone at medium voltage side(1)(2) 其中nGZ=U G/U Z,为自耦变压器高、中压变比;Z0为中压侧(短路点)的零序电流;ZX为中性点提供的零序电流;GG0为自耦变压器公共绕组中的零序电流;G0为自耦变压器高压侧零序电流;G0′为折合到中压侧的高压侧零序电流;XG0,XD0分别为自耦变压器高、低压侧的零序电抗;XSM0为自耦变压器高压侧的系统零序阻抗。
零序方向过流保护小结变压器高压侧(110kV 及以上)及中压侧一般为中性点直接接地系统(又称大接地电流系统),当发生接地短路时,将出现很大的零序电流,对变压器的电气性能产生极大的危害,因此必须配备接地短路保护。
变压器单相接地短路的主保护为比率制动式差动或零序差动,同时应装设后备保护,作为变压器高压绕组和相邻元件接地故障的后备。
一、变压器接地后备保护概述变压器因其绝缘水平和接地方式的不同,所配置的接地短路后备保护也不同。
对于全绝缘变压器,中性点装设接地隔离刀闸和避雷器,隔离刀闸闭合为中性点直接接地方式,隔离刀闸断开为中性点不接地运行方式。
中性点直接接地运行时用零序过流保护,中性点不接地运行时用零序过压保护。
对于分级绝缘变压器,若其中性点绝缘水平低,中性点必须直接接地,若其中性点绝缘水平较高,则中性点可以直接接地,也可在系统不失去接地点的情况下不接地运行,其大多装设放电间隙。
在220kV 系统中的变压器,他们的中性点仅部分接地,另一部分不接地。
当发生接地故障时应先跳开不接地变压器,然后跳开接地变压器。
因此,这类变压器接地后备保护的配置需要考虑该变压器中性点在系统中的接地情况。
对于中性点未装设放电间隙的分级绝缘变压器,若其中性点直接接地,则用零序过流保护,若其中性点不接地,则用零序联跳保护。
对于中性点装设放电间隙的分级绝缘变压器,中性点直接接地运行时用零序过流保护,中性点不接地时用间隙零序保护。
综上所述,中性点直接接地变压器的接地故障后备保护无一例外地采用零序过流保护,对高中压侧中性点均直接接地的自耦变和三绕组变压器,当有选择性要求时,应增设零序方向元件。
二、零序方向过流保护逻辑零序方向过流保护一般由“零序过流元件”和“零序方向元件”相与构成,如果带零序电压闭锁,则由“零序过流元件”、“零序方向元件”和“零序电压闭锁元件”相与构成。
其逻辑图如图1所示。
图1 零序方向过流保护逻辑框图零序电压闭锁元件的零序电压取自TV 开口三角。
变压器差动保护一、引言:电力变压器对电力系统的安全稳定运行至关重要。
一旦发生故障遭到损坏,将会造成很大的经济损失,因此,对继电保护的要求很高,差动保护是变压器主保护之一,动作迅速、灵敏而且可靠。
该保护也是我们继电保护调试人员在工作中经常接触到的设备。
下面将介绍一些有关于差动保护方面的一些知识。
二、差动保护的作用:差动保护是防止变压器内部故障的主保护,在35KV及以上变电站中普遍采用,主要用于保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备以及连接这些设备的导线。
简单地讲,就是输入的两端TA之间的设备。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与区外相邻元件保护在动作值和动作时限上相互配合,发生区内故障时,可以整定为瞬时动作。
差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,所以用于变压器主保护。
三、差动保护的原理:差动保护是利用基尔霍夫电流定律中“在任意时刻,对电路中的任一节点,流经该节点的电流代数和恒为零”的原理工作的。
差动保护把被保护的变压器看成是一个节点,在变压器的各侧均装设电流互感器,把变压器各侧电流互感器副边按差接线法接线,即各侧电流互感器的同极性端都朝向母线侧,将同极性端子相连,并联接入差动继电器。
在继电器线圈中流过的电流是各侧电流互感器的副边电流之差,也就是说差动继电器是接在差动回路的,从理论上讲,正常情况下或外部故障时,流入变压器的电流和流出的电流(折算后的电流)相等,差回路中的电流为零。
当变压器正常运行或区外故障(流过穿越性电流)时,各侧电流互感器的副边电流流入保护装置,通过微机保护程序运行,各侧电流存在的相位差由软件自动进行校正,自动计算出各侧电流IH-(IM-IL)接近为零(IH为高压侧电流,IM为中压侧电流,IL为低压侧电流)则保护不动作。
差动保护工作原理差动保护是电力系统保护中常用的一种保护方式,主要用于检测电力系统中的故障情况,并采取措施防止故障扩大。
差动保护可以用于对各种电气设备进行保护,如变压器、发电机、母线等。
下面将详细介绍差动保护的工作原理。
差动保护是一种基于电流差值的保护方式。
其基本原理是通过比较同一电路的两个或多个点的电流,来判断电气设备是否存在故障。
差动保护一般采用主动式差动保护,也就是主动比较电流并判断是否存在故障,另外还有被动式差动保护,也就是被动接受其他装置的差动信号。
差动保护通常由一个差动继电器组成,该继电器上接入从变压器、发电机以及线路中取得的电流信号。
差动继电器接受这些电流信号,并通过比较这些信号的差异来判断电气设备是否存在故障。
差动保护的工作原理大致可以分为三个步骤:采样、比较和判定。
首先是采样。
差动继电器上接入从电气设备中取得的电流信号。
这些电流信号是通过采样装置采集而来的,通常采用电流互感器获取变压器、发电机以及线路中的电流信号。
采样装置会将采集的电流信号转换成适合差动继电器处理的信号,然后输入到差动继电器中。
接下来是比较。
差动继电器将接收到的电流信号进行比较,比较对象通常是同一电路中的两个或多个点的电流信号。
差动继电器会将这些电流信号进行差分运算,得到一个差值。
如果差值超过所设定的阈值,就会触发差动继电器的动作。
最后是判定。
差动继电器会根据比较得到的差值判断电气设备是否存在故障。
如果差值超过阈值,差动继电器会发出警报信号,并向对应的断路器或开关发送信号,将故障路段进行隔离。
如果差值在阈值之内,差动继电器则认为电气设备正常运行。
差动保护的工作原理中,要特别注意的是阈值的设定。
阈值的大小与电气设备的特性有关,通常需要根据设备的额定电流和故障特性来确定。
阈值设置过小,容易造成误动作,阈值设置过大,容易漏检故障。
差动保护相对来说是一种较为简单、可靠的保护方式。
它可以实时监测电气设备的工作情况,一旦发现故障可以迅速切除故障路段,保护系统的安全稳定运行。
差动保护一、差动保护原理变压器差动保护的动作原理与线路纵差动保护相同,通过比较变压器两侧电流的大小和相位决定保护是否动作,单相原理接线图如图4-4所示。
三绕组变压器的差动保护,其原理与图4-4相类似,只是将三侧的“和电流”接入差动继电器KD ,这里不再赘述。
电力系统中,变压器通常采用Y ,dll 接线方式,两侧线电流的相位相差300。
如果将变压器两侧同名相的线电流经过电流互感器变换后,直接接入保护的差动回路,即使两个电流互感器的变比选择合适,使其二次电流数值相等,即21I I '=',流入差动继电器的电流也不等于零,因此在电流互感器二次采用相位补偿接线和幅值调整。
具体为变压器星形侧的三个电流互感器二次绕组采用三角形接线(自然消除了零序电流的影响),变压器三角侧的三个电流互感器二次绕组采用星形接线,将引入差动继电器的电流校正为同相位;同时,二次绕组采用三角形接线的电流互感器变比调整为原来的3倍。
微型机变压器差动保护,可以通过软件计算实现相位校正。
1.变压器正常运行或外部故障根据图4-4(a)所示电流分布,此时流入差动继电器KD 的电流是变压器两侧电流的二次值相量之差,适当选择电流互感器1TA 和2TA 的变比,再经过相位补偿接线和幅值调整,实际流人差动继电器的电流为不平衡电流,继电器不会动作,差动保护不动作。
此时流人差动继电器的电流为unb TA TA KD I n I n I I I I =-=-=••••''221121 (4—1)式中 TA n 1——电流互感器1TA 、2TA 的变比;unb I ——流人差动继电器的不平衡电流。
2.变压器内部故障根据图4-4(b)所示电流分布,此时流人差动继电器KD 的电流是变压器两侧电流的二次值相量之和,使继电器动作,差动保护动作。
此时流人差动继电器的电流为TA TA KD n I n I I I I 221121••••+=+='' (4—2)如果变压器只有一侧电源,则只有该侧的电流互感器二次电流流人差动继电器;如果变压器两侧有电源,则两侧的电流互感器二次电流都流入差动继电器,且数值相加。
零序电压:正序、负序、零序的出现是为了分析在系统电压、电流出现不对称现象时,把三相的不对称分量分解成对称分量(正、负序)及同向的零序分量。
只要是三相系统,就能分解出上述三个分量(有点象力的合成与分解,但很多情况下某个分量的数值为零)。
对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。
当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。
下面再介绍用作图法简单得出各分量幅值与相角的方法,先决条件是已知三相的电压或电流(矢量值),当然实际工程上是直接测各分量的。
由于上不了图,请大家按文字说明在纸上画图。
从已知条件画出系统三相电流(用电流为例,电压亦是一样)的向量图(为看很清楚,不要画成太极端)。
1)求零序分量:把三个向量相加求和。
即A相不动,B相的原点平移到A相的顶端(箭头处),注意B相只是平移,不能转动。
同方法把C相的平移到B相的顶端。
此时作A相原点到C相顶端的向量(些时是箭头对箭头),这个向量就是三相向量之和。
最后取此向量幅值的三分一,这就是零序分量的幅值,方向与此向量是一样的。
2)求正序分量:对原来三相向量图先作下面的处理:A相的不动,B相逆时针转120度,C相顺时针转120度,因此得到新的向量图。
按上述方法把此向量图三相相加及取三分一,这就得到正序的A相,用A 相向量的幅值按相差120度的方法分别画出B、C两相。
这就得出了正序分量。
3)求负序分量:注意原向量图的处理方法与求正序时不一样。
A相的不动,B相顺时针转120度,C 相逆时针转120度,因此得到新的向量图。
下面的方法就与正序时一样了。
通过上述方法大家可以分析出各种系统故障的大概情况,如为何出现单相接地时零序保护会动作,而两相短路时基本没有零序电流。
第27卷第1期2010年2月现 代 电 力Modern Electric PowerVol127 No11Feb12010文章编号:100722322(2010)0120026204 文献标识码:A 中图分类号:TM77 Y0/Δ211变压器差动保护相位校正及零序电流补偿问题分析陈志文(南宁供电局,广西南宁 530031)Analysis of Phase Adjustment and Zero2sequence Current Compensation With Y0/Δ-11T ransformer Differential ProtectionChen Zhiwen(Nanning Power Supply Bureau,Nanning 530031,China)摘 要:分别从形式上和原理上介绍了Y0/Δ-11变压器差动保护的两种相位校正方式,着重分析了Y0侧相位校正和Δ侧相位校正的原理和特点,深入探讨了这两种相位校正方式对差动保护区内外接地故障的适应性,阐明了零序电流补偿的问题,并对零序CT的极性进行了相应分析,认为变压器差动保护的相位校正不仅是各个绕组间的相位校正问题,同时还伴随主变中性点直接接地侧的零序电流补偿问题,Δ侧相位校正与中性点零序电流补偿相结合的方法不仅能保证区外故障差动保护不误动,还可提高区内接地故障的灵敏度,某些未设专门零差保护的变压器因此能增强对接地故障的反应能力。
关键词:变压器;差动保护;相位校正;接地故障;零序补偿Abstract:The modes and t heories of two p hase adjust ment met hods wit h Y0/Δ-11t ra nsf ormer diff erential p rotection are int roduced.The t heories a nd cha racteristics of Y0andΔp hase adjust ment are analyzed.Their adaptability to eart h f ault inside a nd outside diff erential p rotection area is dis2 cussed,a nd t he zero2sequence current compensation is illu2 minated.The p ola rity zero2sequence C T is a nalyzed.Results show t hat t he p hase adjust ment is not only about t he p hase adjust ment wit h diff erent windings of a t ransf ormer but also related to t he zero2sequence current comp ensation wit h neu2 t ral2p oint solid grounding side of a t ra nsf bingΔp hase adjust ment wit h t he neut ral p oint zero2sequence cur2 rent compensation ca n avoid diff erential p rotection’s incor2 rect action f or ea rt h f aults outside t he a rea,a nd ca n enha nce t he sensitivity to ea rt h f aults wit hin area.Thus some t rans2 f ormers wit hout specialized zero2sequence diff erential p ro2 tection can enhance t heir reactive ability to eart h f aults.K ey w ords:t ra nsf ormer;diff erential p rotection;p hase ad2 just ment;eart h f ault;zero2sequence comp ensation 0 引 言差动保护是电力变压器的主保护之一,它的正确动作关系到对用户的可靠供电和对故障的快速切除,即不误动也不拒动。
差动保护基本原理母线差动保护基本原理母线差动保护基本原理,用通俗的比喻,就是按照收、支平衡的原理进行判断和动作的。
因为母线上只有进出线路,正常运行情况,进出电流的大小相等,相位相同。
如果母线发生故障,这一平衡就会破坏。
有的保护采用比较电流是否平衡,有的保护采用比较电流相位是否一致,有的二者兼有,一旦判别出母线故障,立即启动保护动作元件,跳开母线上的所有断路器。
如果是双母线并列运行,有的保护会有选择地跳开母联开关和有故障母线的所有进出线路断路器,以缩小停电范围什么是差动保护?为什么叫差动?这样有什么优点?差动保护是变压器的主保护,是按循环电流原理装设的。
主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。
在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同级性端都朝向母线侧,则将同级性端子相连,并在两接线之间并联接入电流继电器。
在继电器线圈中流过的电流是两侧电流互感器的二次电流之差,也就是说差动继电器是接在差动回路的。
从理论上讲,正常运行及外部故障时,差动回路电流为零。
实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡点流Iumb流过,此时流过继电器的电流IK为 Ik=I1-I2=Iumb要求不平衡点流应尽量的小,以确保继电器不会误动。
当变压器内部发生相间短路故障时,在差动回路中由于I2改变了方向或等于零(无电源侧),这是流过继电器的电流为I1与I2之和,即Ik=I1+I2=Iumb能使继电器可靠动作。
变压器差动保护的范围是构成变压器差动保护的电流互感器之间的电气设备、以及连接这些设备的导线。
由于差动保护对保护区外故障不会动作,因此差动保护不需要与保护区外相邻元件保护在动作值和动作时限上相互配合,所以在区内故障时,可以瞬时动作。
为什么220KV高压线路保护用电压取母线TV不取线路TV事实上,两个电压都接入保护装置的,它们的作用各不相同母线电压,一般用来判别正方向故障和反方向故障,通过电流与电压之间的夹角来判别线路电压,一般用来重合闸的时候用,作为线路有压无压的判据现在220kV线路保护比较常用的就是一套光纤电流差动以及一套高频距离保护也有采用两套光纤电流,两套高频的比较少了变压器差动保护的基本原理1、变压器差动保护的工作原理与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。
第四节 变压器零序差动保护1.概述通常的差动保护用在N Y ,d 接线的三项变压器,当N Y 侧单相接地短路时灵敏度不高,故提出零序差动保护方案。
单相式超高压大型变压器绕组的短路类型主要是绕组对铁芯(即地)地绝缘损坏,即单相接地短路,相间短路(指箱内故障)可能性极小,因此认真对待变压器绕组地单相短路故障保护,十分必要。
2.原理2.1 普通变压器的零序差动保护先看图1(a)所示N Y ,d 变压器,N Y 侧电源断开,该侧发生金属性单相接地短路,短路点距中性点的长度占全绕组总长的%α,电流Y I 和∆I 如图所示,变压器的电抗为0.10,∆侧接于无穷大电源。
变压器差动保护的电流互感器二次接线为常规方式(即变压器Y 接,互感器二次侧∆接;变压器∆接,互感器二次侧Y 接)。
输入变压器差动保护的电流是∆I ,当短路点靠近中性点时,即0→α,电流0→∆I ,注意到∆I 中只有正、负序分量,不包含零序分量,所以∆I 总是小于Y I ,使通常的差动保护灵敏度不高且有动作死区。
再看图1(b)的两侧电源N Y ,d 变压器,单相接地短路将Y 绕组分为两部分(1W 和2W ),各自流过电流1Y I 和2Y I ,如果有1Y I 1W >2Y I 2W ,则∆I 的正向将如图所示,这时1Y I 和∆I 将呈现穿越特性,通常的差动保护灵敏度低,或者根本不动作。
对于上述单相短路灵敏度低的问题,如果在N Y 侧三相电流互感器二次侧接成零序滤过器方式,再与中性点互感器二次组成差动接线,就构成了变压器的接地零序差动保护。
这种零序差动保护,无论图1(a)或(b),都能反应全部短路电流Y I (=1Y I 和2Y I ),灵敏度大大提高。
2.2 自耦变压器的零序差动保护按照相间短路差动保护互感器二次侧接线惯例,自耦变压器高中压侧电流互感器二次必为∆接线,差动继电器中不流过零序电流,所以这种差动保护对接地短路的灵敏度低,而对中高压侧中性点均直接接地的自耦变压器,单相接地是其主要故障形式之一,加装零序差动保护将提高自耦变压器内部接地短路的灵敏度。
变压器保护变压器的保护有:瓦斯保护、差动保护、过电流保护、复合电压启动的过电流保护、低电压起动的过电流保护、零序接地保护。
1.瓦斯保护:是变压器内部故障的主要保护元件,对变压器匝间和层间短路、铁芯故障、套管内部故障、绕组内部断线及绝缘劣化和油面下降等故障均能灵敏动作。
当油浸式变压器的内部发生故障时,由于电弧将使绝缘材料分解并产生大量的气体,从油箱向油枕流动,其强烈程度随故障的严重程度不同而不同,反应这种气流与油流而动作的保护称为瓦斯保护,也叫气体保护。
在气体保护继电器内,上部是一个密封的浮筒,下部是一块金属档板,两者都装有密封的水银接点。
浮筒和档板可以围绕各自的轴旋转。
在正常运行时,继电器内充满油,浮筒浸在油内,处于上浮位臵,水银接点断开;档板则由于本身重量而下垂,其水银接点也是断开的。
当变压器内部发生轻微故障时,气体产生的速度较缓慢,气体上升至储油柜途中首先积存于气体继电器的上部空间,使油面下降,浮筒随之下降而使水银接点闭合,接通延时信号,这就是所谓的“轻瓦斯”;当变压器内部发生严重故障时,则产生强烈的瓦斯气体,油箱内压力瞬时突增,产生很大的油流向油枕方向冲击,因油流冲击档板,档板克服弹簧的阻力,带动磁铁向干簧触点方向移动,使水银触点闭合,接通跳闸回路,使断路器跳闸,这就是所谓的“重瓦斯”。
重瓦斯动作,立即切断与变压器连接的所有电源,从而避免事故扩大,起到保护变压器的作用。
气体继电器有浮筒式、档板式、开口杯式等不同型号。
目前大多采用QJ-80型继电器,其信号回路接上开口杯,跳闸回路接下档板。
所谓瓦斯保护信号动作,即指因各种原因造成继电器内上开口杯的信号回路接点闭合,光字牌灯亮。
瓦斯保护是变压器的主要保护,它可以反映油箱内的一切故障。
包括:油箱内的多相短路、绕组匝间短路、绕组与铁芯或与外壳间的短路、铁芯故障、油面下降或漏油、分接开关接触不良或导线焊接不良等。
瓦斯保护动作迅速、灵敏可靠而且结构简单。