西工大飞行器性能计算5起降性能
- 格式:pptx
- 大小:1.66 MB
- 文档页数:48
西工大飞行器结构力学电子教案第一章:飞行器结构力学概述1.1 飞行器结构力学的定义介绍飞行器结构力学的概念和基本原理。
解释飞行器结构力学的研究对象和内容。
1.2 飞行器结构的特点与分类讨论飞行器结构的特点,包括轻质、高强度、耐腐蚀等。
介绍飞行器结构的分类,包括飞行器壳体、梁、板、框等。
1.3 飞行器结构力学的基本假设阐述飞行器结构力学分析的基本假设,如材料均匀性、连续性和稳定性。
第二章:飞行器结构受力分析2.1 飞行器结构受力分析的基本方法介绍飞行器结构受力分析的基本方法,包括静态分析和动态分析。
2.2 飞行器结构受力分析的实例通过具体实例,讲解飞行器结构受力分析的过程和方法。
2.3 飞行器结构受力分析的计算方法介绍飞行器结构受力分析的计算方法,包括解析法和数值法。
第三章:飞行器结构强度分析3.1 飞行器结构强度理论介绍飞行器结构强度理论的基本原理,包括最大应力理论和能量原理。
3.2 飞行器结构强度计算方法讲解飞行器结构强度计算的方法,包括静态强度计算和疲劳强度计算。
3.3 飞行器结构强度分析的实例通过具体实例,展示飞行器结构强度分析的过程和方法。
第四章:飞行器结构稳定分析4.1 飞行器结构稳定理论介绍飞行器结构稳定理论的基本原理,包括弹性稳定理论和塑性稳定理论。
4.2 飞行器结构稳定计算方法讲解飞行器结构稳定计算的方法,包括解析法和数值法。
4.3 飞行器结构稳定分析的实例通过具体实例,讲解飞行器结构稳定分析的过程和方法。
第五章:飞行器结构动力学分析5.1 飞行器结构动力学基本原理介绍飞行器结构动力学的基本原理,包括振动理论和冲击理论。
5.2 飞行器结构动力学计算方法讲解飞行器结构动力学计算的方法,包括解析法和数值法。
5.3 飞行器结构动力学分析的实例通过具体实例,展示飞行器结构动力学分析的过程和方法。
第六章:飞行器结构疲劳与断裂分析6.1 飞行器结构疲劳基本理论介绍飞行器结构疲劳现象的基本原理,包括疲劳循环加载、疲劳裂纹扩展等。
西工大飞行器结构力学电子教案第一章:绪论1.1 课程简介1.2 飞行器结构力学的研究对象和内容1.3 飞行器结构力学的应用领域1.4 学习方法和教学要求第二章:飞行器结构的基本受力分析2.1 概述2.2 飞行器结构的受力分析方法2.3 飞行器结构的受力类型及特点2.4 飞行器结构的基本受力分析实例第三章:飞行器结构的弹性稳定性分析3.1 概述3.2 弹性稳定性的判别准则3.3 飞行器结构弹性稳定性分析方法3.4 飞行器结构弹性稳定性分析实例第四章:飞行器结构的强度分析4.1 概述4.2 飞行器结构强度计算方法4.3 飞行器结构材料的力学性能4.4 飞行器结构强度分析实例第五章:飞行器结构的刚度分析5.1 概述5.2 飞行器结构刚度计算方法5.3 飞行器结构刚度分析实例5.4 飞行器结构刚度优化设计第六章:飞行器结构的疲劳分析6.1 概述6.2 疲劳寿命的计算方法6.3 疲劳裂纹扩展规律6.4 飞行器结构疲劳分析实例第七章:飞行器结构的断裂力学分析7.1 概述7.2 断裂力学的基本概念7.3 断裂判据和裂纹扩展规律7.4 飞行器结构断裂力学分析实例第八章:飞行器结构的动力学分析8.1 概述8.2 飞行器结构动力学的基本方程8.3 飞行器结构的动力响应分析8.4 飞行器结构动力学分析实例第九章:飞行器结构复合材料分析9.1 概述9.2 复合材料的力学性能9.3 复合材料结构分析方法9.4 飞行器结构复合材料分析实例第十章:飞行器结构力学工程应用案例分析10.1 概述10.2 飞行器结构力学在飞机设计中的应用10.3 飞行器结构力学在航天器设计中的应用10.4 飞行器结构力学在其他工程领域的应用重点和难点解析重点环节一:飞行器结构的基本受力分析补充和说明:飞行器结构的基本受力分析是理解飞行器结构力学的基础,需要掌握各种受力类型的特点和分析方法,并通过实例加深理解。
重点环节二:飞行器结构的弹性稳定性分析补充和说明:弹性稳定性是飞行器结构设计中的关键问题,需要理解判别准则,掌握分析方法,并通过实例了解实际应用。
飞机起飞着陆性能计算模型及其应用分析
随着航空业的发展和飞机制造技术的不断进步,飞机的起降性能计算模型及其应用分析也变得愈发重要。
起降性能是飞机从起飞到着陆的关键环节,直接关系到飞机在空中的安全和效率。
科学合理地计算和分析飞机的起降性能对于航空公司、飞行员和飞机制造商来说都至关重要。
本文将从飞机起飞着陆性能计算模型的基本原理出发,详细介绍该模型的应用分析及其在航空领域的实际意义。
一、飞机起飞着陆性能计算模型的基本原理
飞机的起飞性能计算模型主要包括了净重、气象条件和跑道长度等因素。
在实际计算中,需要考虑飞机的空重、油重、载客量以及气温、气压和湿度等气象因素。
根据不同的跑道长度和坡度,还需要计算出最佳的起飞速度和爬升角度。
在计算模型中,还需要考虑到起飞过程中的一些异常情况,比如发动机失效、风切变等,以便飞行员在紧急情况下能够做出正确的决策。
1. 在航空公司的应用
航空公司需要根据不同的飞机型号和航线特点,对飞机的起飞着陆性能进行精确的计算和分析。
通过科学合理地计算飞机的起飞和着陆性能,可以有效地提高飞机的安全性和经济性。
在航空公司的管理中,起飞着陆性能计算模型还可以用来评估飞机的运行效率和安全性,从而为飞行员提供相关的飞行指导。
2. 在飞行员的应用
飞机起飞着陆性能计算模型及其应用分析具有重要的实际意义,对于提高飞机的运行效率和安全性、降低运营成本、提高飞机的市场竞争力都具有重要的作用。
航空行业需要不断地加强飞机起飞着陆性能计算模型的研究和应用,不断地提高飞机的起飞着陆性能,为航空业的发展做出重要的贡献。
西工大研究生专业飞行器设计(最新版)目录1.介绍西工大研究生专业飞行器设计专业2.西工大飞行器设计专业的研究方向与课程设置3.西工大飞行器设计专业的师资力量与实践教学4.西工大飞行器设计专业的发展前景与就业情况5.总结正文西工大研究生专业飞行器设计专业是我国知名的航空航天领域专业之一,致力于培养具备飞行器设计、制造、维修及科研能力的高层次人才。
本文将从研究方向与课程设置、师资力量与实践教学、发展前景与就业情况等方面介绍西工大飞行器设计专业。
西工大飞行器设计专业涵盖了飞行器总体设计、结构设计、系统设计等多个研究方向。
为了使学生全面掌握飞行器设计的基本理论和专业知识,课程设置涵盖了空气动力学、飞行器结构强度、飞行器系统工程、飞行器制造工艺等核心课程。
此外,为了拓宽学生的学术视野和实践能力,学校还设置了一系列选修课程,如航空电子技术、飞行器控制与导航等。
西工大飞行器设计专业具有强大的师资力量,拥有一批经验丰富的教授、副教授,他们在航空航天领域取得了显著的科研成果。
同时,学校还注重实践教学,与国内多家知名航空企业建立了紧密的合作关系,为学生提供实习和实践的场所。
在教学过程中,学校采用理论教学与实践操作相结合的方式,使学生在掌握知识的同时,具备一定的实际操作能力。
随着我国航空航天事业的飞速发展,西工大飞行器设计专业的发展前景非常广阔。
毕业生可在国防科技、民航、航空制造等企事业单位从事飞行器设计、研制、运行及管理等方面的工作。
同时,毕业生还可以继续攻读博士学位,或赴海外深造。
据不完全统计,西工大飞行器设计专业的毕业生就业率一直保持在 90% 以上,受到了用人单位的广泛好评。
总之,西工大研究生专业飞行器设计专业是一所具有优良师资和丰富实践资源的专业,学生毕业后可在航空航天领域取得良好的发展。
西工大研究生专业飞行器设计(实用版)目录1.飞行器设计专业简介2.西工大飞行器设计研究生专业的特点和优势3.西工大飞行器设计研究生专业的课程设置4.西工大飞行器设计研究生专业的培养方向和就业前景正文【飞行器设计专业简介】飞行器设计专业是一门涉及航空航天、机械工程、材料科学、电子信息工程等多个领域的交叉学科,主要研究飞行器的设计、制造、飞行性能及飞行器系统的可靠性、安全性和经济性。
飞行器设计专业旨在培养具备创新精神和实践能力的高级工程技术人才,为我国的航空航天事业做出贡献。
【西工大飞行器设计研究生专业的特点和优势】西北工业大学(简称西工大)是我国著名的工科学府,具有悠久的历史和优良的教学传统。
西工大飞行器设计研究生专业具有以下特点和优势:1.国内一流的师资力量:西工大飞行器设计专业拥有一支高水平的教师队伍,其中包括多位享有国际声誉的专家学者,为学生提供了优质的学术资源。
2.丰富的实践教学资源:西工大飞行器设计专业拥有先进的实验室和设备,为学生提供了良好的实践条件。
此外,学校还与多家航空航天企业建立了紧密的合作关系,为学生实习和就业提供了便利。
3.多学科交叉融合:西工大飞行器设计专业依托学校在航空航天、机械工程、材料科学等多个领域的优势,实现了多学科交叉融合,为学生提供了宽广的发展空间。
【西工大飞行器设计研究生专业的课程设置】西工大飞行器设计研究生专业的课程设置注重理论知识与实践能力的结合,主要包括:1.公共课程:马克思主义理论、英语、数学、物理等。
2.专业基础课程:航空航天工程、飞行器结构设计、飞行器系统设计、飞行器性能分析、飞行器制造工艺等。
3.专业选修课程:飞行器可靠性与安全性设计、飞行器维修与保障、飞行器电子信息系统设计等。
【西工大飞行器设计研究生专业的培养方向和就业前景】西工大飞行器设计研究生专业旨在培养具备创新精神和实践能力的高级工程技术人才,毕业生主要在以下方向就业:1.飞行器设计与制造企业:从事飞行器设计、制造、研发等工作。
飞机飞行性能计算1、飞机动态建模飞机在铅垂面内飞行,是指飞机对称面式中与某个给定的空间铅垂面重合且飞行航迹式中在铅垂面内运动。
这种飞行状态又称为对称飞行,此时有质心运动方程:()cos()sin sin cos sin p p g g dv m P X mg dt d mV P dt dx V dt dy dH V dt dt a j q q a j q q ìïï=+--ïïïïïï=+ïïíïï=ïïïïïï==ïïïî最大平飞速度读,最小平飞速度和升限,估算中一般取飞机质量为平均飞机质量(50%),飞机处于基本构型,发动机处于(加力、最大、额定)工作状态。
2、平飞所需推力计算;平飞:飞机作等速直线水平飞行。
在某一高度,平飞所需推力则需要根据飞机作等速水平直线飞行时的质心运动方程。
飞机平飞时,0q =。
则运动方程为: P X Y G ìï=ïíï=ïî平飞中为使飞行速度保持不变必须使发动机推力等于飞行阻力。
平飞中为克服飞行阻力所需的发动机推力就叫做平飞所需推力,记为r P ,即212r xP X C V S r == 式中0x x xi xh C C C C =++D0x C 为零升阻力系数,一般为飞行马赫数的函数;xi C 为诱导阻力系数。
一般在迎角较小时2xi y C A C =,A 为马赫数的函数;当迎角较大时xi C 除随a M 而变化外,还是迎角的复杂函数,在某些飞机说明书中以诱导阻力曲线的形式给出;xh C D 是考虑到不同高度的雷诺数影响系数。
3、最大/最小平飞速度计算 由所需推力公式:212r xP X C V S r ==计算出所需推力,将不同高度上的发动机推力与所需推力绘制到一幅图上,根据所需推力和发动机所提供的推力曲线的相交情况来确定最大最小速度。
第一章第一章 概论思考题1、 航空燃气涡轮发动机有哪些基本类型航空燃气涡轮发动机有哪些基本类型??指出他们的共同点指出他们的共同点、、区别和应用区别和应用。
区别区别::涡轮喷气发动机:在单个流道内靠发动机喷出的高速燃气产生反作用推力的燃气涡轮发动机,涡轮出口燃气在喷管中膨胀,使燃气可用能量转变为高速喷流的动能而产生反作用力。
主要应用:军用、民用、特别是超声速飞机,目前大多被涡扇发动机取代。
涡轮风扇发动机:与涡喷发动机相比多了压气机前风扇、外涵道结构。
空气进入发动机后分别通过内外涵道。
推力由内外涵道两部分的气体动能产生。
主要应用:中、大涵道比发动机多用于亚声速客机和运输机,小涵道比发动机多用于战斗机和超声速飞行器上。
涡轮螺旋桨发动机:靠动力涡轮把燃气能量转化为轴功率,带动螺旋浆工作,主要应用于速度小于800km/h 的中小型运输机、通用客机。
涡轮轴发动机:原理与结构基本与涡轮螺旋桨发动机一样,只是燃气发生器出口燃气所含能量全被自由涡轮吸收,驱动轴转动。
其主要用途是直升机。
螺旋桨风扇发动机:可看做带高速先进螺旋桨的涡轮螺旋桨发动机,又可看做除去外涵道的大涵道比涡扇发动机,兼具耗油率低和飞行速度高的优点。
目前尚未进入实际应用阶段。
共同点共同点::组成部分:进气装置、压气机、燃烧室、涡轮和尾喷管。
工作过程:吸气进气、压缩、燃烧后膨胀和排气。
核心及部分:压气机、燃烧室、涡轮。
2、 涡轮喷气涡轮喷气、、涡轮风扇涡轮风扇、、军用涡扇分别是何年代问世的?涡轮喷气 :二十世纪三十年代末。
涡轮风扇 :二十世纪六十年代初 。
军用涡扇 :二十世纪六十年代中期。
3、 简述涡轮风扇发动机的基本类型简述涡轮风扇发动机的基本类型。
按用途可分为军用涡扇发动机和民用涡扇发动机,按是否有加力燃烧室分为带加力的涡扇发动机和不带加力的涡扇发动机,带加力的用于军用超音速飞行,不带加力的用于民用,按涵道比大小可分为小涵道比、中涵道比、大涵道比涡扇发动机。