当前位置:文档之家› 高中数学典型例题大全第三章导数符合函数的导数

高中数学典型例题大全第三章导数符合函数的导数

高中数学典型例题大全第三章导数符合函数的导数
高中数学典型例题大全第三章导数符合函数的导数

高中数学典型例题大全第三章导数符合函数的导

例 求函数?????=≠=0

,00,1sin )(2x x x x x f 的导数 分析:当0=x 时因为)0(f '存在,因此应当用导数定义求)0(f ',当0≠x 时,)(x f 的关系式是初等函数x

x 1sin 2,能够按各种求导法同求它的导数. 解:当0=x 时,01sin lim 1sin lim )0()(lim )0(0200===-='→?→?→?x

x x x x x f x f f x x x 当0

≠x 时,x x x x x x x x x x x x x x x f 1cos 1sin 2)1cos 1(1sin 2)1(sin 1sin )()1sin ()(22222-=-+='+'='=' 讲明:假如一个函数)(x g 在点0x 连续,那么有)(lim )(0

0x g x g x x →=,但假如我们不能确信)(x f 的导数)(x f '是否在点00=x 连续,不能认为)(lim )0(0

x f f x →='. 指出函数的复合关系

例 指出以下函数的复合关系.

1.m n bx a y )(+=;2.32ln +=x e y ;

3.)32(log 322+-=x x y ;4.)1sin(x x y +=。

分析:由复合函数的定义可知,中间变量的选择应是差不多函数的结构,解决这类咨询题的关键是正确分析函数的复合层次,一样是从最外层开始,由外及里,一层一层地分析,把复合函数分解成假设干个常见的差不多函数,逐步确定复合过程.

解:函数的复合关系分不是

1.n

m bx a u u y +==,;

2.2,3,ln +===x e v v u u y ; 3.32,log ,322+-===x x v v u y u ;

4..1,sin ,3x

x v v u u y +=== 讲明:分不清复合函数的复合关系,忽视最外层和中间变量差不多上差不多函数的结构

形式,而最内层能够是关于自变量x 的差不多函数,也能够是关于自变量的差不多函数通过有限次的四那么运算而得到的函数,导致陷入解题误区,达不到预期的成效.

求函数的导数

例 求以下函数的导数.

1.43)1

2(x x x y +-=;2.2211

x y -=;

3.)32(sin 2π

+=x y ;4.21x x y +=。

分析:选择中间变量是复合函数求导的关键.必须正确分析复合函数是由哪些差不多函数通过如何样的顺序复合而成的,分清其间的复合关系.要善于把一部重量、式子临时当作一个整体,那个临时的整体,确实是中间变量.求导时需要记住中间变量,注意逐层求导,不遗漏,而其中专门要注意中间变量的系数.求导数后,要把中间变量转换成自变量的函数. 解:1.解法一:设43

,12u y x

x x u =+-=,那么 ).116()12(4)116(42233223--+-=--?='?'='x x x x x x x u u y y x u x 解法二:'??? ??+-???? ??+-='???

???????? ??+-='x x x x x x x x x y 121241233343 .116124223??? ??--??? ??+

-=x x x x x 2.解法一:设221

21,x u u y -=='-,那么

()()

()()

.21)21(2 212 42121 4212223223223x x x x

x x x x u u y y x u x ---=---=-????

? ??-='?'='---= 解法二:()'??

????-='???? ??-='-212221211x x y

()

.21)21(2)

21(2)4()21(2121)21(2

1222322322

232x

x x x x x x x x --=-=-?--='-?--=--- 3.解法一:设32,sin ,2π

+===x v v u u y ,那么

.324sin 2 232cos 32sin 2 2

cos 2??

? ??+=???? ?

?+???? ??+=??='?'?'='πππx x x v u v u y y x v u x 解法二:'????????? ??+???? ??+='?????

???? ??+='32sin 32sin 232sin 2πππx x x y .324sin 2 232cos 32sin 2 3232cos 32sin 2 ??? ??+=???? ?

?+???? ?

?+='??? ??+???? ?

?+???? ??+=ππππππx x x x x x 4.解法一:.1422x x x x y +=+=设4221,x x u u y +==,那么

.1211)21(2 )42()(2

1 )42(2

122

2242332142321

x

x x x x x x x x x x x x x x x u u y y x u x ++=++=++=+?+=+?='?'='-- 解法二:)1(1)1(222'+++?'='+='x x x x x x y

.12111 2222

2x x x x x ++=+++=

讲明:关于复合函数的求导,要注意分析咨询题的具体特点,灵活恰当地选择中间变量,不可机械照搬某种固定的模式,否那么会使确定的复合关系不准确,不能有效地进行求导运

算.学生易犯错误是混淆变量或不记得中间变量对自变量求导.

求复合函数的导数

例 求以下函数的导数〔其中)(x f 是可导函数〕

1.??

? ??=x f y 1;2.).1(2+=x f y 分析:关于抽象函数的求导,一方面要从其形式上把握其结构特点,另一方面要充分运用复合关系的求导法那么。先设出中间变量,再依照复合函数的导数运算法那么进行求导运算。一样地,假设中间变量以直截了当可对所设变量求导,不需要再次假设,假如所设中间变量可直截了当求导,就不必再选中间变量。

解:1.解法一:设x

u u f y 1),(==,那么 .111)(22??? ??-=??

? ??-?'='?'='x f x x u f u y y x u x 解法二:.111112??? ??'-='??? ?????? ??'='??

??????? ??='x f x x x f x f y 2.解法一:设1,),(2+===x v v u u f y ,那么

).1(1

21

121)1( 22

1)(222221

+'+=?+?+'=??'='?'?'='-x f x x x x x x f x v u f v u y y x u u x 解法二:[])1()1()1(222'+?+'='+='x x f x f y

[]).

1(1.2)1()1()1()1(21)1(

222122221

22+'+=?+?+'='+?+?+=--x f x x

x x x f x x x f 讲明:明白得概念应准确全面,对抽象函数的概念认识不足,显示了一种思维上的惰性,导致判定复合关系不准确,没有起到假设中间变量的作用。其次应重视))((x f ?'与[]'))((x f ?的区不,前者是对中间变量)(x ?的求导,后者表示对自变量x 的求导.

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学导数经典100题

题401:省峨山彝族自治县第一中学2018届高三2月份月考理科 已知函数()ln f x ax x =+,其中a 为常数,e 为自然对数的底数. (1)若()f x 在区间(0,]e 上的最大值为3-,求a 的值; (2)当1a =-时,判断方程ln 1|()|2x f x x = +是否有实根?若无实根请说明理由,若有实根请给出根的个数. 题402:2018年普通高等学校招生全国统一考试仿真卷-(理六) 已知()ln()f x x m mx =+- (1)求()f x 的单调区间; (2)设1m >,12,x x 为函数()f x 的两个零点,求证:120x x +< 题403:省实验中学2018届高三上学期第六次月考数学(文) 已知函数2()ln (0)f x x a x a =-> (1)讨论函数()f x 在(,)a +∞上的单调性; (2)证明:322ln x x x x -≥且322ln 16200x x x x --+> 题404:西北师大附中2017届高三校第二次诊断考试试题数学(理科) 已知函数21()ln (1)..2 f x a x x a x a R =+-+∈ (1)求函数()f x 的单调区间; (2)若()0f x ≥对定义域的任意x 恒成立,数a 的取值围; (3)证明:对于任意正整数,,m n 不等式 111...ln(1)ln(2)ln()() n m m m n m m n +++>++++恒成立.

题405:一中2017-2018学年度高三年级第五次月考 数学(理)试 已知函数3()ln(1)ln(1)(3)()f x x x k x x k R =++---∈ (1)当3k =时,求曲线()y f x =在原点处的切线方程; (2)若()0f x >对(0,1)x ∈恒成立,求k 的取值围. 题406:第一中学2018届高三上学期期末考试数学(理) 已知函数()ln 1,a f x x a R x =+-∈ (1)若函数()f x 的最小值为0,求a 的值; (2)证明:(ln 1)sin 0x e x x +-> 题407:2017—2018学年度衡中七调理科数学 已知函数1()x f x e a -=+,函数()ln ,g x ax x a R =+∈ (1)求函数()y g x =的单调区间; (2)若不等式()()1f x g x ≥+在区间[1,)+∞恒成立,数a 的取值围 (3)若(1,)x ∈+∞,求证不等式12ln 1x e x x -->-+

高中数学导数经典习题

导数经典习题 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f /(x)的图象是( ) 4.函数)(x f y =在一点的导数值为0是函数)( x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 5.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则 ()f x 与()g x 满足( ) A .()f x =()g x B .()f x -()g x 为常数函数 C .()f x =()0g x = D .()f x +()g x 为常数函数 6.. 若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 7. 已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞Y B .]3,3[- A x D C x B

导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a ' =; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

高中数学导数练习题(有答案)

导数练习题(含答案) 【编著】黄勇权 一、求下函数的导数 (1)f (x )=2x 2+3x+2 (2)f (x )=3sinx+7x 2 (3)f (x )=lnx+2x (4)f (x )=2x +6x (5)f (x )=4cosx -7 (6)f (x )=7e x +9x (7)f (x )=x 3+4x 2+6 (8)f (x )=2sinx -4cosx (9)f (x )=log2x (10)f (x )= x 1 (11)f (x )=lnx+3e x (12)f (x )=2x x (13)f (x )=sinx 2 (14)f (x )=ln (2x 2+6x ) (15)f (x )=x 1x 3x 2++ (16)f (x )=xlnx+9x (17)f (x )= x sinx lnx + (18)f (x )=tanx (19)f (x )=x x e 1e 1-+ (20) f (x )=(x 2-x )3 【答案】 一、求下函数的导数 (1)f /=4x+3 (2)f /=3cos+14x (3)f /=x 1+2 (4)f /=2x ln2+6 (5)f /= -4sinx (6)f /=7e x (7)f /=3x 2+8x (8)f /=2cosx+4sinx

(9)因为f (x )=log2x =2ln lnx =lnx 2 ln 1? 所以:f /=(lnx 2ln 1?)/ =(2ln 1)?(lnx )/ =2ln 1?x 1 =ln2 x 1? (10)因为:f (x )=x 1 f /=2x x 1x 1) ()()('?-?'= x x 1210?- = x x 21- = 2x 2x - (11)f /= x e 3x 1+ (12)f (x )= 2x x =23x - f /=(2 3-)25x -= 3 x 2x 3- (13)f /=(sinx 2)/?(x 2)/=cosx 2?(2x )=2x ?cosx 2 (14)f /=[ln (2x 2+6x )]/?(2x 2+6x)/ = x 6x 212+? (4x+6) = x 3x 3x 22++ (15)f (x )=x 1x 3x 2++ = x+3+x 1 f /=(x+3+x 1)/= 1+0 -2x 1 =22x 1-x (16)f /=(x )/(lnx )+(x )(lnx )/+9 =lnx+x 1x ?+9 =lnx+10

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高中数学导数及微积分练习题

1.求导:(1)函数y= 2cos x x 的导数为-------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x ) 2 ------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3)---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A). 54 (B).52 (C).51 (D).5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1 ()1()()0()1 2f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22 =与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3 x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1 ,则=a _________ 。 8.已知抛物线2y x b x c =++在点(1 2),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值.

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

高中数学导数典型例题精讲

高中数学导数典型例题 精讲 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)0 0lim x x x x →=,00 11lim x x x x →=. 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞ ?=?(3)()lim 0n n n a a b b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1)(ln =';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

导数典型例题包括答案.doc

导数典型例题 数作 考 内容的考 力度逐年增大 .考点涉及到了 数的所有内容,如 数的定 , 数的几何意 、物理意 ,用 数研究函数的 性,求函数的最(极) 等等,考 的 型有客 ( 、填空 ) 、主 (解答 ) 、考 的形式具有 合性和多 性的特 点 .并且, 数与 内容如二次函数、二次方程、三角函数、不等式等的 合考 成 新的 点 . 一、与导数概念有关的问题 【例 1】函数 f(x)=x(x-1) ( x-2)? (x-100) 在 x=0 的 数 .100 2 C ! f ( 0 x) f ( 0) x( x 1)( x 2) (100 ) 解法一 f ' (0)= lim x = lim x x 0 x 0 = lim ( x-1)( x-2)? ( x-100)= ( -1 )( -2)?( -100 ) =100 ! ∴ D. x 0 解法二 f(x)=a 101 x 101 + a 100 x 100 +? + a 1x+a 0, f '(0)= a 1,而 a 1 =( -1)( -2 )?( -100 ) =100 ! . ∴ D. 点 解法一是 用 数的定 直接求解,函数在某点的 数就是函数在 点平均 化 率的极限 .解法二是根据 数的四 运算求 法 使 解 . 【例 2】 已知函数 f (x)= c n 0 c 1 n x 1 c n 2 x 2 1 c n k x k 1 c n n x n , n ∈ N * , 2 k n f ( 2 2 x ) f ( 2x) lim x = . x 0 f (2 2 x) f ( 2 x) f ( 2 2 x) f (2) 解 ∵ lim x =2 lim 2 x + x x 0 f 2 ( x) f ( 2) lim x =2f ' (2)+ f '(2)=3 f ' (2), x 0 又∵ f '(x)= c n 1 c n 2 x c n k x k 1 c n n x n 1 , ∴ f '(2)= 1 ( 2 c n 1 22 c n 2 2k c n k 2 n c n n ) = 1 [(1+2) n -1]= 1 ( 3 n -1). 2 2 2 点 数定 中的“增量 x ”有多种形式,可以 正也可以 ,如 f ( x 0 m x) f ( x 0 ) , 且 其 定形 式 可 以 是 lim f ( x 0 m x) f ( x 0 ) lim m x m x , 也 可 以 是 x 0 x 0 f (x) f (x 0 ) (令 x=x-x 得到),本 是 数的定 与多 式函数求 及二 式定理有关 lim x x x 0 知 的 合 , 接交 、自然,背景新 . 【例 3】 如 的半径以 2 cm/s 的等速度增加, 半径 R=10 cm , 面 增加的速 度是 .

高中数学导数题型分析及解题方法

导数题型分析及解题方法 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为) ,(00y x A ,则 2 00x y =①又函数的导数为x y 2/ =, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值;

(完整版)高二数学选修2-2导数单元测试题(有答案)

导数复习 一.选择题 (1) 函数13)(23+-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (2)曲线3231y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (3) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (4) 函数,93)(2 3-++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83-=的图象上,其切线的倾斜角小于4 π 的点中,坐标为整数的点的 个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x =+在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 .10设函数()1 x a f x x -= -,集合M={|()0}x f x <,P=' {|()0}x f x >,若 M P,则实数a 的取值范围是 ( ) A.(-∞,1) B.(0,1) C.(1,+∞) D. [1,+∞) 11.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 12函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A .1个 B .2个 C .3个D . 4个 13. y =e sin x cos(sin x ),则y ′(0)等于( ) A.0 B.1 C.-1 D.2 14.经过原点且与曲线y =5 9++x x 相切的方程是( ) A.x +y =0或25 x +y =0 B.x -y =0或25 x +y =0 C.x +y =0或 25 x -y =0 D.x -y =0或 25 x -y =0 15.设f (x )可导,且f ′(0)=0,又x x f x )(lim 0 '→=-1,则 f (0)( ) A.可能不是f (x )的极值 B.一定是f (x )的极值 C.一定是f (x )的极小值 D.等于0 16.设函数f n (x )=n 2x 2(1-x )n (n 为正整数),则f n (x )在[0,1]上的最大值为( ) A.0 B.1 C.n n )221(+- D.1)2 ( 4++n n n 17、函数y=(x 2-1)3+1在x=-1处( ) A 、 有极大值 B 、无极值 C 、有极小值 D 、无法确定极值情况 18.f(x)=ax 3+3x 2+2,f ’(-1)=4,则a=( ) A 、3 10 B 、3 13 C 、3 16 D 、3 19 19.过抛物线y=x 2 上的点M (4 1,21)的切线的倾斜角是( ) A 、300 B 、450 C 、600 D 、900 20.函数f(x)=x 3-6bx+3b 在(0,1)内有极小值,则实数b 的取值范围是( ) a b x y ) (x f y ?=O

函数极限与导数高中数学基础知识与典型例题

知识网 数学归纳法、数列的极限与运算1.数学归纳法: (1)由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法. 归纳法包含不完全归纳法和完全归纳法. ①不完全归纳法:根据事物的部分(而不是全部)特殊事例得出一般结论的推理方法. ②完全归纳法: 根据事物的所有特殊事例得出一般结论的推理方法 数学归纳法常与不完全归纳法结合起来使用,用不完全归纳法发现规律, 用数学归纳法证明结论. (2)数学归纳法步骤: ①验证当n取第一个 n时结论 () P n成立; ②由假设当n k =( , k N k n + ∈≥)时,结论() P k成立,证明当1 n k =+时,结论(1) P k+成立; 根据①②对一切自然数 n n ≥时,() P n都成立. 2.数列的极限 (1)数列的极限定义:如果当项数n无限增大时,无穷数列{}n a的项n a无限地趋近于某个常数a(即 n a a -无限地接近于),那么就说数列 {} n a以a为极限,或者说a是数列{} n a的极限.记为 lim n n a a →∞ =或当n→∞时, n a a →. (2)数列极限的运算法则: 如果{}n a、{}n b的极限存在,且lim,lim n n n n a a b b →∞→∞ ==, 那么lim() n n n a b a b →∞ ±=±;lim(); n n n a b a b →∞ ?=?lim(0) n n n a a b b b →∞ =≠ 特别地,如果C是常数,那么lim()lim lim n n n n n C a C a Ca →∞→∞→∞ ?=?=. ⑶几个常用极限: ①lim n C C →∞ =(C 为常数)②lim0 n a n →∞ = k (,a k 均为常数且N* ∈ k) ③ (1) 1 lim0(1) (1或1) 不存在 n n q q q q q ④首项为 1 a,公比为q(1 q<)的无穷等比数列的各项和为lim 1 n n a S q →∞ = - . 注:⑴并不是每一个无穷数列都有极限. ⑵四则运算法则可推广到任意有限个极限的情况,但不能推广到无限个情况. 数 学 归 纳 法 、数 列 的 极 限 与 运 算 例 1. 某个命题与正整数有关,若当) (* N k k n∈ =时该命题成立,那么可推得当 = n1 + k时该命题也成立,现已知当5 = n时该命题不成立,那么可推得() (A)当6 = n时,该命题不成立(B)当6 = n时,该命题成立 (C)当4 = n时,该命题成立(D)当4 = n时,该命题不成立 例2.用数学归纳法证明:“)1 ( 1 1 1 2 1 2≠ - - = + + + + + +a a a a a a n n ”在验证1 = n时,左端 计算所得的项为 ( ) (A)1 (B)a + 1 (C)2 1a a+ + (D)3 2 1a a a+ + + 例3.2 2 21 lim 2 n n n →∞ - + 等于( ) (A)2 (B)-2 (C)- 2 1 (D) 2 1 例4. 等差数列中,若 n n S Lim ∞ → 存在,则这样的数列( ) (A)有且仅有一个(B)有无数多个 (C)有一个或无穷多个(D)不存在 例5.lim(1) n n n n →∞ +-等于( ) (A) 1 3 (B)0 (C) 1 2 (D)不存在 例6.若2 012 (2)n n n x a a x a x a x +=++++, 12 n n A a a a =+++,则2 lim 83 n n n A A →∞ - = + ( ) (A) 3 1 -(B) 11 1(C) 4 1(D) 8 1 - 例7. 在二项式(13)n x +和(25)n x+的展开式中,各项系数之和记为,, n n a b n是正整 数,则 2 lim 34 n n n n n a b a b →∞ - - =. 例8. 已知无穷等比数列{}n a的首项N a∈ 1 ,公比为q,且 n n a a a S N q + + + = ∈ 2 1 , 1, 且3 lim= ∞ → n n S,则= + 2 1 a a_____ . 例9. 已知数列{ n a}前n项和1 1 (1) n n n S ba b =-+- + , 其中b是与n无关的常数,且0 <b<1,若lim n n S →∞ =存在,则lim n n S →∞ =________. 例10.若数列{ n a}的通项21 n a n =-,设数列{ n b}的通项 1 1 n n b a =+,又记 n T是数 列{ n b}的前n项的积. (Ⅰ)求 1 T, 2 T, 3 T的值;(Ⅱ)试比较 n T与 1+ n a的大小,并证明你的结论. 例 1.D 2.C 例 3.A 例 4.A例 5.C将分子局部有理化,原式 =11 lim lim 2 11 11 n n n n n n →∞→∞ == ++ ++ 例6.A例7. 1 2 例8. 3 8 例9.1 例10(见后面)

相关主题
文本预览
相关文档 最新文档