当前位置:文档之家› 温度闭环控制电路设计解析

温度闭环控制电路设计解析

温度闭环控制电路设计解析
温度闭环控制电路设计解析

大连民族大学

温度闭环控制设计电路仿真

专业:通信工程

学生姓名:熊和艳

指导教师:吴宝春老师

完成时间:2020年9月24日

一、设计内容

1.通过运算差分放大电路将温度传感器的阻值变化转化为电压信号的变化放大。

2.利用A/D转换实现魔力信号到数字信号的转换,根据模拟电路部分电路原理计算得出最后电压与温度值的关系,并通过数码管显示温度的值,实现温度的测量。

3.并利用比较器来实现对温度的控制,通过设定温度上下限可使整个系统工作于一个限定的温度范围内。

4.报警设置,当被测温度超出温度范围时,进行相应的报警设。

5.学会系统仿真、测量和测试。

二、方案实现及设计思路

1.当温度小于等于20℃时,系统自动加热。

2.当水温高于或等于50℃时,系统停止加热。

3.并用数码管显示温度情况,水温测量用热敏电阻,加热、停止加热用不同的发光二极管。

4.系统流程图:

电路仿真及调试方案设计电路设计器件设计机构设计

方案设计:按照要求,将电路划分为若干模块,从而将一个大的系统划分为小的单元电路,并分配各单元模块要完成的任务,确定各模块间输入输出关系,最后决定各单元电路的组成方式。

电路设计:电路设计是按功能模块确定的单元电路设计。在该部分中,要详细拟定单元电路组成,性能指标及前后电路关系,明确采用的算法,理清思路。

器件设计:是在单元电路的结构确定后,根据单元电路的功能,确定具体器件型号及计算相应的系数,计算量较大。主要分为①阻容原件的设计;②分立元件的选择;③模拟集成电路的相关计算。

电路仿真测试:使用Proteus 软件仿真,争取实现各单元的具体功能。

三、设计方法及步骤 1.系统框图

⑴信号调理模块

由于被测是温度,由设计要求,温度检测用热敏电阻。而热敏电阻将温度转化成电阻值的变化,故在系统中由信号调理电路作用是将温度的变化这样一个非电量转化成电信号,然后加以放大。以便后一温度显示 检测对象

信号调理 水温检测 加热、停止、状态显示

加热、停止检测

单元检测。信号调理的任务是将非电量转化成电话并适当放大,故该模块也成为放大电路。

⑵水温检测模块

水温检测模块的任务是将经转换后得到的温度间接测量值与设计要求所设定的上下限温度进行比较,从而确定被测对象的加热与否

⑶加热、停止加热模块

加热、停止加热模块的任务是对水温用电热丝进行加热或停止加热。在这里使用热敏电阻加热,也是放大电路。

⑷温度显示模块

温度显示模块的任务是对当前温度反应在显示器上,起作用是将温度的间接值得模拟量转化为数字量。

2.电路设计与器件设计

⑴信号调理模块

①电路设计

信号调理模块的任务是非电量转化为电量,然后加以放大,将非电量转化为电量的传感器用热敏电阻,环境温度发生变化时,热敏电阻的组织发生变化,利用这一特性将非电量转化为电量,因此,选用由运算状态组成的放大电路最为简便,且采用同比例运算。

②器件设计

a.运放的选择

b.热敏电阻的选择

c.电路的外围电路所用元件的参数运算

d.电路的设计以选定的热敏电阻系数入手,然后计算出所需要的电压增益。

经查:在T=25℃时,电阻为10千欧。

由设计要求,当环境下降为20℃时,系统要加热,当上升为59℃时,系统停止加热。20℃时,对应阻值为12.561千欧;50℃时,对应阻值为4.111千欧,分压电路为+5V,R1为20K,这样V20℃=1.89v;V50℃=0.826v。然后再计算电压所需增益为2.

⑵水温检测模块

水温检测模块的任务是将温度为20°C 和50°C 相对电压检测值给测出来,并将这两个电压值提供给加热停止模块及加热,停止状态显示模块,因此,这部分由电压比较器组成,利用运放的非线性特征来完成,由于温度不同时对应的2 个电压值,故利用2 个电压比较器及信号锁存器来完成 a. 对应温度为20°C 时的检测电路由于采用负温度系数电阻,温度越低,电阻值越大,股采用反向电压比较器,有信号调理电路输出的电压作用与运放的同向输入端R4=10k,阙值电压为3.2k 考虑到允许误差,用电位器Rp 代替R5,取Rp=10K 当环境温度大于20°C 时,v=0(实际值为0.3v)当温度小于或等于20°C 时,v=+5v(实际值为3.5v)b.对应于T=50°C 时的检测电路由于温度越高,R 的阻值越小,信号调理输出的电压越低, 这样,采用反向电压比较器,即vo1 作用于 A 的反向输入端当环境温度没有50°C 时,vO3=0v;当环境温度大于或等于50°C 时,v=5v c. 阙值电压V 的确定:取R6=10K, Vt=Vp,带入数据1.65=10/10+R7 *5, 得到R7=20.3K,考虑到电阻的允许误差,故用阻值为50K 的电位器Rp 代替R7。综上所述,对于A2:温度大于20 小于50°C 时,V o2=0;温度小于20°C 时,vo2=5v。对于A3:温度大于20 小于50°C 时,V o2=0;温度大于50°C 时,vo3=5v。我们运放A2,A3 不同的输出状态控制加热停止电路的工作,由设计要求,当温度小于20°C 时加热,当T 大于等于50°C 时停止加热,由以上分析,将A2,A3 的输出分别接 D 触发器的置数端及清零端,可达到要求。当温度到达50°C 时,对A2,vo2=0,

对于A3,vo3=5V,74ls04 输出低电平,d 触发器输出端Q=0,停止加热,当温度从50 度减小到20°C 时,对于A2,vo2=0,vo3=0,D 触发器输出状态保持不变,停止加热。

当温度小于20°C 时,对于A2,VP>VN , Ve2=5V , 74LS04-A 输出由高电平变为低电平,D 触发器74LS74 至数端Sd=0,导致其输出端Q=“1” (实际电压值3.6~4.5),开始加热。对于A3,VPVP , V03=0,74LS04-B 输出为高电平D 触发器置数端Sd=1,其输出状态仍然不变。加热/停止加热控制模块(温度控制)加热/停止解热控制模块电路设计按如下思路进行:通过振荡器,产生持续的占空比一定的脉冲信号来控制三极管的导通。振荡器采用NE555 构成占空比可调的多谐振荡器,电路如图所示。其频率f0=660KHZ,多谐振荡器输出端连接到一开关电路,以控制三极管T 的导通和截止。其工作过程如下,当T<=20°C,Q=“1”,振荡器工作。三极管处于间歇状态,这时开关电路有间歇电流流过。20 欧姆/3W 电阻发热,安装在它旁边的热敏电阻感受到其温度变化,并将该变化转化为相应直,以使后续电路做出判断。在一个震荡周期,三极管导通时间是通过Rp 调节其占空比来实现的。当20°C

通,则热敏电阻温度持续上升。当T>=50°C 时,定时器NE555(4 引脚)为低电平,三极管T 截止,则20 欧姆/3W 电阻无电流流过,热敏电阻温度逐渐下降。(4)控制状态显示模块控制状态显示模块实际上是一个通过一个开关电路使加热/停止加热的两种状态通过发光二极管显示出来,74LS74 为温度检测电路中的 D 触发器74LS74 当T<=20°C 0,74LS74 ,Q=“1”,则T2 导通,T3 截止,绿灯亮,表示正在加热;当20°C =50°C 时,74LS74 输出Q=0,则T2 截止。T3 导通,红色发光二极管亮,表示加热停止。(5)温度显示模块温度显示模块的任务是将环境温度(20°C ~50°C)在数码管上显示出来其方法时将热敏电阻温度的变化值转化为相应的电压值,然后通过三位半LED 专用A/D 转化显示芯卡。

⑶仿真图的显示如下图:

①小于20度时的仿真图如下

②温度大于50度时的仿真图如下

51系列单片机闭环温度控制 实验报告

成绩: 重庆邮电大学 自动化学院综合实验报告 题目:51系列单片机闭环温度控制 学生姓名:蒋运和 班级:0841004 学号:2010213316 同组人员:李海涛陈超 指导教师:郭鹏 完成时间:2013年12月

一、实验名称: 51系列单片机闭环温度控制实验 ——基于Protuse仿真实验平台实现 基本情况: 1. 学生姓名: 2. 学号: 3. 班级: 4. 同组其他成员: 二、实验内容(实验原理介绍) 1、系统基本原理 计算机控制技术实训,即温度闭环控制,根据实际要求,即加温速度、超调量、调节时间级误差参数,选择PID控制参数级算法,实现对温度的自动控制。 闭环温度控制系统原理如图: 2、PID算法的数字实现 本次试验通过8031通过OVEN 是模拟加热的装置,加一定的电压便开始不停的升温,直到电压要消失则开始降温。仿真时,U形加热器为红色时表示正在加热,发红时将直流电压放过来接,就会制冷,变绿。T端输出的是电压,温度越高,电压就越高。

8031对温度的控制是通过可控硅调控实现的。可控硅通过时间可以通过可控硅控制板上控制脉冲控制。该触发脉冲想8031用软件在P1.3引脚上产生,受过零同步脉冲后经光偶管和驱动器输送到可控硅的控制级上。偏差控制原理是要求对所需温度求出偏差值,然后对偏差值处理而获得控制信号去调节加热装置的温度。 PID控制方程式: 式中e是指测量值与给定值之间的偏差 TD 微分时间 T 积分时间 KP 调节器的放大系数 将上式离散化得到数字PID位置式算法,式中在位置算法的基础之上得到数字PID 增量式算法: 3、硬件电路设计 在温度控制中,经常采用是硬件电路主要有两大部分组成:模拟部分和数字部分,对这两部分调节仪表进行调节,但都存在着许多缺点,用单片机进行温度控制使构成的系统灵活,可靠性高,并可用软件对传感器信号进行抗干拢滤波和非线性补偿处理,可大大提高控制质量和自动化水平;总的来说本系统由四大模块组成,它们是输入模块、单片机系统模块、计算机显示与控制模块和输出控制模块。输入模块主要完成对温度信号的采集和转换工作,由温度传感器及其与单片机的接口部分组成。利用模拟加热的

温度控制器的设计与制作共13页

温度控制器的设计与制作 一、功能要求 设计并制作一个温度控制器,用于自动接通或断开室内的电加热设备,从而使室内温度达到设定温度要求,并能实时显示室内温度。当室内温度大于等于设定温度时,控制器断 ?时,控制器接通电加热设备。 开电加热设备;当室内温度比设定温度小2C 控温范围:0~51C? 控温精度:≤1C? 二、硬件系统设计 1.硬件系统由七部分组成,即单片机及看门狗电路、温度检测电路、控制输出电路、键盘电路、显示电路、设置温度储存电路及电源电路。 (1)单片机及看门狗电路 根据设计所需的单片机的内部资源(程序存储器的容量、数据存储器的容量及I/O口数量),选择AT89C51-24PC较合适。为了防止程序跑飞,导致温度失控,进而引起可怕的后果,本设计加入了硬件看门狗电路IMP813L,如果它的WDI脚不处于浮空状态,在1.6秒内WDI不被触发(即没有检测到上什沿或下降沿),就说明程序已经跑飞,看门狗输出端WDO将输出低电平到手动复位端,使复位输出端RST发出复位信号,使单片机可靠复位,即程序重新开始执行。(注:如果选用AT89S51,由于其内部已具有看门狗电路,就不需外加IMP813L) (2)温度检测电路 温度传感器采用AD590,它实际上是一个与绝对温度成正比的电流源,它的工作电压为4~30V,感测的温度范围为-550C~+1500C,具有良好的线性输出,其输出电流与温度成正比,即1μA/K。因此在00C时的输出电流为273.2μA,在1000C时输出电流为373.2μA。温度传感器将温度的变化转变为电流信号,通过电阻后转变电压信号,经过运算放大器JRC4558运算处理,处理后得到的模拟电压信号传输给A/D转换部分。A/D转换器选用ADC0804,它是用CMOS集成工艺制成的逐次逼近型模数转换芯片,分辨率8位,转换时间100μs,基准电压0~5V,输入模拟电压0~5V。 (3)控制输出电路 控制信号由单片机的P1.4引脚输出,经过光耦TLP521-1隔离后,经三极管C8550直接驱动继电器WJ108-1C-05VDC,如果所接的电加热设备的功率≤2KW,则可利用继电器的常开触点直接控制加热设备,如果加热设备的功率>2KW,可以继电器控制接触器,由接触器直接控制加热设备。 (4)键盘电路 键盘共有四个按键,分别是S1(设置)、S2(+)、S3(-)、S4(储存)。通过键盘来设置室内应达到的温度,键盘采用中断方式控制。 (5)显示电路 显示电路由两位E10501_AR数码管组成,由两片74LS164驱动,实现静态显示,74LS164所需的串行数据和时钟由单片机的P3.0和P3.1提供。对于学过“串行口”知识的班级,实习时,可以采用串行口工作于方式0,即同步移位寄存器的输出方式,通过串行口输出显示数据(实时温度值或设置温度值);对于没学过“串行口”知识的班级,实习时,可以采用模拟串行口的输出方式,实现显示数据的串行输出。 (6)设置温度存储电路 为了防止设定温度在电源断电后丢失,此设计加入了储存电路,储存器选用具有I2C总线功能的AT24C01或FM24C01均可。每次通过键盘设置的室内设定温度都通过储存器储存起来,即使是电源断电,储存器存储的设定温度也不丢失,在电源来电后,单片机自动将设

基于PLC的温度控制闭环系统

1 绪论 1.1 课题背景 随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。其中,温度是一个非常重要的过程变量。例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制[1]。这方面的应用大多是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,然而PLC在这方面却是公认的最佳选择。 随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能,因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的,通过采用PLC来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。因此,PLC对温度的控制问题是一个工业生产中经常会遇到的控制问题。这也正是本课题所重点研究的内容。 1.2 研究的主要内容 本课题的研究内容主要有: 1)温度的检测; 2)采用PLC进行恒温控制; 3)PID算法在PLC中如何实现; 4)PID参数对系统控制性能的影响; 5)温控系统人机界面的实现。

2 基于PLC的炉温控制系统的硬件设计 2.1系统控制要求 本PLC温度控制系统的具体指标要求是:对加热器加热温度调整范围为0℃—150℃,温度控制精度小于3℃,系统的超调量须小于15%。软件设计须能进行人机对话,考虑到本系统控制对象为电炉,是一个大延迟环节,且温度调节范围较宽,所以本系统对过渡过程时间不予要求。 2.2系统设计思路 根据系统具体指标要求,可以对每一个具体部分进行分析设计。整个控制系统分为硬件电路设计和软件程序设计两部分。 系统硬件框图结构如图所示: 图2.1系统硬件框图 被控对象为炉内温度,温度传感器检测炉内的温度信号,经温度变送器将温度值转换成0~10V的电压信号送入PLC模块。PLC把这个测量信号与设定值比较得到偏差,经PID运算后,发出控制信号,经调压装置输出交流电压用来控制电加热器的端电压,从而实现炉温的连续控制。 2.3系统的硬件配置 2.3.1 S7-200PLC选型 S7-200 系列 PLC 是由德国西门子公司生产的一种超小型系列可编程控制器,它能够满足多种自动化控制的需求,其设计紧凑,价格低廉,并且具有良好的可扩展性以及强大的指令功能,可代替继电器在简单的控制场合,也可以用于复杂的自动化控制系统。由于它具有极强的通信功能,在大型网络控制系统中也能充分发挥作用[2] S7-200系列可以根据对象的不同, 可以选用不同的型号和不同数量的模块。并可以将这些模块安装在同一机架上。 SiemensS7-200 主要功能模块介绍: (1)CPU 模块S7-200的CPU 模块包括一个中央处理单元,电源以及数字I/O 点,这些都被集成在一个紧凑,独立的设备中。CPU 负责执行程序,输入部分从现场设备中采集信号,输出部分则输出控制信号,驱动外部负载.从 CPU 模块的功能来看, CPU

温度控制器的设计

目录 第一章课程设计要求及电路说明 (3) 1.1课程设计要求与技术指标 (3) 1.2课程设计电路说明 (4) 第二章课程设计及结果分析 (6) 2.1课程设计思想 (6) 2.2课程设计问题及解决办法 (6) 2.3调试结果分析 (7) 第三章课程设计方案特点及体会 (8) 3.1 课程设计方案特点 (8) 3.2 课程设计心得体会 (9) 参考文献 (9) 附录 (9)

第一章课程设计要求及电路说明 1.1课程设计要求与技术指标 温度控制器的设计 设计要求与技术指标: 1、设计要求 (1)设计一个温度控制器电路; (2)根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (3)撰写设计报告。 2、技术指标 温度测量范围0—99℃,精度误差为0.1℃;LED数码管直读显示;温度报警指示灯。

1.2课程设计电路说明 1.2.1系统单元电路组成 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位LED数码管以串口传送数据实现温度显示。 1.2.2设计电路说明 主控制器:CPU是整个控制部分的核心,由STC89C52芯片连同附加电路构成的单片机最小系统作为数据处理及控制模块. 显示电路:显示电路采用4个共阳LED数码管,用于显示温度计的数值。报警电路:报警电路由蜂鸣器和三极管组成,当测量温度超过设计的温度时,该电路就会发出报警。 温度传感器:主要由DS18B20芯片组成,用于温度的采集。 时钟振荡:时钟振荡电路由晶振和电容组成,为STC89C52芯片提供稳定的时钟频率。

第二章课程设计及结果分析 2.1课程设计 2.1.1设计方案论证与比较 显示电路方案 方案一:采用数码管动态显示 使用一个七段LED数码管,采用动态显示的方法来显示各项指标,此方法价格成本低,而且自己也比较熟悉,实验室也常备有此元件。 方案二:采用LCD液晶显示 采用1602 LCD液晶显示,此方案显示内容相对丰富,且布线较为简单。 综合上述原因,采用方案一,使用数码管作为显示电路。 测温电路方案 方案一:采用模拟温度传感器测温 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。 方案二:采用数字温度传感器 经过查询相关的资料,发现在单片机电路设计中,大多数都是使用传感器,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。 2.1.2设计总体方案 根据上述方案比较,结合题目要可以将系统分为主控模块,显示模块,温度采集模块和报警模块,其框图如下:

5.2 闭环电子控制系统的设计与应用(1)

如图所示是JN6201集成电路鸡蛋孵化温度控制器电路图,根据该原理图完成1~3题。 1.该电路图作为控制系统的控制(处理)部分是IC JN6201,当JN6201集成输出9脚长时间处于高电平,三极管V2处于截止状态,继电器释放,电热丝通电加热。 2.安装好调试时,先将温度传感器Rt1放入37℃水中,调整电位器Rp1,使继电器触点J-2吸合,再将温度传感器Rt2放入39℃水中,调整Rp2,使继电器触点J-2释放。 3.调试时发现,不管电位器Rp1和Rp2怎么调,继电器J 始终吸合,检查电路元器件安装和接线都正确,用万用表测三极管V2集电极电位,在不同的调试状态分别为2.8V 和0V ,可知电路发生故障的原因是( B ) A.二极管V6内部断路 B.三极管V3内部击穿(短路) C.电阻R4与三极管V3基极虚焊 D.继电器线圈内部短路 如图所示是运算放大器鸡蛋孵化温度控制器电路图,根据该原理完成4~6题。 4.该电路作为控制系统的输出部分是继电器J 、电热丝等,当电路中集成运放2脚的电位低于3脚的电位,三极管V3处于饱和状态,继电器J 吸合,电热丝通电加热。 上限 V2饱和导通时候Uce 电压降0.2V ,所以留下来给集电极2.8V ,截止时候0V

5.安装好后调试时,将温度传感器Rt 放入39℃水中,调R4,使电压U2=U3,集成运放输出端6脚的电压为0V ,电路实现39℃单点温度控制。 6.调试时发现,将温度传感器Rt 放入高于39℃水中,继电器吸合;将温度传感器Rt 放入低于39℃水中,继电器释放,出现该故障现象的原因可能是( A ) A.集成运放2脚与3脚接反 B.二极管V4接反 C.电阻R2断路 D.三极管V3损坏 如图所示是晶体管组成的水箱闭环电子控制系统电路,根据该原理图完成7~9题。 7.该电路作为控制系统被控对象的是水箱内的水,水箱的水位从a 点降到b 点的过程中,三极管V1处于饱和状态,三极管V2处于截止状态,继电器触点J-1处于吸合状态。 8.安装调试时,将三个水位探头按图中的高低放入空玻璃杯中,如果电路正常,电路通电后,继电器J 吸合;向玻璃杯中加水,到达a 点时,继电器J 释放;接着将玻璃杯中的水排出,水位降到b 点以上时,继电器J 释放;水位降到b 点以下时,继电器J 吸合。 9.调试时发现,玻璃杯中的水位在b 点以下时,继电器J 就吸合;水位加到b 点,继电器J 就释放。出现该故障现象的原因是( D ) A.继电器J 没用 B.三极管V1损坏 C.二极管V3接反 D.电路没接J-1触点,b 点直接接到了电阻R1 如图所示是555集成电路组成的水箱水位闭环电子控制系统电路图, (第4~6题) (第7~9题) R4 10k ?R5 4.7k R3 4.7k

实验八单闭环温度恒值控制系统

实验八单闭环温度恒值控制系统 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3.学习温度PID控制参数的配置。 二、实验设备 1.THKKL-6型控制理论及计算机控制技术实验箱; 2.PC机1台(含软件“THKKL-6”、“keil uVision3”及“Easy 51Pro”); 3.51单片机下载线; 4.USB数据线。 三、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流24V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 本实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

单闭环温度恒值控制

单闭环温度恒值控制 姓名: 学号: 班级: 实验指导老师: 一、实验目的 1.理解温度控制的基本原理。 2.了解温度传感器的使用方法。 3.学习温度PID控制参数的配置。 二、实验设备 1.THBCC-1型信号与系统控制理论及计算机控制技术实验平台。 2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根)。 3.PC机1台(含软件“THBCC-1”)。 三、实验内容 1.设计并实现具有一个积分环节的二阶系统的最少拍控制。 2.设计并实现具有一个积分环节的二阶系统的最少拍无纹波控制,并通过混合仿真实验,观察该闭环控制系统输出采样点间纹波的消除。 四、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流15V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的

热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为 Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 该实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。 3.温度控制系统与实验十三的直流电机转速控制相类似,虽然控制对象不同,被控参数有差别,但对于计算机闭环控制系统的结构,却是大同小异,都有相同的工作原理,共同的结构及特点。 五、温度测量及放大电路图和温度控制系统的框图

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计 目录 1.项目概述 (1) 1.1.该设计的目的及意义 (1) 1.2.该设计的技术指标 (2) 2.系统设计 (3) 2.1.设计思想 (3) 2.2.方案可行性分析 (4) 2.3.总体方案 (5) 3.硬件设计 (6) 3.1.硬件电路的工作原理 (6) 3.2.参数计算 (7) 4.软件设计 (8) 4.1.软件设计思想 (8) 4.2.程序流程图 (9) 4.3.程序清单 (10) 5.系统仿真与调试 (11) 5.1.实际调试或仿真数据分析 (11) 5.2.分析结果 (13) 6.结论 (12) 7.参考文献 (13) 8.附录 (14)

1.项目概述: 1.1.该设计的目的及意义 温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。 而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。 通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。 1.2.该设计的技术指标 设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。 (1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现) (2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID) (3)实时显示温度和设置温度,显示精度为1℃(LED)。 (4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。 (5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。 (6)功率电路220 VAC供电,强弱电气电隔离 2.系统设计 2.1.设计思想 以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

模电课设—温度控制系统设计

目录 1.原理电路的设计 (11) 1.1总体方案设计 (11) 1.1.1简单原理叙述 (11) 1.1.2设计方案选择 (11) 1.2单元电路的设计 (33) 1.2.1温度信号的采集与转化单元——温度传感器 (33) 1.2.2电压信号的处理单元——运算放大器 (44) 1.2.3电压表征温度单元 (55) 1.2.4电压控制单元——迟滞比较器 (66) 1.2.5驱动单元——继电器 (88) 1.2.6 制冷部分——Tec半导体制冷片 (99) 1.3完整电路图 (1010) 2.仿真结果分析 (1111) 3 实物展示 (1313) 3.1 实物焊接效果图 (1313) 3.2 实物性能测试数据 (1414) 3.2.1制冷测试 (1414) 3.2.2制热测试 (1818) 3.3.3性能测试数据分析 (2020) 4总结、收获与体会 (2121) 附录一元件清单 (2222) 附录二参考文献. (2323)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339 N为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741,NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

基于单片机得温度控制器毕业设计说明书

引言 (1) 第一章系统方案论证 (2) 1.1 方案设计 (2) 1.2方案的对比论证 (2) 第二章系统硬件电路的设计 (4) 2.1电路总体原理框图 (4) 2.2单片机的选择 (5) 2.3单片机得管脚说明 (6) 2.4单片机的时钟电路 (8) 2.5复位电路及其复位状态 (9) 2.5.1 复位电路 (9) 2.5.2 复位状态 (10) 2.6.温度采集电路的设计 (11) 2.6.1 DS18B20特点介绍 (12) 2.7键盘接口电路的设计 (13) 2.8显示接口和报警电路的设计 (15) 2.9通信接口电路设计 (18) 2.9.1 max232原理 (18) 2.9.2 MAX232与单片机的接口电路 (18) 第三章软件系统的设计 (18) 3.1 主程序模块 (19) 3.2温度报警模块 (19) 3.3参考程序 (36) 3.4设计方案分析 (38) 3.4.1优点 (38) 3.4.2缺点 (38) 第四章硬、软件抗干扰技术 (39) 4.1 硬件抗干扰技术 (39) 4.1.1接地技术 (39) 4.1.2屏蔽系统 (40) 4.1.3隔离技术 (41) 4.1.4滤波技术 (41) 4.1.5 抑制反电势干扰技术 (41) 4.2 软件抗干扰技术 (42) 4.2.1 消除数据采集的干扰 (42) 4.2.2保持正常控制状态 (42) 第五章结论与前景分析 (46) 参考文献 (47) 致谢 (48) 附录 (49)

随着生产生活的需要,自动化控制越来越起到至关重要的作用。温度控制是工业生产过程中很普遍的过程控制,人们需要对各种加热炉,热处理炉,反应炉等锅炉中温度进行测量与控制。特别是冶金,化工、建材、食品、机械、石油等工业中,具有举足轻重的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的,工业生产中温度控制具有单向性、时滞性、大惯性和时变性的特征,同时要实现温度控制的快速性和准确性,对于对于提高产品质量具有很重要的意义。 对于不同的场所、不同的工艺、不同的产品所需要的温度范围不同、精度也不同,则采用的温度测量元件以及温度测量方法和控制方法都有所不同;产品工艺不同、温度控制的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同。因此对温度的控制方法要多种多样。随着电子技术和微型计算的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术也随之而产生。现有的温度传感器大多为(热电偶)体积大,应用复杂,多为模拟信号,已经不在适合现代工业的灵活性要求了。 本设计是基于单片机的温度控制系统,为闭环系统,工作的可靠性高、精度高。本设计主要围绕单片机进行设计,从实际应用出发,选取了体积小、精度相对较高的数字式温度传感器件DS18B20作为温度采集装置,以单片机89S51作为主控芯片,1602作为显示输出,实现了对温度的实时测量,当温度超出设定范围系统将会自动调节加热或者降温系统,从而实现了实时恒温控制。

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

单闭环温度控制系统

单闭环温度控制系统实验 姓名: 徐天富 学号: 0707030115 班级:2007级自动化1班 实验指导老师:___万敏___ 成绩:____________________ 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3. 学习温度PID 控制参数的配置。 二、实验数据或曲线 1.实验数据表 实际温度T 30℃ 35℃ 40℃ 45℃ 50℃ 电压pv -1.018066 -1.187744 -1.346436 -1.514893 -1.647949 偏差ei 0.661934 0.492256 0.333564 0.165107 0.032051 控制量op 3.500 3.500 3.500 3.500 3.500 2.参考程序 dim pv,sv,ei,ex,ey,k,ti,td,q0,q1,q2,op,x,Ts,ux,tv sub Initialize(arg) WriteData 0 ,1 end sub sub TakeOneStep (arg) pv = ReadData(1) '当前测量值 sv=50 '设置温度 k=20 ti=5 td=0 Ts=0.1 '采样时间100ms ei=((sv-35)/30+1.18) -abs(pv) '当前偏差 q0=k*(ei-ex) '比例项 if Ti=0 then q1=0 else q1=K*Ts*ei/Ti '当前积分项 end if q2=k*td*(ei-2*ex+ey) /Ts '微分项 ey=ex ex=ei op=op+q0+q1+q2 if op>=3.5 then op=3.5 end if if op<=1 then op=1 end if tv=35+30*(abs(pv)-1.18) TTTRACE "温度=%f",tv '输出温度 TTRACE "op=%f",op TTRACE "ei=%f",ei TTRACE "pv =%f",pv WriteData op ,1 end sub sub Finalize (arg) WriteData 0 ,1 end sub

实验十五 单闭环温度恒值控制系统

实验十五单闭环温度恒值控制系统 一、实验目的 1.理解温度闭环控制的基本原理; 2.了解温度传感器的使用方法; 3.学习温度PID控制参数的配置。 二、实验设备 1.THBCC-1型信号与系统?控制理论及计算机控制技术实验平台 2.THBXD数据采集卡一块(含37芯通信线、16芯排线和USB电缆线各1根) 3.PC机1台(含软件“THBCC-1”) 三、实验原理 1.温度驱动部分 该实验中温度的驱动部分采用了直流15V的驱动电源,控制电路和驱动电路的原理与直流电机相同,直流15V经过PWM调制后加到加热器的两端。 2.温度测量端(温度反馈端) 温度测量端(反馈端)一般为热电式传感器,热电式传感器式利用传感元件的电磁参数随温度的变化的特性来达到测量的目的。例如将温度转化成为电阻、磁导或电势等的变化,通过适当的测量电路,就可达到这些电参数的变化来表达温度的变化。 在各种热电式传感器中,已把温度量转化为电势和电阻的方法最为普遍。其中将温度转换成为电阻的热电式传感器叫热电偶;将温度转换成为电阻值大小的热电式传感器叫做热电阻,如铜电阻、热敏电阻、Pt 电阻等。 铜电阻的主要材料是铜,主要用于精度不高、测量温度范围(-50℃~150℃)不大的的地方。而铂电阻的材料主要时铂,铂电阻物理、化学性能在高温和氧化性介质中很稳定,它能用作工业测温元件和作为温度标准。铂电阻与温度的关系在0℃~630.74℃以内为Rt=R0(1+at+bt2) 式中Rt――温度为t ℃时的温度;R0――温度为0℃时的电阻; t――任意温度;a、b――为温度系数。 该实验系统中使用了Pt100作为温度传感器。 在实际的温度测量中,常用电桥作为热电阻的测量电阻。在如图15-1中采用铂电阻作为温度传感器。当温度升高时,电桥处于不平衡,在a,b两端产生与温度相对应的电位差;该电桥为直流电桥。 4.温度控制系统与实验十三的直流电机转速控制相类似,虽然控制对象不同,被控参数有差别,但对于计算机闭环控制系统的结构,却是大同小异,都有相同的工作原理,共同的结构及特点。 四、实验步骤 1、实验接线 1.1 用导线将温度控制单元24V的“+”输入端接到直流稳压电源24V的“+”端; 1.2 用导线将温度控制单元0~5V的“+”输入端接到数据采集卡的“DA1”的输出端,同时将温度变送器的“+”输出端接到数据采集卡的“AD1”处; 1.3打开实验平台的电源总开关。 2、脚本程序的参数整定及运行

温度控制器的设计汇总

2013 ~ 2014学年第2学期 《数字式温度控制器的设计》 课程设计报告 题目数字式温度控制器的设计 ____________ 专业: 11 电气工程及其自动化_______________________ 班级: ____________ 2 _________________________ 姓名: ____________________________________________ 指导教师: _________________________________________ 电气工程学院 2014年6月2日

数字式温度控制仪 摘要 温度是工业生产和科学实验中的重要参数之一。在化工、冶金、医药、航空等领域里,对温度的控制效果直接影响到许多产品的质量及使用寿命,因此,温度控制成为各个领域中的一项关键技术。温度控制的关键在于测温和控温两方面,温度测量是温度控制的基础。在温度测量方面,技术己经比较成熟,由于控制对象越来越复杂,而在温度控制方面,还存在着许多问题,人们还在寻找着更好的控制方法以提高控制性能,满足不同的控制要求。 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的恒温锅炉烧水控制系统。 本系统以AT89C51单片机为控制核心,采用闭环控制装置,可自动控制要求环境下的温度,使被控对象温度保持在恒定的范围内。本系统温度信号由数字温度传感器DS18B2C采集,送AT89C51单片机进行处理,并通过数码管显示。当温度低于或者高于设定值后,单片机将发出控制信号控制温度控制系统的通断电状态,以实现将温度稳定在目标温度至附近的要求。 关键词:单片机;闭环控制QS18B20;温度;数码管

温度控制系统设计方案

温度控制系统设计方案 1引言 温度是工业过程控制中主要的被控参数之一,在冶金、化工、建材、食品、石油等工业中,工艺过程所要求的温度的控制效果直接影响着产品的质量。对于不同场所、不同工艺、所需温度高低范围不同、精度不同,则采用的测温元件、测温方法以及对温度的控制方法也将不同,随着电子技术和微型计算机的迅速发展,微机测量和控制技术得到了迅速的发展和广泛的应用。越来越显示出其优越性。 随着集成电路技术的发展,单片微型计算机的功能不断增强,许多高性能的新型机种不断涌现出来。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中广泛应用的器件,在温度控制系统中,单片机更是起到了不可替代的核心作用。在工业生产中,如用于热处理的加热炉、用于融化金属的坩锅电阻炉等,都用到了电阻加热的原理。 鉴于单片机技术应用的广泛性和优越性,温度控制的重要性,因而设计一种较为理想的温度控制系统是非常有价值的。本文就是根据这一思想来展开的。 1.1 系统设计的目的和任务 1.1.1 系统设计的目的 通过本次毕业设计,主要想达到以下目的: 1. 增进对单片机的感性认识,加深对单片机理论方面的理解。 2. 掌握单片机的内部功能模块的应用,如定时器/计数器、中断、片内外存贮器、I/O口等。 3. 了解和掌握单片机应用系统的软硬件设计过程、方法及实现,为以后工作中设计和实现单片机应用系统打下基础。 4. 熟悉闭环控制系统的组成原理及单片机PID算法的实现方法。 1.1.2 系统设计的任务 1.查阅资料,弄清楚所要解决的问题的思路,确定设计方案。 2.系统硬件电路设计。 3.系统相关软件设计。 4.仿真实现温度参数设定、转换、显示等功能。 5.依据对象模型设计控制器参数, 6.系统调试与分析;并依据调试结果予以完善。 1.2毕业设计论文安排 1.论证系统设计方案,设计系统原理图。

温度闭环控制电路设计

大连民族大学 温度闭环控制设计电路仿真 专业:通信工程 学生姓名:熊和艳 指导教师:吴宝春老师 完成时间:2015年4月26日

一、设计内容 1.通过运算差分放大电路将温度传感器的阻值变化转化为电压信号的变化放大。 2.利用A/D转换实现魔力信号到数字信号的转换,根据模拟电路部分电路原理计算得出最后电压与温度值的关系,并通过数码管显示温度的值,实现温度的测量。 3.并利用比较器来实现对温度的控制,通过设定温度上下限可使整个系统工作于一个限定的温度范围内。 4.报警设置,当被测温度超出温度范围时,进行相应的报警设。 5.学会系统仿真、测量和测试。 二、方案实现及设计思路 1.当温度小于等于20℃时,系统自动加热。 2.当水温高于或等于50℃时,系统停止加热。 3.并用数码管显示温度情况,水温测量用热敏电阻,加热、停止加热用不同的发光二极管。 4.系统流程图: 电路仿真及调试方案设计电路设计器件设计机构设计

方案设计:按照要求,将电路划分为若干模块,从而将一个大的系统划分为小的单元电路,并分配各单元模块要完成的任务,确定各模块间输入输出关系,最后决定各单元电路的组成方式。 电路设计:电路设计是按功能模块确定的单元电路设计。在该部分中,要详细拟定单元电路组成,性能指标及前后电路关系,明确采用的算法,理清思路。 器件设计:是在单元电路的结构确定后,根据单元电路的功能,确定具体器件型号及计算相应的系数,计算量较大。主要分为①阻容原件的设计;②分立元件的选择;③模拟集成电路的相关计算。 电路仿真测试:使用Proteus 软件仿真,争取实现各单元的具体功能。 三、设计方法及步骤 1.系统框图 ⑴信号调理模块 由于被测是温度,由设计要求,温度检测用热敏电阻。而热敏电阻将温度转化成电阻值的变化,故在系统中由信号调理电路作用是将温度的变化这样一个非电量转化成电信号,然后加以放大。以便后一温度显示 检测对象 信号调理 水温检测 加热、停止、状态显示 加热、停止检测

相关主题
文本预览
相关文档 最新文档