专题:函数单调性的证明
- 格式:docx
- 大小:75.54 KB
- 文档页数:3
定义法证明单调性
定义法证明单调性:
单调性是指一个函数的值在某一区间内从一端到另一端的变化,是单方向的而不中断的。
定义法证明单调性就是通过定义函数的性质来证明其单调性,常用的定义如下:
1. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)<f(x'),则称函数y=f(x)为单调递增函数;
2. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)>f(x'),则称函数y=f(x)为单调递减函数;
3. 如果函数y=f(x)满足:对于所有x和x'都满足
f(x)=f(x'),则称函数y=f(x)为常数函数。
4. 如果函数y=f(x)既不满足上述条件1,也不满足上述条件2,则称函数y=f(x)为非单调函数。
通过定义函数的上述定义,可以根据函数特性判断函数是否单调,从而得出单调性的证明。
函数单调性的判断或证明方法.(1)定义法。
用定义法证明函数的单调性的一般步骤是①取值,设,且;②作差,求;③变形(合并同类项、通分、分解因式、配方等)向有利于判断差值符号的方向变形;④定号,判断的正负符号,当符号不确定时,应分类讨论;⑤下结论,根据函数单调性的定义下结论。
例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得(2)运算性质法.①在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.(增+增=增;减+减=减;增-减=增,减-增=减)②若.③当函数.④函数二者有相反的单调性。
⑤运用已知结论,直接判断函数的单调性,如一次函数、反比例函数等。
(3)图像法.根据函数图像的上升或下降判断函数的单调性。
例3.求函数的单调区间。
解:在同一坐标系下作出函数的图像得所以函数的单调增区间为减区间为.(4)复合函数法.(步骤:①求函数的定义域;②分解复合函数;③判断内、外层函数的单调性;④根据复合函数的单调性确定函数的单调性.⑤若集合是内层函数的一个单调区间,则便是原复合函数的一个单调区间,如例4;若不是内层函数的一个单调区间,则需把划分成内层函数的若干个单调子区间,这些单调子区间便分别是原复合函数的单调区间,如例5.)设,,都是单调函数,则在上也是单调函数,其单调性由“同增异减”来确定,即“里外”函数增减性相同,复合函数为增函数,“里外”函数的增减性相反,复合函数为减函数。
证明函数单调性的方法总结导读:1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1 ②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D内为增函数;如果f′(x) 注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的'单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.【证明函数单调性的方法总结】1.函数单调性的说课稿2.高中数学函数的单调性的教学设计3.导数与函数的单调性的教学反思4.高中函数单调性的教学设计5.《函数的单调性》的说课稿6.函数单调性教案练习题7.函数单调性说课课件8.《函数的单调性》教学设计上文是关于证明函数单调性的方法总结,感谢您的阅读,希望对您有帮助,谢谢。
函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。
3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。
6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。
8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。
(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。
2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。
3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。
二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。
2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。
三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。
证明函数单调性的方法总结归纳1、定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1②作差f(x1)-f(x2),并适当变形(“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性.2、导数法:设函数y=f(x)在某区间D内可导.如果f′(x)>0,则f(x)在区间D 内为增函数;如果f′(x)注意:(补充)(1)若使得f′(x)=0的x的值只有有限个,则如果f ′(x)≥0,则f(x)在区间D内为增函数;如果f′(x) ≤0,则f(x)在区间D内为减函数.(2)单调性的判断方法:定义法及导数法、图象法、复合函数的单调性(同增异减)、用已知函数的单调性等(补充)单调性的有关结论1.若f(x),g(x)均为增(减)函数,则f(x)+g(x)仍为增(减)函数.2.若f(x)为增(减)函数,则-f(x)为减(增)函数,如果同时有f(x)>0,则为减(增)函数,为增(减)函数3.互为反函数的两个函数有相同的单调性.4.y=f[g(x)]是定义在M上的函数,若f(x)与g(x)的单调性相同,则其复合函数f[g(x)]为增函数;若f(x)、g(x)的单调性相反,则其复合函数f[g(x)]为减函数.简称”同增异减”5. 奇函数在关于原点对称的两个区间上的单调性相同;偶函数在关于原点对称的两个区间上的单调性相反.函数单调性的应用(1)求某些函数的值域或最值.(2)比较函数值或自变量值的大小.(3)解、证不等式.(4)求参数的取值范围或值.(5)作函数图象.搜集整理,仅供参考学习,请按需要编辑修改。
函数单调性的判定和证明方法(一)、定义法步骤:①取值,设x1<x2, 并是某个区间上任意二值;②作差:;或作商:,≠0;③变形向有利于判断差值符号的方向变形;,≠0向有利于判断商的值是否大于1方向变形;(常用的变形技巧有:1、分解因式,当原函数是多项式时,作差后进行因式分解;2、通分,当原函数是分式函数时,作差后往往进行通分再进行因式分解;3、配方,当原函数是二次函数时,作差后考虑配方便于判定符号;4、分子有理化,当原函数是根式函数时,作差后往往考虑分子有理化等);④定号,判断的正负符号,当符号不确定时,需进行分类讨论;⑤下结论,根据函数单调性的定义下结论。
作差法:例1.判断函数在(-1,+∞)上的单调性,并证明.解:设-1<x1<x2,则f(x1)-f(x2)=-==∵-1<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0.∴当a>0时,f(x1)-f(x2)<0,即f(x1)<f(x2),∴函数y=f(x)在(-1,+∞)上单调递增.当a<0时,f(x1)-f(x2)>0,即f(x1)>f(x2),∴函数y=f(x)在(-1,+∞)上单调递减.例2.证明函数在区间和上是增函数;在上为减函数。
(增两端,减中间)证明:设,则因为,所以,所以,所以所以设则,因为,所以,所以所以同理,可得作商法:例3.设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)•f(n)且当x>0时,0<f(x)<1(1)求证:f(0)=1 且当x<0时,f(x)>1(2)求证:f(x)在R上是减函数.证明:(1)∵对于任意实数m,n,恒有f(m+n)=f(m)•f(n),令m=1,n=0,可得f(1)=f(1)•f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0.∴f(0)=1.令m=x<0,n=-x>0,则f(m+n)=f(0)=f(-x)•f(x)=1,∴f(-x)f(x)=1,又∵-x>0时,0<f(-x)<1,∴f(x)=1f(-x)>1.(1)设x1<x2,则x1-x2<0,根据(1)可知 f(x1-x2)>1,f(x2)>0.∵f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2),∴函数f(x)在R上单调递减.(二)、运算性质法.v1.0 可编辑可修改函数函数表达式单调区间特殊函数图像一次函数)0(≠+=kbkxy当0>k时,y在R上是增函数;当0<k时,y在R上是减函数。
函数单调性的判断与证明【方法综述】 1.函数的单调性(1).增函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x <,那么就说函数()f x 在区间D 上是增函数;(2)减函数:若对于定义域I 内的某个区间()D D I ⊆上的任意两个自变量1x 、2x ,当12x x <时,都有()()12f x f x >,那么就说函数()f x 在区间D 上是减函数.2.要确定t =g (x )(常称内层函数)的值域,否则无法确定f (t )(常称外层函数)的单调性.3.用定义证明函数单调性中的变形策略由定义证明函数f (x )在区间D 上的单调性,其步骤为:取值→作差→变形→定号.其中变形是最关键的一步,合理变形是准确判断f (x 1)-f (x 2)的符号的关键所在.常见变形方法有因式分解、配方、同分、有理化等,下面举例说明.例1.求证:函数f (x )=x 2-4x 在(-∞,2]上是减函数.证明:设x 1,x 2是(-∞,2]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=(x 21-4x 1)-(x 22-4x 2)=(x 1-x 2)(x 1+x 2-4).因为x 1<x 2≤2,所以x 1-x 2<0,x 1+x 2-4<0. 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). 故函数f (x )在(-∞,2]上是减函数.评注 因式分解是变形的常用策略,但必须注意,分解时一定要彻底,这样才利于判断f (x 1)-f (x 2)的符号.例2.求证:函数f (x )=x 3+1在R 上是增函数.证明:设x 1,x 2是R 上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 31+1-x 32-1=x 31-x 32=(x 1-x 2)(x 21+x 1x 2+x 22)=(x 1-x 2)⎣⎡⎦⎤⎝⎛⎭⎫x 1+x 222+34x 22. 因为x 1<x 2,所以x 1-x 2<0,⎝⎛⎭⎫x 1+x 222+34x 22>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).故函数f (x )在R 上是增函数.评注 本题极易在(x 1-x 2)(x 21+x 1x 2+x 22)处“止步”而致误.而实际上当我们不能直接判断x 21+x 1x 2+x 22的符号,又不能因式分解时,采用配方则会“柳暗花明”.例3.已知函数f (x )=x +1x,求证:函数f (x )在区间(0,1]上是减函数.证明:设x 1,x 2是区间(0,1]上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1-x 2-1x 2=(x 1-x 2)+⎝⎛⎭⎫1x 1-1x 2=(x 1-x 2)+x 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-1x 1x 2=(x 1-x 2)⎝⎛⎭⎫x 1x 2-1x 1x 2. 因为x 1<x 2,且x 1,x 2∈(0, 1],所以x 1-x 2<0,0<x 1x 2<1.所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).故函数f (x )在(0,1]上是减函数.评注 同样,我们可以证明f (x )=x +1x在区间[1,+∞)上是增函数.例4.已知函数f (x )=x -1,求证:函数f (x )在区间[1,+∞)上是增函数.证明:设x 1,x 2是区间[1,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1-1-x 2-1=x 1-x 2x 1-1+x 2-1 .因为x 1<x 2,且x 1,x 2∈[1,+∞),所以x 1-x 2<0,x 1-1+x 2-1>0. 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). 故函数f (x )在[1,+∞)上是增函数.评注 对于根式函数常采用分子或分母有理化变形手段以达到判断f (x 1)-f (x 2)符号的目的. 例5.求函数y =1(x +1)2的单调区间.解:函数y =1(x +1)2的定义域为(-∞,-1)∪(-1,+∞),设t =(x +1)2,则y =1t(t >0).当x ∈(-∞,-1)时,t 是x 的减函数,y 是t 的减函数,所以(-∞,-1)是y =1(x +1)2的递增区间;当x ∈(-1,+∞)时,t 是x 的增函数,y 是t 的减函数,所以(-1,+∞)是y =1(x +1)2的递减区间.综上知,函数y =1(x +1)2的递增区间为(-∞,-1),递减区间为(-1,+∞).例6. 求y =1x 2-2x -3的单调区间.解:由x 2-2x -3≠0,得x ≠-1或x ≠3,令t =x 2-2x -3(t ≠0),则y =1t ,因为y =1t在(-∞,0),(0,+∞)上为减函数,而t =x 2-2x -3在(-∞,-1),(-1,1)上为减函数,在(1,3),(3,+∞)上是增函数,所以函数y =1x 2-2x -3的递增区间为(-∞,-1),(-1,1),递减区间为(1,3),(3,+∞). 【针对训练】1.下列四个函数中,在上为减函数的是( )A .B .C .D .【答案】A【解析】对于选项A,函数的图像的对称轴为开口向上,所以函数在上为减函数.所以选项A 是正确的.对于选项B,在在上为增函数,所以选项B 是错误的. 对于选项C,在在上为增函数,所以选项C 是错误的.对于选项D,,当x=0时,没有意义,所以选项D 是错误的. 2.下列四个函数中,在(0,+∞)上为增函数的是( ) A .f(x)=3-x B .f(x)=x 2-3xC .f(x)=-1x +1 D .f(x)=-|x|【答案】C【解析】当x>0时,f(x)=3-x 为减函数;当x ∈⎝⎛⎭⎫0,32时,f(x)=x 2-3x 为减函数;当x ∈⎝⎛⎭⎫32,+∞时,f(x)=x 2-3x 为增函数;当x ∈(0,+∞)时,f(x)=-1x +1为增函数;当x ∈(0,+∞)时,f(x)=-|x|为减函数.3.若函数y ax =与b y x=-在()0,+∞上都是减函数,则()2f x ax bx =+在()0,+∞上是( ) A .增函数 B .减函数 C .先增后减 D .先减后增 【答案】B【解析】由函数y ax =与by x=-在()0,+∞上都是减函数,可得0,b 0a <<.则一元二次函数()2f x ax bx=+在()0,+∞上为减函数.故选B.4.定义在R 上的函数()f x 对任意两个不相等实数a ,b ,总有()()0f a f b a b->-成立, 则必有( )A.()f x 在R 上是增函数B.()f x 在R 上是减函数C.函数()f x 是先增加后减少D.函数()f x 是先减少后增加【答案】A【解析】若a b <则由题意()()0f a f b a b->-知,一定有()()f a f b <成立,由增函数的定义知,该函数()f x 在R 上是增函数;同理若a b >,则一定有()()f a f b >成立,即该函数()f x 在R 上是增函数.所以函数()f x 在R 上是增函数.故应选A.5.已知,那么( ) A. 在区间上单调递增 B. 在上单调递增 C. 在上单调递增 D. 在上单调递增【答案】D 【解析】,记,则当时,单调递增,且而在不具有单调性,故A 错误;当时,不具有单调性,故B 错误;当时,单调递增,且而在不具有单调性,故C 错误;当时,单调递减,且而在单调递减,根据“同增异减”知,D 正确.故选:D 6.试讨论函数f(x)=axx -1(a≠0)在(-1,1)上的单调性. 【解析】设-1<x 1<x 2<1,f(x)=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝⎛⎭⎫1+1x -1,f(x 1)-f(x 2)=a ⎝⎛⎭⎫1+1x 1-1-a ⎝⎛⎭⎫1+1x 2-1=a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a>0时,f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),函数f(x)在(-1,1)上递减; 当a<0时,f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),函数f(x)在(-1,1)上递增.综上,当a>0时,f(x)在(-1,1)上单调递减;当a<0时,f(x)在(-1,1)上单调递增.7.已知a>0,函数f(x)=x +ax (x>0),证明:函数f(x)在(0,a]上是减函数,在[a ,+∞)上是增函数.【解析】任意取x 1>x 2>0,则f(x 1)-f(x 2)=⎝⎛⎭⎫x 1+a x 1-⎝⎛⎭⎫x 2+a x 2=(x 1-x 2)+⎝⎛⎭⎫a x 1-ax 2=(x 1-x 2)+ax 2-x 1x 1x 2=(x 1-x 2)⎝⎛⎭⎫1-a x 1x 2. 当a ≥x 1>x 2>0时,x 1-x 2>0,1-ax 1x 2<0,有f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 此时,函数f(x)=x +ax(a>0)在(0,a]上为减函数;当x 1>x 2≥a 时,x 1-x 2>0,1-ax 1x 2>0,有f(x 1)-f(x 2)>0,即f(x 1)>f(x 2),此时,函数f(x)=x+ax(a>0)在[a,+∞)上为增函数;综上可知,函数f(x)=x+ax(a>0)在(0,a]上为减函数,在[a,+∞)上为增函数.8.已知函数的图象经过点(1,1),.(1)求函数的解析式;(2)判断函数在(0,+)上的单调性并用定义证明;【答案】(1).(2)见解析.【解析】(1)由f(x)的图象过A、B,则,解得.∴(x≠0).(2)证明:设任意x1,x2∈0+∞(,),且x1<x2.∴.由x1,x2∈0+∞(,),得x1x2>0,x1x2+2>0.由x1<x2,得.∴,即.∴函数在0+∞(,)上为减函数.9.已知函数在上满足,且,.(1)求,的值;(2)判断的单调性并证明;【答案】(1);(2)单调递增,证明见解析;(3).【解析】(1)令,即可得到,再令,可得,令即可求得;(2)单调递增,证明:任取且,则,,因为,所以,所以在上单调递增.10.已知定义在区间上的函数满足,且当时,. (1)求的值;(2)证明:为单调增函数;(3)若,求在上的最值.【答案】(1)f(1)=0.(2)见解析(3)最小值为﹣2,最大值为3.【解析】试题分析:(1)利用赋值法进行求的值;(2)根据函数的单调性的定义判断在上的单调性,并证明.(3)根据函数单调性的性质,并利用赋值法可得函数的最值.试题解析:(1)∵函数f(x)满足f(x1•x2)=f(x1)+f(x2),令x1=x2=1,则f(1)=f(1)+f(1),解得f(1)=0.(2)证明:(2)设x1,x2∈(0,+∞),且x1>x2,则>1,∴f()>0,∴f(x1)﹣f(x2)=f(x2⋅)﹣f(x2)=f(x2)+f()﹣f(x2)=f()>0,即f(x1)>f(x2),∴f(x)在(0,+∞)上的是增函数.(3)∵f(x)在(0,+∞)上的是增函数.若,则f()+f()=f()=﹣2,即f(•5)=f(1)=f()+f(5)=0,即f(5)=1,则f(5)+f(5)=f(25)=2,f(5)+f(25)=f(125)=3,即f(x)在上的最小值为﹣2,最大值为3.。
专题14 分类讨论证明或求函数的单调区间(含参)1.设函数21()sin cos 2f x x x x ax =+-. (1)当12a =时,讨论()f x 在(,)ππ-内的单调性; (2)当13a >时,证明:()f x 有且仅有两个零点.【答案】(1)在,03π⎛-⎫ ⎪⎝⎭或,3ππ⎛⎫ ⎪⎝⎭上单调递减,在,3ππ⎛⎫-- ⎪⎝⎭或0,3π⎛⎫ ⎪⎝⎭上单调递增;(2)证明见解析.【分析】(1)先求导,根据导数和函数的单调性,结合三角函数的性质即可求出单调区间;(2)先判断出函数为偶函数,则问题转化为()f x 在(0,)+∞有且只有一个零点,再利用导数和函数单调性的关系,以及函数零点存在定理即可求出. 【详解】 (1)当12a =时,21()sin cos 4f x x x x x =+-, 11()sin cos sin (cos )22f x x x x x x x x ∴'=+--=-,令()0f x '=,解得0x =或3x π=,3x π=-,当()0f x '<时,解得03x π-<<或3x ππ<<,当()0f x '>时,解得3x ππ-<<-或03x π<<,()f x ∴在(3π-,0)或(3π,)π上单调递减,在(,)3ππ--或(0,)3π上单调递增;(2)()f x 的定义域为(,)-∞+∞,2211()()sin()cos()()sin cos ()22f x x x x a x x x x ax f x -=--+-+-=+-=,()f x ∴为偶函数,(0)10f =>,()f x ∴有且仅有两个零点等价于()f x 在(0,)+∞有且只有一个零点,()(cos )f x x x a '=-,当1a 时,cos 0x a -,()0f x '恒成立,()f x ∴在(0,)+∞上单调递减,2211()sin cos 1022f a a ππππππ=+-=--<,(0)?()0f f π∴<,()f x ∴在(0,)+∞上有且只有一个零点,当113a <<时,令()(cos )0f x x x a '=-=,即cos x a =, 可知存在唯一(0,)2πθ∈,使得cos a θ=,当(0,)x θ∈或(22,22)x k k ππθππθ∈+-++时,k ∈N ,()0f x '>,函数()f x 单调递增, 当(2,22)x k k πθππθ∈++-时,k ∈N ,()0f x '<,函数()f x 单调递减,由tan θ=113a <<,可得0tan θ<<当k ∈N ,22tan 2(k ππθθπ++->-,2221113(22tan )10(22)[(22tan )1][(22tan )1]022626k f k a k k a ππθθππθππθθππθθ++--∴++=-++--+<-++--+=-<,()f x ∴在(0,)+∞上有且只有一个零点,综上所述,当13a >时,()f x 有且仅有两个零点. 【点睛】方法点睛:1、利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论;若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.2、用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决. 2.已知函数2()2ln 2(1)f x mx x m x =-+-. (1)讨论函数()f x 的单调区间;(2)当1x ≠时,求证:2286ln 3521x x x x x x---<-. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)先求导,分为0m ≥,1m =-,1m <-和10m -<<四种情形进行分类讨论,根据导数和函数单调性的关系即可求出;(2)等价于3226(1ln )23501x x x x x -+--<-,令()()3261ln 235h x x x x x =-+--,利用当2m =时的结论,根据导数判断()h x 与0的关系,即可证明. 【详解】解:()f x 的定义域为(0,)+∞,则22(1)1(1)(1)()22(1)22mx m x mx x f x mx m x x x+--+-'=-+-=⋅=⋅, 当0m 时,10mx +>,当(0,1)x ∈时,()0f x '<,当(1,)x ∈+∞时,()0f x '>,∴函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当0m <时,令()0f x '=,解得1x =或1x m=-, 当1m =-时,2(1)()2?0x f x x-'=-恒成立,∴函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,101m<-<, 当1(0,)x m ∈-或(1,)+∞时,()0f x '<,当1(x m∈-,1)时,()0f x '>, ∴函数()f x 的单调递减区间为1(0,)m -或(1,)+∞,单调递增区间为1(m-,1),当10m -<<,11m ->,当(0,1)x ∈或1(m -,)+∞时,()0f x '<,当1(1,)x m∈-时,()0f x '>,∴函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.综上所述:当0m 时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞,当1m =-时,函数()f x 的单调递减区间为(0,)+∞,无单调递增区间,当1m <-时,函数()f x 的单调递减区间为1(0,)m -,(1,)+∞,单调递增区间为1(m-,1), 当10m -<<时,函数()f x 的单调递减区间为(0,1)或1(m -,)+∞,单调递增区间为1(1,)m.(2) 证明:要证2286ln 3521x x x x x x---<-,即证3226(1ln )23501x x x x x -+--<-, 令32()6(1ln )235h x x x x x =-+--,则22()66ln 6663(22ln 2)h x x x x x x x '=--+-=--, 由(1),当2m =时,2()22ln 2f x x x x =--,可得()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞, 即()h x '的单调递减区间为(0,1),单调递增区间为(1,)+∞,()h x h ∴''(1)0=, ()h x ∴在(0,)+∞上单调递增,h (1)6(1ln1)2350=-+--=,∴当01x <<时,()0h x <,210x ->,当1x >时,()0h x >,210x -<,∴3226(1)23501x lnx x x x-+--<-, 即22863521x xlnx x x x ---<-.【点睛】含有参数的函数单调性讨论常见的形式: (1)对二次项系数的符号进行讨论; (2)导函数是否有零点进行讨论; (3)导函数中零点的大小进行讨论;(4)导函数的零点与定义域端点值的关系进行讨论等. 3.已知函数()()1ln f x ax x a R =--∈. (1)若1a =,求()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值;(2)讨论函数()f x 的单调性.【答案】(1)极小值为0,无极大值;(2)答案见解析. 【分析】(1)当1a =时,求得()1x f x x-=,利用导数分析函数()f x 的单调性,由此可求得函数()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极值; (2)求得()()10ax f x x x-'=>,分0a ≤和0a >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的单调递增区间和递减区间.【详解】(1)当1a =时,()1ln f x x x =--,所以,1110x fx x x x,列表; 所以,()f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的有极小值()10f =,无极大值; (2)函数()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=. 当0a ≤时,10ax ,从而()0f x '<,故函数()f x 在()0,∞+上单调递减;当0a >时,若10x a<<,则10ax ,从而()0f x '<; 若1x a>,则10ax ->,从而()0f x '>. 故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,函数()f x 的单调递减区间为()0,∞+,无单调递增区间; 当0a >时,函数()f x 的单调递减区间为10,a ⎛⎫ ⎪⎝⎭,单调递增区间为1,a ⎛⎫+∞ ⎪⎝⎭.【点睛】方法点睛:讨论含参数函数的单调性,通常以下几个方面:(1)求导后看函数的最高次项系数是否为0,需分类讨论;(2)若最高次项系数不为0,且最高次项为一次,一般为一次函数,求出导数方程的根; (3)对导数方程的根是否在定义域内进行分类讨论,结合导数的符号变化可得出函数的单调性. 4.已知函数()21()xm x xf x e++=.(1)试讨论()f x 的单调性;(2)若0m ≤,证明:()ln ef x x x +≤. 【答案】(1)答案不唯一见解析;(2)证明见解析. 【分析】(1)对函数进行求导得(1)(1)()xx mx m f x e--'+=-,再对m 分三种情况讨论,即0m =,0m >,0m <三种情况;(2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-,而ln 1x x -≥,因此只需证明1()f x e≤,再利用函数的单调性,即可得证; 【详解】解析:(1)因为(1)(1)()xx mx m f x e--'+=-, ①当0m =时,1()x x f x e-=-',当1x >时,()0f x '<,当1x <时,()0f x '>,所以()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减;①当0m >时,1(1)11(),11x m x x m f x e m'⎛⎫--+ ⎪⎝⎭=--<, 当11,1x m ⎛⎫∈-⎪⎝⎭时,()0f x '>,当1,1(1,)x m ⎛⎫∈-∞-⋃+∞ ⎪⎝⎭时,()0f x '<,所以()f x 在11,1m ⎛⎫- ⎪⎝⎭单调递增,在1,1,(1,)m ⎛⎫-∞-+∞ ⎪⎝⎭单调递减;①当0m <时,111m ->,当11,1x m ⎛⎫∈- ⎪⎝⎭时,()0f x '<,当1(,1)1,x m ⎛⎫∈-∞⋃-+∞ ⎪⎝⎭时,()0f x '>,所以()f x 在11,1m ⎛⎫-⎪⎝⎭单调递减,在1(,1),1,m ⎛⎫-∞-+∞ ⎪⎝⎭单调递增. (2)要证明()ln ef x x x +≤,只需证明 ()ln ef x x x ≤-, 而ln 1x x -≥,因此只需证明1()f x e≤,当0m =时,()x xf x e =,由(1)知()f x 在(,1)-∞上单调递增,在(1,)+∞上单调递减,所以max1()(1)f x f e==; 当0m <时,()211()xx m x xx f x e e e++=<≤,故()ln ef x x x +≤. 【点睛】利用导数研究含参函数的单调区间,要注意先求导后,再解导数不等式. 5.已知函数()e x f x ax =,a 为非零常数. (1)求()f x 单调递减区间;(2)讨论方程()()21f x x =+的根的个数.【答案】(1)当0a >时,()f x 的单调递减区间为(,1)-∞-,当0a <时,()f x 的单调递减区间为(1,)-+∞;(2)当0a >时,原方程有且仅有一个解;当0a <时,原方程有两个解. 【分析】(1)求导,对a 分类讨论,利用()0f x '<可解得结果;(2)转化为函数2(1)()exx g x x +=与y a =的图象的交点的个数,利用导数可求得结果. 【详解】(1)()(1)e x x xf x ae axe a x '=+=+,由()0f x '=得1x =-,①若0a >时,由()0f x '<得1x <-,所以()f x 的单调递减区间为(,1)-∞-;①若0a <时,由()0f x '<得1x >-,所以()f x 的单调递减区间为(1,)-+∞.综上所述,当0a >时,()f x 的单调递减区间为(,1)-∞-;当0a <时,()f x 的单调递减区间为(1,)-+∞.(2)因为方程2()(1)f x x =+等价于2(1)e x x a x +=,令2(1)()exx g x x +=, 所以方程()()21f x x =+的根的个数等于函数2(1)()exx g x x +=与y a=的图象的交点的个数, 因为()2222(1)12(1)(1)()()()ex x x x x x x x xe x e xe g x xe x +++-++=-'=, 由()0g x '=,得1x =-,当(,1)x ∈-∞-,时,()0g x '>,()g x 在(,1)-∞-上单调递增; 当()()1,00,x ∈-+∞时,()0g x '<,所以()g x 在()1,0-,()0,∞+上单调递减,又()10g -=,所以当(,1)x ∈-∞-时,()(),0g x ∈-∞; 当()1,0x ∈-时,()(),0g x ∈-∞; 当()0,x ∈+∞时,()()0,g x ∈+∞.所以,当0a >时,原方程有且仅有一个解; 当0a <时,原方程有两个解. 【点睛】方法点睛:讨论函数零点(或方程根)的个数的常用的方法:(1)直接法:直接求解方程得到方程的根,可得方程根的个数;(2)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解 6.已知函数()21ln 2f x ax x x b =-⋅+,()()g x f x '=. (1)判断函数()y g x =的单调性;(3)证明:1233ln 2341n n n ⎛⎫++++>-⎪+⎝⎭【答案】(1)答案见解析;(2)存在,2a e =;(3)证明见解析. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性; (2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果;(3)先构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,证明其小于零,即得1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,再将1nx n =+代入求和即证结论. 【详解】 解:(1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故()11ax g x a x x-'=-=,0x >.当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以()()min 1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去 当1a e >时10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--=⎪⎝⎭,所以ln 2a =.解得2a e = 故2a e =时,使函数()g x 的最小值为2. (3)构造函数11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,则119()3033x h x x x -'=-=>, 故1()ln 313h x x x =-+在1,12x ⎡⎫∈⎪⎢⎣⎭上递减,111111()ln 31ln 20232232h x h ⎛⎫≤=-⨯+=--< ⎪⎝⎭,故1ln 3103x x -+<, 即1,12x ⎡⎫∈⎪⎢⎣⎭时13ln 13x x >+,而11,1,1112n n N x n n *⎡⎫∈==-∈⎪⎢++⎣⎭,故13ln 1311n n n n >++⋅+,即[]ln(13ln 131)1n n n n ->++⋅+,将n *∈N 依次代入并相加得 []()1ln1ln 12313ln 2ln 3...ln(1)ln 1231ln 4323n n n n n n n ⎛⎫++++>-+-++-+-+ ⎭+⎪+⎝=,即12332341n n n ⎛⎫++++>- ⎪+⎝⎭【点睛】本题解题关键在于观察证明式12332341n n n ⎛⎫++++>-⎪+⎝⎭11()ln 31,,132h x x x x ⎡⎫=-+∈⎪⎢⎣⎭,以证明13ln 13x x >+,将1n x n =+代入求和即突破难点.用导数解决与正整数n 有关的不等式证明问题,属于难点,突破点就在于观察构造合适的函数,通过导数证明不等式,再将关于n 的式子代入即可. 7.已知函数()()21ln ,2f x ax x x b a b R =-⋅+∈,()()g x f x '=. (1)判断函数()y g x =的单调性;【答案】(1)答案见解析;(2)存在,2a e =. 【分析】(1)先求()()g x f x '=,再对()y g x =求导,对参数a 进行讨论确定导数的正负,即得函数单调性; (2)对参数a 进行讨论确定()y g x =导数的正负,即得函数()y g x =单调性,再根据单调性确定最值等于2,解得符合条件的参数值即得结果; 【详解】 (1)由()21ln 2f x ax x x b =-⋅+,知()()ln 1g x f x ax x '==--,0x >,故 ()11ax g x a x x-'=-=. 当0a ≤时,()0g x '<,即()g x 在()0,∞+为减函数, 当0a >时,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,所以()g x 在10,a ⎛⎫⎪⎝⎭为减函数,在1,a ⎛⎫+∞⎪⎝⎭上()0g x '>,所以()g x 在1,a ⎛⎫+∞ ⎪⎝⎭增函数. (2)当0a ≤时,()g x 在(]0,e 为减函数,所以()()min 11g x g e ea ==-≤-.故不存在最小值3. 当10a e <≤时,1e a≥,()g x 在(]0,e 为减函数,所以 ()()min1ln 2g x g e ea e ==--=,所以4a e=,不合题意,舍去.当1a e >时,10e a <<,在10,a ⎛⎫ ⎪⎝⎭上()0g x '<,函数()g x 单调递减;在1,e a ⎡⎤⎢⎥⎣⎦上()0g x '>,函数()g x 单调递增,由此()min 1111ln 2g x g a a ⎛⎫==--= ⎪⎝⎭, 所以ln 2a =.解得2a e =,故2a e =时,使函数()g x 的最小值为2. 【点睛】利用导数研究函数()f x 的单调性和最值的步骤:①写定义域,对函数()f x 求导()'f x ;①在定义域内,讨论不等式何时()0f x '>和()0f x '<①对应得到增区间和减区间及极值点,进而比较端点和极值点的值确定指定区间的最值即可.8.已知函数()()()ln 1f x x ax a =+-∈R . (1)讨论函数()f x 的单调性.(2)若()()2112g x x x a f x =--+-,设()1212,x x x x <是函数()g x 的两个极值点,若32a ≥,求证:()()12152ln 28x g x g -≥-. 【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)先求得()f x 的定义域和导函数()'fx ,对a 分成0a ≤和0a >两种情况进行分类讨论,由此求得()f x 的单调区间.(2)求得()g x 的表达式,求得()'g x ,利用根与系数关系得到12,x x 的关系式以及1x 的取值范围,将()()12g x g x -表示为只含1x 的形式,利用构造函数法求得()()12g x g x -的最小值,从而证得不等式成立. 【详解】(1)由题意得,函数()f x 的定义域为(1,)-+∞,()11f x a x '=-+. 当0a ≤时,()101f x a x '=->+, ∴函数()f x 在(1,)-+∞上单调递增.当0a >时,令()0f x '=,得11x a=-+.若11,1x a ⎛⎫∈--+ ⎪⎝⎭,则()0f x '>,此时函数()f x 单调递增;若11,x a ⎛⎫∈-++∞ ⎪⎝⎭,则()0f x '<,此时函数()f x 单调递减.综上,当0a ≤时,函数()f x 在(1,)-+∞上单调递增;当0a >时,函数()f x 在11,1a ⎛⎫--+ ⎪⎝⎭上单调递增,在11,a ⎛⎫-++∞ ⎪⎝⎭上单调递减.(2)()()21ln 12g x x x a x =+-+,0x >,()()11g x x a x '∴=+-+()211x a x x-++=.由()0g x '=得()2110x a x -++=,()240321a a ∆=+⇒-≥>121x x a ∴+=+,121=x x ,211x x ∴=. 32a ≥,512a +≥,12x x < 111115210x x x x ⎧+≥⎪⎪∴⎨⎪<<⎪⎩,解得1102x <≤.()()12x g x g ∴-()()()221121221ln12x x x a x x x =+--+-21121112ln 2x x x ⎛⎫=-- ⎪⎝⎭. 设()221112ln 022x h x x x x ⎛⎫⎛⎫=--<≤ ⎪⎪⎝⎭⎝⎭, 则()()22331210x h x x x x x-'=--=-<, ∴函数()h x 在10,2⎛⎤⎥⎝⎦上单调递减.∴当112x =时,()min 1152ln 228h x h ⎛⎫==- ⎪⎝⎭.32a ∴≥时,()()12152ln 28x g x g -≥-成立.【点睛】求解含有参数的函数的单调性题,求导后要根据导函数的形式进行分类讨论. 9.已知函数()2xf x e ae x =-.(1)讨论()f x 的单调区间;(2)当0a <时,证明:()2ln f x e x >.【答案】(1)当0a ≤时,()f x 的增区间为(),-∞+∞,无减区间;当0a >时,()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞,(2)证明见解析 【分析】(1)先求出函数的定义域,再求导数,分0a ≤和0a >,分别由导数大于零和小于零,可求得函数的单调区间;(2)要证明22ln x ae x e x e ->,只要证2ln 0x e e x ->,构造函数()2ln xg x e e x =-,然后利用导数求出此函数的最小值即可,或要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->,构造函数()()20x g x ae x x e =->,然后用导数求其最小值,构造函数()()2ln 0x h x e x x=>,然后利用导数求其最大值,或要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->,构造函数()()()222222ln ln x x g x e e x e x e x e e e e x =-=-++--,令()()220x h x e e x e x =-+>,()222ln m x e x e e x =--,再利用导数求其最小值即可【详解】(1)解:()f x 的定义域为(),-∞+∞,()2x f x e ae '=-.当0a ≤时,0f x ,则()f x 的增区间为(),-∞+∞,无减区间. 当0a >时,由0fx,得2ln x a =+.当(),2ln x a ∈-∞+时,0fx;当()2ln ,x a ∈++∞时,0fx,所以()f x 的减区间为(),2ln a -∞+,增区间()2ln ,a ++∞. (2)证明:法一:要证明22ln x ae x e x e ->. 由于当0a <时,20ae x <,只要证2ln 0x e e x ->.设()2ln xg x e e x =-,则()2xg x e e x '=-,()220xg x e xe ''=+>,所以()g x '在0,上是增函数.又()210g e e '=-<,()2222022e g ee '=-=>,所以存在()01,2x ∈,使得()02000x g e x e x '=-=,即020x e e x =,00ln 2x x =-. 所以当()00,x x ∈时,0g x;当()0,x x ∈+∞时,0g x,因此()g x 在()00,x 上是减函数,在()0,x +∞上是增函数, 所以()g x 有极小值,且极小值为()()022222222000000ln 22220x g x e e x e x e x e e e x e x e =-=--=+->-=. 因此()0gx >,即2ln 0x e x -->.综上,当0a <时,()2ln f x e x >.法二:要证明22ln xae x e x e ->,只要证22ln x e x xe x ae ->. 设()()20x g x ae x x e =->,则()()21x x e g x x-'=. 当01x <<时,0g x;当1x >时,0g x ,所以()g x 在0,1上是减函数,在1,上是增函数,所以1x =是()g x 的极小值点,也是最小值点,且()()2min 1g x g e ae ==-.令()()2ln 0xh x e x x =>,则()()221ln x h x xe -'=. 当0x e <<时,()0h x '>;当e x >时,()0h x '<, 所以()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以x e =是()h x 的极大值点,也是最大值点,且()()max h x h e e ==,所以当0a <时,()()2g x e ae e h x ≥->≥,即22ln x e x xe x ae ->. 综上,当0a <时,()2ln f x e x >.法三:要证明22ln x ae x e x e ->.由于当0a <时,20ae x <,只要证2ln 0x e e x ->. 设()()()222222ln ln xxg x e e x e x ex ee e e x =-=-++--,令()()220xh x e e x ex =-+>,则()2x h x e e '=-,当02x <<时,()0h x '<;当2x >时,()0h x '>, 所以()h x 在()0,2上是减函数,在2,上是增函数,所以2x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 20h x h ==.设()222ln m x e x e e x =--,则()()2221x e m x e x xe -'=-=. 当01x <<时,()0m x '<;当2x >时,()0m x '>, 所以()m x 在0,1上是减函数,在1,上是增函数,所以1x =是()m x 的极小值点,也是()m x 的最小值点,即()()min 10m x m ==. 综上,()0h x ≥(当且仅当2x =时取等号),()0m x ≥(当且仅当1x =时取等号), 所以()()()0g x h x m x =+>,故当0a <时,()2ln f x e x >.【点睛】关键点点睛:此题考查导数的应用,考查利用导数证明不等式,解题的关键是将不等式等价转化,然后构造函数,利用导数求函数的最值,考查数学转化思想,属于较难题 10.已知函数2()ln f x x ax x =-+. (1)试讨论函数()f x 的单调性;(2)对任意0a <,满足2()ln f x x ax x =-+的图象与直线y kx =恒有且仅有一个公共点,求k 的取值范围.【答案】(1)当0a ≤时,在(0,)+∞单调递增;当0a >时,在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭单调递减;(2)1k ≤或3221k e -+≥. 【分析】(1)首先求函数的导数2121'()21(0)ax x f x ax x x x-++=-+=>,分0a ≤和0a >两千情况讨论导数的正负,确定函数的单调性;(2)由方程()f x kx =,转化为2ln x ax xk x -+=,构造函数()2ln x ax x h x x-+=,利用二阶导数判断函数的单调性,并分情况讨论()h x '最小值的正负,并结合零点存在性定理,确定函数的性质,根据2ln x ax xk x-+=有唯一解,确定k 的取值范围.【详解】(1)2121'()21(0)ax x f x ax x x x-++=-+=>当0a ≤时,恒有'()0f x >,所以()f x 在(0,)+∞单调递增; 当0a >时,令2210ax x -++=,则180a ∆=+>,则10x => ,20x =<(舍去),当x ∈时,'()0f x >,()f x在单调递增;当)x ∈+∞时,'()0f x <,()f x在)+∞单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞单调递增;当0a >时,()f x在单调递增,()f x在)+∞单调递减.(2)原命题等价于对任意0a <,2ln x ax x kx -+= 有且仅有一解, 即2ln x ax xk x-+=;令ln ()1x h x ax x=-+ 则21ln '()x h x a x -=-,332(ln )2''()x h x x -=,令''()0h x =得32x e = 所以)'(h x 在32(0,)e 上递减,在32(,)e +∞上递增,3232min331ln 1'()'()2e h x h e a a e e-==-=-- 当312a e ≤-时,'()0h x ≥,所以()h x 在R 上单调递增, 又当0x →时,ln ,0xax x→-∞-→,所以()h x →-∞; 当x →+∞时,ln ,xax x→+∞-→+∞,所以()h x →+∞. 所以()h x 在R 上必存在唯一零点,此时k ∈R ; 当3102a e -<<时,32min'()'()0h x h e =<,同时又当0x →时,21ln ,x a x -→+∞-→+∞, 所以'()h x →+∞;当x →+∞时,21ln 0,xa x-→-→+∞,所以'()h x →+∞.所以方程'()0h x =存在两根12,x x ,即2211221ln 1ln 0x ax x ax --=--= 且332212(0,),(,)x e x e ∈∈+∞,所以()h x 在1(0,)x 上单调递增,12(,)x x 上单调递减,在2(,)x +∞上单调递增, 所以()h x 的极大值为1()h x ,极小值为2()h x要使有方程2ln x ax xk x-+=唯一解,必有1()k h x >或2()k h x <,又2222222222ln ln 1ln 2ln 1()111x x x x h x ax x x x x --=-+=-+=+, 又322(,)x e ∈+∞ ,则2ln 1()1x x xϕ-=+,232ln '()0x x x ϕ-=<,所以()ϕx 在32(,)e +∞递减, 且x →+∞时,2ln 1()11x x xϕ-=+→,所以1k ≤; 同理1112ln 1()1x h x x -=+,321(0,)x e ∈,2ln 1()1x x x ϕ-=+在32(0,)e 递增, 3322322()()121x e eeϕϕ-<=+=+,所以3221k e -+≥.综上可得,1k ≤或3221k e -+≥. 【点睛】思路点睛:本题是一道利用导数研究函数性质,零点的综合应用题型,属于难题,一般利用导数研究函数零点或方程的实数根时,需根据题意构造函数()f x ,利用导数研究函数在该区间上的单调性,极值,端点值等性质,以及零点存在性定理等研究函数的零点.11.设函数223223()3,()33,22a a f x x x ax g x ax x a ⎛⎫=-+=-++-∈ ⎪⎝⎭R . (1)求函数()f x 的单调区间; (2)若函数[]()23()()()0,222a x f x g x x x ϕ=--∈在0x =处取得最大值,求a 的取值范围. 【答案】(1)当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭;(2)6,5⎛⎤-∞ ⎥⎝⎦.【分析】(1)先对()f x 求导,对导函数分3a ≥和3a <两种情况讨论即可.(2)因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,利用分离参数法转化为不等式恒成立问题,求函数的最值即可. 【详解】解:(1)()22()36313f x x x a x a '=-+=-+-, 当3a ≥时,()0f x '≥,所以()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,令()0f x '>,得1x <-或1x >+所以()f x 的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫++∞ ⎪ ⎪⎝⎭令()0f x '<,得11x <<,所以()f x 的单调递减区间为1⎛+ ⎝⎭. 综上,当3a ≥时,()f x 的单调递增区间为(,)-∞+∞,无单调递减区间;当3a <时,()f x 的单调递增区间为,1⎛-∞ ⎝⎭和1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为1⎛-+ ⎝⎭. (2)由题意得[]322133()(1)3,0,2222x ax a x x a x ϕ=+--+∈.因为函数()x ϕ在0x =处取得最大值,所以[]23223133(0)()(1)3,0,22222a x ax a x x a x ϕϕ==+--+∈,即[]3213(1)30,0,222ax a x x x +--∈, 当0x =时,显然成立. 当(]0,2x ∈时,得()21313022ax a x +--≤,即()()()()()22323232322221+2x x ax xx x x x ++==++-+-+--. 令(]22,4t x =+∈,则2()1,(2,4]th t t t =--∈, ()2210h t t '=+>恒成立,所以 2()1,(2,4]t h t t t =--∈是增函数,5()0,2h t ⎛⎤∈ ⎥⎝⎦,所以3625(2)12x x +--+,即65a ,所以a 的取值范围为6,5⎛⎤-∞ ⎥⎝⎦.【点睛】思路点睛:对含参数的函数求单调区间,根据导函数分类讨论是解决这类题的一般方法;已知函数的最大值求参数的取值范围,往往转化为不等式恒成立问题,如果能分离参数的话,分离参数是解决这类题的常用方法,然后再求函数的最值即可.12.已知函数()()()21ln 1f x x a x x =-+-+(0a >). (1)讨论函数()f x 的单调性; (2)若关于x 的不等式()1ln x xf x x x-'≥在()1+∞,上恒成立,求实数a 的取值范围. 【答案】(1)答案不唯一,见解析;(2)02a <≤. 【分析】(1)求出函数的导数,通过讨论a 的范围,判断函数的单调性即可; (2原不等式化为:ln 2x a x x ≤-在()1+∞,上恒成立,设()ln 2xh x x x=-,()1,x ∈+∞,求出函数的导数,再令()221ln g x x x =-+,根据函数的单调性求出a 的范围即可. 【详解】(1)()()()1121121x f x x a x a x x -⎛⎫⎛⎫'=-+-=-+⎪ ⎪⎝⎭⎝⎭()()()()12121a x x a x x x x---=--=,()0,x ∈+∞, 令()0f x '=,则2ax =或1x =,当02a <<时,函数()f x 在区间0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在区间,12a ⎛⎫⎪⎝⎭上单调递减, 当2a =时,函数()f x 在()0+∞,上单调递增, 当2a >时,函数()f x 在区间()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间1,2a ⎛⎫ ⎪⎝⎭上单调递减; (2)原不等式化为:ln 2xa x x≤-在()1+∞,上恒成立, 设()ln 2xh x x x=-,()1,x ∈+∞, ()2221ln 21ln 2x x x h x x x--+'=-=,令()221ln g x x x =-+,则()140g x x x '=+>, 所以()g x 在()1+∞,上单调递增,()()110g x g >=>,所以()0h x '>, 则函数()h x 在()1+∞,上单调递增,且()12h =,02a ∴<≤. 【点睛】方法点睛:本题考查利用导数研究单调性(含参),考查利用导数研究恒成立问题,解决第(2)问的关键是将原不等式转化为ln 2xa x x≤-在()1+∞,上恒成立,进而利用导数研究函数的单调性,从而得解,考查逻辑思维能力和运算求解能力,考查转化和划归思想,属于常考题. 13.已知函数()ln 2a g x x x x=++. (1)讨论()g x 的单调性;(2)当10a e <<时,函数()()222a f x xg x x x ⎛⎫=-+- ⎪⎝⎭在其定义域内有两个不同的极值点,记作1x 、2x ,且11x x <,若m 1≥,证明:112mm x x e +⋅>.【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求出函数()g x 的定义域,求得()222x x a g x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()g x 的单调递增区间和递减区间;(2)利用分析法得出所证不等式等价于()()()121212121ln0m x x x x x x x mx +-<>>+,令()120,1x t x =∈,构造函数()()()11ln m t ht t t m+-=-+,其中()0,1t ∈,利用导数证明出()0h t <对任意的()0,1t ∈恒成立,由此可证得原不等式成立. 【详解】(1)函数()ln 2ag x x x x=++的定义域为()0,∞+, ()()222122a x x ag x a R x x x+-'=+-=∈, 方程220x x a +-=的判别式18a ∆=+.①当18a ≤-时,0∆≤,()0g x '≥,()g x 在()0,∞+为增函数; ①当18a >-时,0∆>,方程220x x a +-=的两根为114x --'=,214x -'=, (i )当108a -<≤时,120x x ''<≤,对任意的0x >,()0g x '>,()g x 在()0,∞+为增函数; (ii )当0a >时,120x x ''<<,令()0g x '<,可得20x x '<<,令()0g x '>,可得2x x '>. 所以,()g x在1,4⎛⎫+∞ ⎝⎪⎪⎭为增函数,在10,4⎛⎤⎥ ⎝⎦为减函数. 综上所述:当0a ≤时,()g x 的增区间为()0,∞+,无减区间;当0a >时,()g x的增区间为1,4⎛⎫+∞ ⎝⎪⎪⎭,减区间10,4⎛⎤⎥ ⎝⎦; (2)证明:()()2ln 2a f x x x x x a a R =--+∈,所以()ln f x x ax '=-, 因为()f x 有两极值点1x 、2x ,所以11ln x ax =,22ln x ax =, 欲证112mm x x e +⋅>等价于要证:()112ln ln mm x x e +⋅>,即121ln ln m x m x +<+,所以()1212121ln ln m x m x ax max a x mx +<+=+=+,因为m 1≥,120x x <<,所以原不等式等价于要证明121ma x mx +>+.又11ln x ax =,22ln x ax =,作差得()1122lnx a x x x =-,1212ln x x a x x ∴=-, 所以原不等式等价于要证明()()112211212212ln11ln x m x x x x m x x x mx x x mx +-+>⇔<-++, 令12x t x =,()0,1t ∈,上式等价于要证()()11ln m t t t m+-<+,()0,1t ∈,令()()()11ln m t ht t t m+-=-+,所以()()()()221t t m h t t t m --'=+, 当m 1≥时,20t m -<,则()0h t '>,所以()h t 在()0,1上单调递增,因此()()10h t h <=,()()11ln m t t t m+-∴<+在()0,1t ∈上恒成立,所以原不等式成立.【点睛】利用导数研究函数的单调性,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键. 14.已知实数0a >,函数()22ln f x a x x x=++,()0,10x ∈. (1)讨论函数()f x 的单调性;(2)若1x =是函数()f x 的极值点,曲线()y f x =在点()()11,P x f x 、()()22,Q x f x (12x x <)处的切线分别为1l 、2l ,且1l 、2l 在y 轴上的截距分别为1b 、2b .若12//l l ,求12b b -的取值范围.【答案】(1)答案见解析;(2)6ln 4,05⎛⎫- ⎪⎝⎭. 【分析】(1)对函数求导,按照110a ≥、1010a<<分类,求得()0f x '<、()0f x '>的解集即可得解; (2)由极值点的性质可得1a =,由导数的几何意义可得1b 、2b 及()12122x x x x =+,转化条件为1211212221ln 1x x x b b x x x ⎛⎫- ⎪⎝⎭-=++,构造新函数结合导数即可得解. 【详解】(1)由题意,()()()()222212010ax ax a f x a x x x x+-'=-++=<<, 0a >,010x <<,①20ax +>,①当110a ≥,即10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<,()f x ∴在()0,10上单调递减; ①当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<;当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫⎪⎝⎭上单调递增.综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减;当1,10a ⎛⎫∈+∞⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增;(2)①1x =是()f x 的极值点,①()10f '=,即()()210a a +-=, 解得1a =或2a =-(舍), 此时()2ln f x x x x =++,()2211f x x x'=-++, 1l ∴方程为()1112111221ln 1y x x x x x x x ⎛⎫⎛⎫-++=-++-⎪ ⎪⎝⎭⎝⎭, 令0x =,得1114ln 1b x x =+-, 同理可得2224ln 1b x x =+-,12//l l ,221122212111x x x x ∴-++=-++,整理得:()12122x x x x =+,12122x x x ∴=-, 又12010x x <<<,则1112102x x x <<-,解得1542x <<,()1212211111211221222221244ln ln ln 1x x x x x x x x xb b x x x x x x x x x ⎛⎫- ⎪--⎝⎭∴-=+=+=+++,令12x t x =,则1111211,1224x x t x x -⎛⎫=⋅=-∈ ⎪⎝⎭, 设()()211ln ,,114t g t t t t -⎛⎫=+∈ ⎪+⎝⎭,则()()()()222141011t g t t t t t -'=-+=>++, ()g t ∴在1,14⎛⎫⎪⎝⎭上单调递增,又()10g =,16ln 445g ⎛⎫=-⎪⎝⎭,()6ln 4,05g t ⎛⎫∴∈- ⎪⎝⎭, 即12b b -的取值范围为6ln 4,05⎛⎫- ⎪⎝⎭. 【点睛】关键点点点睛:解决本题的关键是利用导数的几何意义转化条件,再构造新函数,结合导数即可得解. 15.已知函数32()23(1)6()f x x m x mx x R =+++∈. (1)讨论函数()f x 的单调性;(2)若(1)5f =,函数2()()(ln 1)0f x g x a x x=+-≤在(1,)+∞上恒成立,求证:2a e <. 【答案】(1)答案不唯一,见解析(2)证明见解析 【分析】(1)求导后分解因式,分类讨论即可得到函数的单调性; (2)由题意求出0m =,转化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,利用导数求出23()(1)ln 1x h x x x +=>+的最小值,即可求解.【详解】 (1)()()()'22661661fx x m x m x m x m ⎡⎤=+++=+++⎣⎦6(1)()x x m =++若1m =时,()0f x '≥,()f x 在R 上单调递增;若1m 时,1m -<-,当x m <-或1x >-时,()0f x '>,()f x 为增函数, 当1m x -<<-时,()0f x '<,()f x 为减函数,若1m <时,1m ->-,当1x <-或x m >-时,()0f x '>,()f x 为增函数, 当1x m -<<-时,()0f x '<,()f x 为减函数. 综上,1m =时,()f x 在R 上单调递增;当1m 时,()f x 在(,)-∞-m 和(1,)-+∞上单调递增,在(,1)m --上单调递减; 当1m <时,()f x 在(,1)-∞-和(,)m -+∞上单调递增,在(1,)m --上单调递减. (2)由(1)23(1)65f m m =+++=,解得 0m =, 所以32()23f x x x =+,由(1,)x ∈+∞时,ln 10x +>,可知()(ln 1)230g x a x x =+--≤在(1,)+∞上恒成立可化为23ln 1x a x +≤+在(1,)x ∈+∞上恒成立,设23()(1)ln 1x h x x x +=>+, 则22132(ln 1)(23)2ln ()(ln 1)(ln 1)x x x x x h x x x +-+⨯-'==++, 设3()2ln (1)x x x x ϕ=->,则 223()0x x xϕ'=+>,所以()ϕx 在(1,)+∞上单调递增, 又3ln163(2)2ln 2022ϕ-=-=<,3()20e eϕ=-> 所以方程()0h x '=有且只有一个实根0x ,且 00032,2ln .x e x x <<=所以在0(1,)x 上,()0h x '<, ()h x 单调递减,在0(,)x +∞上,()0,()h x h x '>单调递增,所以函数()h x 的最小值为0000002323()223ln 112x x h x x e x x ++===<++, 从而022.a x e ≤< 【点睛】关键点点睛:解答本题的难点在于得到232ln ()(ln 1)x x h x x -'=+后,不能求出()h x '的零点,需要根据()h x '的单调性及零点存在定理得到0x 的大致范围,再利用0x 的范围及0032ln x x =证明不等式. 16.设()1,,54m h x x x x ⎡⎤=+∈⎢⎥⎣⎦,其中m 是不等于零的常数, (1)写出()4h x 的定义域; (2)求()h x 的单调递增区间;【答案】(1)15,164⎡⎤⎢⎥⎣⎦;(2)答案见解析. 【分析】(1)由已知得出1454x ⎡⎤∈⎢⎥⎣⎦,,解出x 可得()4h x 的定义域; (2)对函数()h x 求导,按0m <,1016m <≤,12516m <<和25m ≥四种情况,分别求出函数的单调递增区间即可. 【详解】(1)①1454x ⎡⎤∈⎢⎥⎣⎦,,①15164x ⎡⎤∈⎢⎥⎣⎦, ①()4h x 的定义域为15164⎡⎤⎢⎥⎣⎦, (2)()21m h x x '=-0m <时,()0h x '>恒成立,()h x 在154⎡⎤⎢⎥⎣⎦,递增;0m >时,令()0h x '>,解得x >x <(,-∞,)+∞14≤即1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增当154<<即12516m <<时,()h x 在⎤⎦递增5即25m ≥时,()h x 在154⎡⎤⎢⎥⎣⎦,无递增区间 综上可得:0m <时,()h x 在154⎡⎤⎢⎥⎣⎦,递增; 1016m <≤时,()h x 在154⎡⎤⎢⎥⎣⎦,递增; 12516m <<时,()h x 在⎤⎦递增 【点睛】关键点点睛:本题考查函数的定义域,考查导数研究函数的单调性,解决本题的关键是令()0h x '>求出函数的单调增区间,讨论定义域的区间端点和单调区间的关系,考查了学生分类讨论思想和计算能力,属于中档题. 17.已知1,12k ⎛⎤∈⎥⎝⎦,函数2()(1)x f x x e kx =--.( 2.71828e =为自然对数的底数).(1)求函数()f x 的单调区间; (2)求函数()f x 在[0,]k 上的最大值.【答案】(1)单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k ;(2)3(1)k k e k --.【分析】(1)由题得()(2)xf x x e k '=-,再利用导数求函数的单调区间得解;(2)证明0(2)ln k k <<,列出表格得出单调区间,比较区间端点与极值即可得到最大值. 【详解】(1)由题得()(1)2(2)xxxf x e x e kx x e k '=+--=-,令0()0,20x x f x e k >⎧'>∴⎨->⎩或020x x e k <⎧⎨-<⎩,因为1,12k ⎛⎤∈⎥⎝⎦,所以122k <≤, 所以不等式组的解为ln 2x k >或0x <,所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,; 令0()0,20x x f x e k >⎧'<∴⎨-<⎩或020x x e k <⎧⎨->⎩,解之得0ln 2x k <<,所以函数()f x 的单调减区间为(0,ln 2)k ;所以函数()f x 的单调增区间为(ln 2,),(0)k +∞-∞,,单调减区间为(0,ln 2)k . (2)令()(2)k k ln k ϕ=-,1(2k ∈,1],11()10k k k kϕ-'=-=所以()k ϕ在1(2,1]上是减函数,ϕ∴(1)1()()2k ϕϕ<,112()2ln k k ϕ∴-<<. 即0(2)ln k k <<所以()'f x ,()f x 随x 的变化情况如下表:(0)1f =-,()(0)f k f -3(1)(0)k k e k f =--- 3(1)1k k e k =--+ 3(1)(1)k k e k =--- 2(1)(1)(1)k k e k k k =---++ 2(1)[(1)]k k e k k =--++。
专题:函数单调性的证明证明函数单调性的方法:要证明函数的单调性,需要根据单调性的定义来进行证明。
目前高一阶段唯一的方法是:1.在给定区间上任取两个自变量x1、x2,且x1<x2.2.将f(x1)与f(x2)作差或作商(分母不为零)。
3.比较差值(商)与1的大小。
4.下结论,确定函数的单调性。
在做差比较时,常常需要将差化为积,可以使用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。
常见的类型有两种:一、已知函数的解析式:例1:证明函数f(x)=(x-1)/(x+1)在x∈(1,+∞)上单调递减。
例2:证明函数f(x)=x^3+x/(x+1)在x∈R时单调递增。
例3:证明函数f(x)=x-1在x∈[2,+∞)上单调递增。
例4:讨论函数f(x)=(x+1)/(x-1)在(1,+∞)的单调性,并求最小值。
例5:求函数f(x)=1/[(x-1)(x+2)]的单调区间。
练:1.证明函数f(x)=x+a在(a,+∞)单调递增。
2.讨论函数f(x)=1+x/(x-a)的单调性。
二、抽象函数的单调性:抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商。
这一点可观察题意中f(x)与比较,应作差;与1比较,应作商。
例如:例1:已知函数f(x)满足x、y∈R时,f(x+y)=f(x)+f(y)恒成立,且当x>0时,f(x)>0.证明:f(x)在R上单调递增。
例2:已知函数f(x)满足x、y∈R时,f(xy)=f(x)+f(y)恒成立,且当x>1时,f(x)>0.证明:f(x)在(0,+∞)上单调递增。
例3:已知函数f(x)满足x、y∈R时,f(xy)=f(x)f(y)恒成立,且当x>1时,f(x)>1.若f(x)≠0.证明:f(x)在(0,+∞)上单调递增。
练:1.已知函数f(x)对于任意的x、y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0;f(1)=-3.求证:f(x)在R 上是减函数。
专题03函数的单调性和最值的处理途径【高考地位】函数的单调性是函数的一个重要性质,几乎是每年必考的内容,例如判断和证明单调性、求单调区间、利用单调性比较大小、求值域、最值或解不等式.方法一定义法例1已知函数()log (2)log (4)a a f x x a a x =-+-(0a >且1a ≠).(1)当1a >时,写出函数()f x 的单调区间,并用定义法证明;(2)当01a <<时,若11()log 48a f x a ⎛⎫≥+ ⎪⎝⎭恒成立,求实数a 的取值范围.【答案】(1)增区间为()2,3a a ,减区间为()3,4a a ;证明见解析;(2)10,2⎛⎤⎥⎝⎦.【解析】(1)求得()f x 的定义域,运用复合函数的单调性,结合对数函数和二次函数的单调性,可得所求单调区间,再由单调性的定义证明;(2)由二次函数的值域和对数函数的单调性,求得()f x 的最小值,解不等式112log 48a a ⎛⎫≥+ ⎪⎝⎭,可得所求范围.【详解】(1)由2040x a a x ->⎧⎨->⎩可得24a x a <<,则()f x 的定义域为()2,4a a ,()log (2)log (4)log (2)(4)a a a f x x a a x x a a x =-+-=--22log (3)a x a a ⎡⎤=--+⎣⎦,当1a >时,()f x 的增区间为()2,3a a ,减区间为()3,4a a .证明:设()22()3g x x a a =--+,()g x 的增区间为(),3a -∞,减区间为()3,a +∞,当1a >时,设1223a x x a <<<,可得()()12g x g x <,()()12log log []a a g x g x <⎡⎤⎣⎦,即()()12f x f x <,可得()f x 在()2,3a a 递增;设1234a x x a <<<,可得()()12g x g x >,()()12log log []a a g x g x >⎡⎤⎣⎦,即()()12f x f x >,可得()f x 在()3,4a a 递减.(2)由01a <<,()2223x a a a --+≤,可得2()log 2a f x a ≥=,所以112log 48a a ⎛⎫≥+ ⎪⎝⎭,即为211048a a --≤,解得102a <≤,即a 的取值范围是10,2⎛⎤⎥⎝⎦.【点睛】方法点睛:利用定义证明函数单调性的方法(1)取值:设12,x x 是该区间内的任意两个值,且12x x <;(2)作差变形:即作差,即作差12()()f x f x -,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差12()()f x f x -的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.例2已知定义域为R 的函数12()12xxf x -=+.(1)试判断函数12()12xxf x -=+在R 上的单调性,并用函数单调性的定义证明;(2)若对于任意t ∈R ,不等式22(2)()0f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)函数()f x 在R 上单调递减,证明见解析;(2)1,2⎛⎫-∞- ⎪⎝⎭.【解析】(1)利用证明函数单调性的步骤,取值、作差、变形、等号、下结论即可证明()f x 在R 上的单调性;(2)首先利用定义证明()f x 的奇偶性,再根据奇偶性和单调性脱掉f ,转化为关于t 的一元二次不等式恒成立,分离t 转化为最值问题即可求解.【详解】(1)函数12()12xxf x -=+在R 上单调递减.证明如下:任取12,x x ∈R ,且12x x <,122112*********(22)()()1212(12)(12)x x x x x x x x f x f x ----=-=++++,因为12x x <,所以1222x x <,1120x +>,2120x +>,即12()()f x f x >,故函数12()12xxf x -=+在R 上单调递减.(2)因为1221()()1221x x x x f x f x -----===-++,故12()12xxf x -=+为奇函数,所以222(2)()()f t t f t k f k t -<--=-,由(1)知,函数()f x 在R 上单调递减,故222t t k t ->-,即2220t t k -->对于任意t ∈R 恒成立,所以222k t t <-,令()222g t t t =-,则()min k g t <,因为()22111222222g t t t t ⎛⎫=-=--≥- ⎪⎝⎭,所以()min 12g t =-,所以12k <-,即实数k 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.【点睛】方法点睛:定义法判定函数()f x 在区间D 上的单调性的一般步骤1.取值:任取1x ,2x D ∈,规定12x x <,2.作差:计算()()12f x f x -,3.定号:确定()()12f x f x -的正负,4.得出结论:根据同增异减得出结论.【变式演练1】下列函数中是偶函数,且在区间(0,1)上单调递增的是()A .22y x =-B .2y x=C .1||||y x x =+D .2||x y x =【答案】AD 【解析】利用函数的奇偶性的定义判断奇偶性,根据函数解析式判断单调性.【详解】A ,因为()()()2222f x x x f x -=--=-=,22y x =-是偶函数,在区间(0,1)上为增函数,符合题意;B ,因为()()22x x f x f x =--=--=,2y x=是奇函数,且在区间(0,1)上为减函数,不符合题意;C ,因为()()11||||||||f x x x f x x x -=-+=+=-,1||(0)||y x x x =+≠是偶函数,当(0,1)x ∈时,1y x x=+单调递减,不符合题意;D ,因为()()22||||x x f x f x x x -===-,2(0)||x y x x =≠是偶函数,且在区间(0,1)上为增函数,符合题意.故选:AD 例3定义在[1,1]-上的奇函数()f x ,对任意,0m n ≠时,恒有()()0f m f n m n+>+.(1)比较1()2f 与1(3f 大小;(2)判断()f x 在[1,1]-上的单调性,并用定义证明;(3)若810a x -+>对满足不等式11()(2)024f x f x -+-<的任意x 恒成立,求a 的取值范围.【答案】(1)11()(23f f >;(2)函数()f x 在[1,1]-上为单调递增函数,证明见解析;(3)4a >.【解析】试题解析:(1)利用作差法,即可比较1()2f 与1()3f 大小;(2)利用单调性定义证明步骤,即可得出结论;(3)先确定x 的范围,再分离参数求最值,即可求a 的取值范围.试题解析:(1)第一步,由()()0f m f n m n+>+得出031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f :∵11()023+-≠,031213121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f ,∴03121>⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛f f ,第二步,由奇偶性得出结论:∴11()()23f f >--∴11()()23f f >.(2)第一步,取值、作差:任取12[1,1]x x ∈-,且12x x <,21212121212121()()()()()()()()()f x f x f x f x f x f x x x x x x x x x -+--=-=--+-.第二步,判断符号:∵2121()()0()f x f x x x +->+-,210x x ->,∴21()()0f x f x ->,第三步,下结论:∴函数()f x 在[1,1]-上为单调递增函数.(3)4a >.考点:函数奇偶性与单调性的综合问题.【变式演练2】已知函数()21xf x x =+.(1)判断并证明函数()f x 的奇偶性;(2)判断当()1,1x ∈-时函数()f x 的单调性,并用定义证明;(3)若()f x 定义域为()1,1-,解不等式()()210f x f x -+<.【答案】(1)奇函数(2)增函数(3)1{|0}3x x <<【解析】试题解析:(1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系,如果对定义域上的任意x ,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。
专题:抽象函数的单调性与奇偶性的证明抽象函数单调性与奇偶性特殊模型:正比例函数$f(x)=kx$($k≠0$)幂函数$f(x)=x^n$($n$为正整数)指数函数$f(x)=a^x$($a>0$且$a≠1$)对数函数$f(x)=\log_a x$($a>0$且$a≠1$)正、余弦函数$f(x)=\sin x$,$f(x)=\cos x$正切函数$f(x)=\tan x$余切函数$f(x)=\cot x$抽象函数:f(x+y)=f(x)+f(y)$f(xy)=f(x)f(y)$或$\frac{f(x)}{f(y)}$f(x+y)=f(x)f(y)$或$f(x-y)=\frac{f(x)}{f(y)}$f(xy)=f(x)+f(y)$或$f(x)=f(x)-f(y)$1.已知$f(x+y)+f(x-y)=2f(x)f(y)$,对一切实数$x$、$y$都成立,且$f(0)≠0$,求证$f(x)$为偶函数。
证明:令$x=0$,则已知等式变为$f(y)+f(-y)=2f(0)f(y)$……①在①中令$y=0$则$2f(0)=2f(0)$,由$f(0)≠0$得$f(0)=1$f(y)+f(-y)=2f(y)$,即$f(-y)=f(y)$,故$f(x)$为偶函数。
2.奇函数$f(x)$在定义域$(-1,1)$内递减,求满足$f(1-m)+f(1+m)<0$的实数$m$的取值范围。
解:由$f(1-m)+f(1+m)<0$得$f(1-m)<-f(1+m)$。
f(x)$为函数,∴$f(1-m)<f(m-1)$because f(x)$在$(-1,1)$内递减,∴$-1<1-m<1$,$-1<m-1<1$,即$-1<m<1$又$f(1-m)>f(m-1)$,故$m<0$,所以$-1<m<0$3.如果$f(x)=ax^2+bx+c(a>0)$对任意的$t$有$f(2+t)=f(2-t)$,比较$f(1)$、$f(2)$、$f(4)$的大小。
函数单调性的证明
函数的单调性需抓住单调性定义来证明,这是目前高一阶段唯一的方法。
一、证明方法步骤为:
① 在给定区间上任取两个自变量1x 、2x 且1x <2x
② 将()1f x 与()2f x 作差或作商(分母不为零)
③ 比较差值(商)与0(1)的大小
④ 下结论,确定函数的单调性。
在做差比较时,我们常将差化为积讨论,常用因式分解(整式)、通分(分式)、有理化(无理式)、配方等手段。
二、常见的类型有两种:
(一)已知函数的解析式:
例1:证明:函数()1=x-1
f x 在x ∈(1,+∞)单调递减
例2:证明:函数()3
=x +x+1x f x R 在∈时单调递增
例3:证明:函数()x [1+f x ∞∈,)时单调递增
例4:讨论函数()1=x+
1+x-1
f x ∞在(,)的单调性,并求最小值
例5:求函数()x+2=
x-1
f x 的单调区间
练习:1、证明函数()a =x+a 0x
f x ∞(>)单调递增
2、讨论函数()f x 的单调性 (二)抽象函数的单调性:
抽象函数的单调性关键是抽象函数关系式的运用,同时,要注意选择作差还是作商,这一点可观察题意中()f x 与0比较,应作差;与1比较,应作商。
如下三例:
例1:已知函数f (x ) 满足x 、y ∈R 时,f (x +y )=f (x )+f (y ) 恒成立,且当x >0时,f (x )>0.证明:f (x )在R 上单调递增.
例2:已知函数f (x ) 满足x 、y ∈R 时,f (xy )=f (x )+f (y ) 恒成立,且当x >1时,f (x )>0.证明:f (x )在(0,+∞)上单调递增.
例3:已知函数f (x ) 满足x 、y ∈R 时,f (xy )=f (x )f (y ) 恒成立,且当x >1时,f (x )>
1.若f (x )≠0.证明:f (x )在(0,+∞)上单调递增.
练习:
1、已知函数()f x 对于任意的x 、y ∈R ,总有
()()()()()2+=+y x 00=-.3
y 1f x f f x f x f ,且当>时,<; (1)求证:()f x 在R 上是减函数
(2)求()f x 在[-3,3]上的最大值与最小值
2、已知函数()()()()m n m+n m n +=+1f x R R f f f 的定义域为,且、∈,恒有,且=1-20f ⎛⎫ ⎪⎝⎭,当x >1-2
时,()f x >0. (1)求证:()f x 是单调递增函数
(2)求()f x 在[-2,2]的最大值与最小值.
3、定义在R 上的函数()f x 恒为正,且满足()()()+y =y f x f x f ,当x >0时,()f x >1.
(1)证明:()f x 在R 上单调递增 .
(2)若函数()f x 的定义域为[-1,1]时,解不等式()2-1f x >()2f x
4、函数()f x 的定义域为R ,对于任意的a 、b ∈R 皆有()()()+=b +b 1a a+f f f ,且x >0时, ()f x >1
(1) 求证:()f x 是R 上的增函数
(2) 若()()
243m -m-2=53f f ,解不等式<。