当前位置:文档之家› 数字图像处理 空域滤波 实验报告

数字图像处理 空域滤波 实验报告

数字图像处理 空域滤波 实验报告
数字图像处理 空域滤波 实验报告

数字图像处理实验三空域滤波实验报告一、实验目的

?了解空域滤波的方法;

?掌握几种模板的基本原理。

二、实验内容

?使用函数fspecial( ) 生成几种特定的模板;

?使用函数imfilter( ) 配合模板对图象数据进行二维卷积;

?比较各种滤波器的效果。

三、实验步骤及结果

(1)线性平滑(低通)滤波器

1.用h=fspecial(‘average’) 得到的h 为3×3的邻域平均模板,然后用h进行平滑处理。x=imread(‘cameraman.tif’);

h=fspecial(‘average’) ;

%h=fspecial(‘average’,[7,7]);

y=imfilter(x,h);

figure(1);

imshow(x)

figure(2);

imshow(y)

原图:

滤波效果:

2. 改变模板大小重试

x=imread('cameraman.tif'); %h=fspecial(‘average’);

h=fspecial('average',[7,7]); y=imfilter(x,h);

figure(1);

imshow(x)

figure(2);

imshow(y)

原图:

处理效果:

Gaussian平滑

改变fspecial( )的参数为高斯函数,再进行同样的平滑处理,观察其结果。

x=imread(‘cameraman.tif’);

h=fspecial(‘gaussian’)

//3×3的邻域平均模板(7×7的邻域平均模板h=fspecial(‘gaussian’,[7,7]))

y=imfilter(x,h);

实际程序:

x=imread('cameraman.tif');

h=fspecial('gaussian')

%%3×3的邻域平均模板(7×7的邻域平均模板h=fspecial(‘gaussian’,[7,7])) y=imfilter(x,h);

subplot(121);

imshow(x);

subplot(122);

imshow(y);

模板大小为[3,3],左为原图,右为处理后效果

模板大小为[7,7],左为原图,右为处理后效果

模板大小为[11,11],左为原图,右为处理后效果

改变模板大小为[7,7]、[9,9]、[11,11],观察实验得到的结构有何变化?

结果:高斯模板对结果影响较小,为什么?

答:简单地说,这是由于高斯滤波中越靠近中心点的点的权重越大,在很大程度上减弱了较远点的干扰,所以即使模版大小较大,其效果仍远远好过“不知亲疏远近变化”的邻域平均模板。

具体地说,

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。

高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值。

一般的模板为3×3或5×5大小,其权值分布如下图:

若使用3×3模板,则计算公式如下:

g(x,y)={f(x-1,y-1)+f(x-1,y+1)+f(x+1,y-1)+f(x+1,y+1)+[f(x-1,y)+f(x,y-1)+f(x+1,y)+f(x,y+1)]*2+f (x,y)*4}/16;

其中,f(x,y)为图像中(x,y)点的灰度值,g(x,y)为该点经过高斯滤波后的值。

用mesh 函数直观观察模板

h1=fspecial('gaussian',100,3);

[x y]=meshgrid(1:100);

mesh(x,y,h1);

h2=fspecial('gaussian',100,10);

figure

mesh(x,y,h2)

(2)非线性平滑滤波器

中值(median)滤波器是非线性滤波器的一种,它工作原理如下:

1. 将模板在图中漫游,并将模板中心与图中某个象素位置重合;

2. 读取模板下各对应象素的灰度值;

3. 将这些灰度值从小到大排成一列;

4. 找出这些值中排在中间的1个;

5. 将这个中间值赋给对应模板中心位置的象素。

非线性中值滤波步骤

对图象添加胡椒盐噪声(salt&pepper),然后分别用前面的均值滤波器和中值滤波器medfilt2( ) 进行去噪声处理,并给出比较结果。

中值滤波和均值滤波代码:

x=imread('eight.tif');

h=imnoise(x,'salt & pepper',0.02);%改变噪声的大小试一试?

y=medfilt2(h);

subplot(2,2,1)

imshow(x)

subplot(2,2,2)

imshow(y)

y1=fspecial(‘average’) ;

subplot(2,2,3)

imshow(x)

subplot(2,2,4)

imshow(y1)

椒盐噪声大小是0.02,左侧两图是原图,右上是中值滤波,右下是均值滤波

椒盐噪声大小是0.10,左侧两图是原图,右上是中值滤波,右下是均值滤波

发现中值滤波对图像边缘的噪声无能为力,而均值滤波则可以较好地去除边缘噪声。对图像的清晰度,只能说差别不大,半斤八两,都勉强及格吧。

(3)线性锐化滤波器

线性锐化滤波器的模板为h=[ -1 -1 -1; -1 8 -1;-1 -1 -1;]

用该模板对图象进行锐化处理;

代码:

x=imread('cameraman.tif');

h=[ -1 -1 -1; -1 8 -1; -1 -1 -1 ]

y=imfilter(x,h);

subplot(1,2,1)

imshow(x)

subplot(1,2,2)

imshow(y)

也可以fspecial('laplacian') 函数得到锐化模板;

代码:

x=imread('cameraman.tif');

h= fspecial('laplacian')

y=imfilter(x,h);

subplot(1,2,1)

imshow(x)

subplot(1,2,2)

imshow(y)

sobel算子

索贝尔(sobel)算子h1=[ -1 0 1;-2 0 2;-1 0 1;]

h2=[ 1 2 1; 0 0 0;-1 -2 -1;] 分别使用以上算子对图象进行处理可以得到图象的边缘。

x=imread('cameraman.tif');

h1=[ -1 0 1; -2 0 2;-1 0 1;]

y=imfilter(x,h);

subplot(1,2,1)

imshow(x)

subplot(1,2,2)

imshow(y)

x=imread('cameraman.tif');

h2=[ 1 2 1; 0 0 0;-1 -2 -1;]

y=imfilter(x,h2);

subplot(1,2,1)

imshow(x)

subplot(1,2,2)

imshow(y)

Canny算子

Help edge

‘c anny’、sobel、Prewitt、LOG等

Canny边缘检测算子是John F. Canny于1986 年开发出来的一个多级边缘检测算法。

Sobel算子主要用作边缘检测。在技术上,它是一离散性差分算子,用来运算图像亮度函数的梯度之近似值。在图像的任何一点使用此算子,将会产生对应的梯度矢量或是其法矢量

Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到

极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用。其原理是在图像空间利用两个方向模板与图

像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。四、实验总结

本次实验重点增强了一些关于滤波的认识,对于滤波器的用法也有了入门,对各种滤波器的性能特性有了更深的了解。感谢老师给我们带来了一次生动有趣的实验课。

有源滤波实验报告

姓名: 学号:2009118125 班级:电工二班 实验十一 有源滤波器 实验目的 1. 掌握有缘滤波器的构成及其特性 2. 学习有缘滤波器的幅频特性的测量方法 实验仪器 数字示波器 信号发生器 交流毫伏表 直流电源 预习要求 1. 复习有缘滤波器的概念、工作原理。 2. 分析计算图5-11-1、图5-11-2电路的截止频率,图5-11-3电路 的中心频率。 3. 画出三个电路的幅频特性曲线 实验原理 有源滤波器又称作有源选频电路,通常用继承运放和电阻,电容网络构成。它的作用是让指定频段信号通过,而将其余频段信号加以抑制或大幅度衰减。分低通、高通、带通、带阻等电路。 1. 低通滤波电路 低通滤波器是指通过低频而抑制高频信号的滤波器,如图5-11-1所示为二阶低通滤波器。 传输函数: 200 11()f A j Q ωωωω-+ 1 (1)f f R A R =+ 1( )3f Q A =- 01 RC ω= 根据上式可知,当Q 取不同值时,可使电路的频率特性具有不同的特点。一般Q 取0.7。 2. 高通滤波器 高通滤波器的功能是使频率高于某一数值(如fo )的信号通过,而低于fo 的信号不能通过。图5-11-2电路为二阶高通滤波器。

其频率特性为:200()11()f A H j j Q ωωωωω = -- 1 1f f R A R =+ 13f Q A = - 01RC ω = 3. 带通滤波器 带通滤波器可由低通滤波器和高通滤波器构成,也可以直接由集成运放外加RC 网络构成,不同的构成方法,其滤波特性也不同。带通滤波器的功能是指定频段内的信号通过而衰减其它频段的信号。 4.带阻滤波器 带阻滤波器又称陷波器,它衰减指定频段的信号,而让其它频段的信号通过。带阻滤波器可由低通电路和高通电路构成,也可由集成运放外加RC 网络构成。常用的带阻滤波器是由双T 网络构成的,如图5-11-3所示。 其幅频特性为:

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

北航卡尔曼滤波课程-捷联惯导静基座初始对准实验

卡尔曼滤波实验报告 捷联惯导静基座初始对准实验 一、实验目的 ①掌握捷联惯导的构成和基本工作原理; ②掌握捷联惯导静基座对准的基本工作原理; ③了解捷联惯导静基座对准时的每个系统状态的可观测性; ④了解双位置对准时系统状态的可观测性的变化。 二、实验原理 选取状态变量为:[]T E N E N U x y x y z X V V δδεεε=ψψψ??,其

中导航坐标系选为东北天坐标系,E V δ为东向速度误差,N V δ为北向速度误差,E ψ为东向姿态误差角,N ψ为北向姿态误差角,U ψ为天向姿态误差角,x ?为东向加速度偏置,y ?为北向加速度偏置,x ε为东向陀螺漂移,y ε为北向陀螺漂移,z ε为天向陀螺漂移。则系统的状态模型为: X AX W =+ (1) 其中, 1112212211 12 1321222331323302sin 000002sin 000000000sin cos 0000sin 000000cos 0000000000000000000000000000000000000000000000000000 0L g C C L g C C L L C C C L C C C L C C C A Ω-? ? ??-Ω????Ω-Ω? ?-Ω????Ω=? ?????? ?????????? ? [00000]E N E N U T V V W W W W W W δδψψψ=,E D V W W δψ 为零均值高斯 白噪声,分别为加速度计误差和陀螺漂移的噪声成分,Ω为地球自转角速度,ij C 为姿态矩 阵n b C 中的元素,L 为当地纬度。 量测量选取两个水平速度误差:[ ]T E N Z V V δδ=,则量测方程为: 10000000000100000000E E N N V X V δηδη???? ??=+???????????? (2) 即Z HX η=+ 其中,H 为量测矩阵,[]T E N ηηη=为量测方程的随机噪声状态矢量,为零均值高 斯白噪声。 要利用基本卡尔曼滤波方程进行状态估计,需要将状态方程和量测方程进行离散化。 系统转移矩阵为: 2323/1111102!3!! n n k k k k k k n T T T I TA A A A n ∞ -----=Φ=++++=∑ (3)

FIR数字滤波器设计与使用

实验报告 课程名称:数字信号处理指导老师:刘英成绩:_________________实验名称: FIR数字滤波器设计与使用同组学生姓名:__________ 一、实验目的和要求 设计和应用FIR低通滤波器。掌握FIR数字滤波器的窗函数设计法,了解设计参数(窗型、窗长)的影响。 二、实验内容和步骤 编写MATLAB程序,完成以下工作。 2-1 设计两个FIR低通滤波器,截止频率 C =0.5。 (1)用矩形窗,窗长N=41。得出第一个滤波器的单位抽样响应序列h 1(n)。记下h 1 (n) 的各个抽样值,显示h 1 (n)的图形(用stem(.))。求出该滤波器的频率响应(的N 个抽样)H 1(k),显示|H 1 (k)|的图形(用plot(.))。 (2)用汉明窗,窗长N=41。得出第二个滤波器的单位抽样响应序列h 2(n)。记下h 2 (n) 的各个抽样值,显示h 2(n)的图形。求出滤波器的频率响应H 2 (k),显示|H 2 (k)|的 图形。 (3)由图形,比较h 1(n)与h 2 (n)的差异,|H 1 (k)|与|H 2 (k)|的差异。 2-2 产生长度为200点、均值为零的随机信号序列x(n)(用rand(1,200)0.5)。显示x(n)。 求出并显示其幅度谱|X(k)|,观察特征。 2-3 滤波 (1)将x(n)作为输入,经过第一个滤波器后的输出序列记为y 1(n),其幅度谱记为|Y 1 (k)|。 显示|X(k)|与|Y 1 (k)|,讨论滤波前后信号的频谱特征。 (2)将x(n)作为输入,经过第二个滤波器后的输出序列记为y 2(n),其幅度谱记为|Y 2 (k)|。 比较|Y 1(k)|与|Y 2 (k)|的图形,讨论不同的窗函数设计出的滤波器的滤波效果。 2-4 设计第三个FIR低通滤波器,截止频率 C =0.5。用矩形窗,窗长N=127。用它对x(n)进行滤波。显示输出信号y

电路实验报告12 有源滤波器设计

课程名称:电路与电子技术实验II 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验类型:________________同组学生姓名:__________ 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备(必填)四、操作方法和实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1、掌握有源滤波器的分析和设计方法。 2、学习有源滤波器的调试、幅频特性的测量方法。 3、了解滤波器的结构和参数对滤波器性能的影响。 4、用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。 二、实验内容和原理 1、滤波器的5个主要指标: (1) 传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。 (2) 通带增益A v p:为一个实数。(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。 (3) 固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。 (4) 通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。 (5) 品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。 2、有源滤波器的设计流程: 设计一个有源低通滤波器时,一般可以先按照预定的性能指标,选择一定的电路形式,然后写出电路的电压传递函数,计算并选定电路中的各个元器件参数。最后再通过实验进行调试,确定实际的器件参数。 三、实验器材 运放LM358、 四、操作方法和实验步骤 1、实验内容 (1) 在实验板上安装所设计的电路。 (2) 有源滤波器的静态调零。 (3) 测量滤波器的通带增益A v p、通带截止频率f p。 (4) 测量滤波器的频率特性(有条件时可使用扫频仪)。 (5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。 2、设计一个二阶有源低通滤波器。具体要求如下: (1) 通带截止频率:f p=1kHz;

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

有源滤波器实验报告

有源滤波器实验报告文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

实验七集成运算放大器的基本应用(Ⅱ)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 (a)低通(b)高通 (c) 带通(d)带阻 图7-1 四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7-1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7-2(a )所示,为典型的二阶有源低通滤波器。它由两级RC 滤波环节与同相比例运算电路组成,其中第一级电容C 接至输出端,引入适量的正反馈,以改善幅频特性。图7-2(b )为二阶低通滤波器幅频特性曲线。 (a)电路图 (b)频率特性 图7-2 二阶低通滤波器 电路性能参数 1 f uP R R 1A + = 二阶低通滤波器的通带增益 RC 2π1 f O = 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 uP A 31 Q -= 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形状。 2、高通滤波器(HPF ) 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7-2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7-3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH 分析方法,不难求得HPF 的幅频特性。

数字图像处理实验报告

数字图像处理试验报告 实验二:数字图像的空间滤波和频域滤波 姓名:XX学号:2XXXXXXX 实验日期:2017 年4 月26 日 1.实验目的 1. 掌握图像滤波的基本定义及目的。 2. 理解空间域滤波的基本原理及方法。 3. 掌握进行图像的空域滤波的方法。 4. 掌握傅立叶变换及逆变换的基本原理方法。 5. 理解频域滤波的基本原理及方法。 6. 掌握进行图像的频域滤波的方法。 2.实验内容与要求 1. 平滑空间滤波: 1) 读出一幅图像,给这幅图像分别加入椒盐噪声和高斯噪声后并与前一张图显示在同一 图像窗口中。 2) 对加入噪声图像选用不同的平滑(低通)模板做运算,对比不同模板所形成的效果,要 求在同一窗口中显示。 3) 使用函数 imfilter 时,分别采用不同的填充方法(或边界选项,如零填 充、’replicate’、’symmetric’、’circular’)进行低通滤波,显示处理后的图 像。 4) 运用 for 循环,将加有椒盐噪声的图像进行 10 次,20 次均值滤波,查看其特点, 显 示均值处理后的图像(提示:利用fspecial 函数的’average’类型生成均值滤波器)。 5) 对加入椒盐噪声的图像分别采用均值滤波法,和中值滤波法对有噪声的图像做处理,要 求在同一窗口中显示结果。 6) 自己设计平滑空间滤波器,并将其对噪声图像进行处理,显示处理后的图像。 2. 锐化空间滤波 1) 读出一幅图像,采用3×3 的拉普拉斯算子 w = [ 1, 1, 1; 1 – 8 1; 1, 1, 1] 对其进行滤波。 2) 编写函数w = genlaplacian(n),自动产生任一奇数尺寸n 的拉普拉斯算子,如5 ×5的拉普拉斯算子 w = [ 1 1 1 1 1 1 1 1 1 1 1 1 -24 1 1 1 1 1 1 1 1 1 1 1 1] 3) 分别采用5×5,9×9,15×15和25×25大小的拉普拉斯算子对

自适应滤波实验报告

LMS 自适应滤波实验报告 姓名: 学号: 日期:2015.12.2 实验内容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的范畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。 一个单输入的横向自适应滤波器的原理框图如图所示:

实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。 LMS 算法的梯度估计值用一条样本曲线进行计算,公式如下:

有限冲激响应数字滤波器设计实验报告

/ 实验6 有限冲激响应数字滤波器设计 一、实验目的: 1、加深对数字滤波器的常用指标理解。 2、学习数字滤波器的设计方法。 二、实验原理: 低通滤波器的常用指标: } (1)通带边缘频率; (2)阻带边缘频率; (3)通带起伏;

(4)通带峰值起伏, (5)阻带起伏,最小阻带衰减。 三、实验内容: 利用MATLAB编程,用窗函数法设计FIR数字滤波器,指标要求如下: 通带边缘频率:,通带峰值起伏:。] 阻带边缘频率:,最小阻带衰减:。 采用汉宁窗函数法的程序: wp1=*pi;wp2=*pi; ws1=*pi;ws2=*pi; width1=wp1-ws1; width2=ws2-wp2; width=min(width1,width2) N1=ceil(8*pi/width) … b1=fir1(N1,[ ],hanning(N1+1)); [h1,f]=freqz(b1,1,512); plot(f/pi,20*log10(abs(h1)),'-') grid; 图形:

采用切比雪夫窗函数法德程序: 】 wp1=*pi;wp2=*pi; ws1=*pi;ws2=*pi; width1=wp1-ws1; width2=ws2-wp2; width=min(width1,width2) N1=ceil(8*pi/width) b1=fir1(N1,[ ],chebwin(N1+1,20)); [h1,f]=freqz(b1,1,512); … plot(f/pi,20*log10(abs(h1)),'-') grid; 图形:

四.小结 FIR和IIR滤波器各自的特点: ①结构上看,IIR滤波器必须采用递归结构,极点位置必须在单位圆内,否则系统将不稳定,IIR滤波器脱离不了模拟滤波器的格局,FIR滤波器更灵活,尤其能使适应某些特殊的应用。设计选择:在对相位要求不敏感的场合,用IIR较为适合,而对图像处理等对线性要求较高,采用FIR滤波器较好。 ②性能上说,IIR滤波器传输函数的几点可位于单位圆内的任何地方,可以用较低的结束获得较高的选择性,但是是相位的非线性为代价,FIR滤波器却可以得到严格的线性相位,然而FIR滤波器传输函数的极点固定在原点,只能用较高的阶数达到的选择性。

有源模拟滤波器实验报告

实验报告

工程大学教务处制 一、实验目的 1.掌握滤波器的滤波性能特点。 2.掌握常规模拟滤波器的设计、实现、调试、测试方法。 3.掌握滤波器主要参数的调试方法。 4.了解电路软件的仿真方法。 二、实验原理 有源滤波器的设计,就是根据所给定的指标要求,确定滤波器的结束n,选择具体的电路形式,算出电路中各元件的具体数值,安装电路和调试,使设计的滤波器满足指标要求,具体步骤如下: 1.根据阻带衰减速率要求,确定滤波器的阶数n。 2.选择具体的电路形式。 3.根据电路的传递函数和归一化滤波器传递函数的分母多项式,建立起系数的方程 组。 4.解方程组求出电路中元件的具体数值。 5.安装电路并进行调试,使电路的性能满足指标要求。 根据滤波器所能通过信号的频率围或阻带信号频率围的不同,滤波器可分为低通、高通、带通与带阻等四种滤波器。 a)有源二阶低通滤波器(LPF) 图1 压控电压源二阶低通滤波器 b)有源二阶高通滤波器(HPF)

图2 压控电压源二阶高通滤波器 c)有源带通滤波器(BPF) 图3 压控电压源二阶带通滤波器 d)带阻滤波器(NF) 图4 压控电压源双T 二阶有源带阻滤波器 三、实验仪器 1.示波器 2.信号源 3.万用表 4.直流稳压电源 四、实验容

1.二阶低通滤波器 ①参照图4 电路安装二阶低通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 17k Ω,R4 =10k Ω, C1 = C2 = C =0.1μF,计算截止频率fc、通带电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万用 表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并将 测量结果与理论值相比较。 2.二阶高通滤波器 ①参照图6 电路安装二阶高通滤波器。元件值取:R1 = R2 = R = 1.6kΩ,R3 = 1.7k Ω,R4 = 10kΩ,C1 = C2 = C = 0.1μF,Q = 0.707,计算截止频率fc 和通带电压放大倍数Auo 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,并 将测量结果与理论值相比较。 3.二阶带通滤波器 ①参照图9 电路安装二阶带通滤波器。元件值取:R1 = R2 = R = 1.5kΩ,R3 = 2R = 3kΩ,R4 = 10kΩ, R5 = 19kΩ,C1 = C2 = C = 0.1μF,计算截止频率fc、通带电压放大倍数Auo 和 Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 4.二阶带阻滤波器 ①参照图12 电路安装二阶带通滤波器。元件值取:R1 = R2 =R = 3kΩ,R3 = 0.5R = 1.5kΩ,R4 = 20kΩ, R5 = 10kΩ,C1 = C2 = C = 0.1μF,C3 = 2C = 0.2μF,计算截止频率fc、通带 电压放大倍数Auo 和Q 的值。 ②利用MULTISIM 电路仿真软件对上述电路进行仿真,给出幅频特性曲线的仿真 结果。 ③取Ui = 2V,由低到高改变输入信号的频率(注意:保持Ui = 2V 不变),用万 用表测量滤波器的输出电压和截止频率fc,根据测量值,画出幅频特性曲线,测 出带宽BW,并将测量结果与理论值相比较。 五、实验预习和仿真 1.压控电压源型有源二阶低通滤波器 仿真电路:

数字图像处理实验报告

数字图像处理实验 报告 学生姓名:学号: 专业年级: 09级电子信息工程二班

实验一常用MATLAB图像处理命令 一、实验内容 1、读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题。 实验结果如右图: 代码如下: Subplot (1,3,1) i=imread('E:\数字图像处理\2.jpg') imshow(i) title('RGB') Subplot (1,3,2) j=rgb2gray(i) imshow(j) title('灰度') Subplot (1,3,3) k=im2bw(j,0.5) imshow(k) title('二值') 2、对两幅不同图像执行加、减、乘、除操作,在同一个窗口内分成五个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (3,2,1) i=imread('E:\数字图像处理 \16.jpg') x=imresize(i,[250,320]) imshow(x) title('原图x') Subplot (3,2,2) j=imread(''E:\数字图像处理 \17.jpg') y=imresize(j,[250,320]) imshow(y) title('原图y') Subplot (3,2,3) z=imadd(x,y) imshow(z)

title('相加结果');Subplot (3,2,4);z=imsubtract(x,y);imshow(z);title('相减结果') Subplot (3,2,5);z=immultiply(x,y);imshow(z);title('相乘结果') Subplot (3,2,6);z=imdivide(x,y);imshow(z);title('相除结果') 3、对一幅图像进行灰度变化,实现图像变亮、变暗和负片效果,在同一个窗口内分成四个子窗口来分别显示,注上文字标题。 实验结果如右图: 代码如下: Subplot (2,2,1) i=imread('E:\数字图像处理 \23.jpg') imshow(i) title('原图') Subplot (2,2,2) J = imadjust(i,[],[],3); imshow(J) title('变暗') Subplot (2,2,3) J = imadjust(i,[],[],0.4) imshow(J) title('变亮') Subplot (2,2,4) J=255-i Imshow(J) title('变负') 二、实验总结 分析图像的代数运算结果,分别陈述图像的加、减、乘、除运算可能的应用领域。 解答:图像减运算与图像加运算的原理和用法类似,同样要求两幅图像X、Y的大小类型相同,但是图像减运算imsubtract()有可能导致结果中出现负数,此时系统将负数统一置为零,即为黑色。 乘运算实际上是对两幅原始图像X、Y对应的像素点进行点乘(X.*Y),将结果输出到矩阵Z中,若乘以一个常数,将改变图像的亮度:若常数值大于1,则乘运算后的图像将会变亮;叵常数值小于是,则图像将会会暗。可用来改变图像的灰度级,实现灰度级变换,也可以用来遮住图像的某些部分,其典型应用是用于获得掩膜图像。 除运算操作与乘运算操作互为逆运算,就是对两幅图像的对应像素点进行点(X./Y), imdivide()同样可以通过除以一个常数来改变原始图像的亮度,可用来改变图像的灰度级,其典型运用是比值图像处理。 加法运算的一个重要应用是对同一场景的多幅图像求平均值 减法运算常用于检测变化及运动的物体,图像相减运算又称为图像差分运算,差分运算还可以用于消除图像背景,用于混合图像的分离。

自适应滤波实验报告

LMS 自适应滤波实验报告 : 学号: 日期:2015.12.2 实验容: 利用自适应滤波法研究从宽带信号中提取单频信号的方法。 设()()()()t f B t f A t s t x 212cos 2cos π?π+++=,()t s 是宽带信号,A ,B ,1f ,2f , ?任选 (1)要求提取两个单频信号; (2)设f f f ?+=12,要求提取单频信号()t f 22cos π,研究f ?的大小对提取单频信号的影响。 1. 自适应滤波器原理 自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。自适应滤波器在信号处理中属于随机信号处理的畴。在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。 (1) 自适应横向滤波器 所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示: 实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式: ()()()∑-=-=1 N m m n x m w n y 这里()n w 称为滤波器单位脉冲响应,令: ()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成 ∑==N i ij i j x w y 1 这里i w 也称为滤波器加权系数。用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。将上式表示成矩阵形式: X W W X j T T j j y == 式中 [][ ] T Nj j j j T N x x x w w w X W ,...,,, ,...,,2121== 误差信号表示为 X W j T j j j j d y d e -=-= (2) 最小均方(LMS )算法 Widrow 等人提出的最小均方算法,是用梯度的估计值代替梯度的精确值,这种算法简单易行,因此获得了广泛的应用。

有源滤波器实验报告

实验七 集成运算放大器的基本应用(H)—有源滤波器 一、实验目的 1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。 2、学会测量有源滤波器的幅频特性。 二、实验原理 图7 —1四种滤波电路的幅频特性示意图 由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内 的信号通过,抑制或急剧衰减此频率范围以外的信号。可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。根据对频率范围的 选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7 —1所示。 具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。滤波器的阶数越高,幅频特性 (a)低通 (C)带通(d)带阻

衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。 1、低通滤波器(LPF) 低通滤波器是用来通过低频信号衰减或抑制高频信号。 如图7 —2 (a)所示,为典型的二阶有源低通滤波器。它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,弓I入适量的正反馈,以改善幅频特性。 图7—2 ( b)为二阶低通滤波器幅频特性曲线。 图7 —2二阶低通滤波器 电路性能参数 R f A UP=^- 二阶低通滤波器的通带增益 R I 截止频率,它是二阶低通滤波器通带与阻带的界限频率。 状。 2、高通滤波器(HPF 与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。 只要将图7—2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7 —3(a)所示。高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照 LPH分析方法,不难求得HPF的幅频特性。 1 2ΠR 1 3 -A UP 品质因数,它的大小影响低通滤波器在截止频率处幅频特性的形 (a) 电路图(b)频率特性

武汉科技大学 数字图像处理实验报告讲解

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

卡尔曼滤波简介和实例讲解.

卡尔曼,美国数学家和电气工程师。1930年5月 19日生于匈牙利首都布达佩斯。1953年在美国麻省理工学院毕业获理学士学位,1954年获理学硕士学位,1957年在哥伦比亚大学获科学博士学位。1957~1958年在国际商业机器公司(IBM)研究大系统计算机控制的数学问题。1958~1964年在巴尔的摩高级研究院研究控制和数学问题。1964~1971年到斯坦福大学任教授。1971年任佛罗里达大学数学系统理论研究中心主任,并兼任苏黎世的瑞士联邦高等工业学校教授。1960年卡尔曼因提出著名的卡尔曼滤波器而闻名于世。卡尔曼滤波器在随机序列估计、空间技术、工程系统辨识和经济系统建模等方面有许多重要应用。1960年卡尔曼还提出能控性的概念。能控性是控制系统的研究和实现的基本概念,在最优控制理论、稳定性理论和网络理论中起着重要作用。卡尔曼还利用对偶原理导出能观测性概念,并在数学上证明了卡尔曼滤波理论与最优控制理论对偶。为此获电气与电子工程师学会(IEEE)的最高奖──荣誉奖章。卡尔曼著有《数学系统概论》(1968)等书。 什么是卡尔曼滤波 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼

滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 卡尔曼滤波的实质是由量测值重构系统的状态向量。它以“预测—实测—修正”的顺序递推,根据系统的量测值来消除随机干扰,再现系统的状态,或根据系统的量测值从被污染的系统中恢复系统的本来面目。 释文:卡尔曼滤波器是一种由卡尔曼(Kalman)提出的用于时变线性系统的递归滤波器。这个系统可用包含正交状态变量的微分方程模型来描述,这种滤波器是将过去的测量估计误差合并到新的测量误差中来估计将来的误差。 卡尔曼滤波的应用 斯坦利.施密特(Stanley Schmidt)首次实现了卡尔曼滤波器.卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑使用了这种滤波器. 关于这种滤波器的论文由Swerling (1958), Kalman (1960)与 Kalman and Bucy (1961)发表.

相关主题
文本预览
相关文档 最新文档