大学物理8-6
- 格式:ppt
- 大小:775.50 KB
- 文档页数:25
第六章 经典质点系动力学6-1.如图,半圆柱立在光滑水平面上从静止开始到下,试判断质心C 的运动方向.解 建立如图x 轴,由于水平方向外力分量之和为零0ix F =∑,所以水平方向动量守恒x P C =.因初始时静止,故 0x Cx P mv == 由d 0d C Cx x v t ==,可知C x =常量,质心C 竖直向下运动. 6-2.如图,船的质量为5000kg ,当质量为1000kg 的汽车相对船静止时,船尾螺旋桨的转动可使船以加速度20.2m s 前进.在船行进中,汽车相对于船以加速度20.5m s 沿船前进的相反方向加速运动,求此时船的加速度的大小.解 将船与汽车作为质点系.当汽车相对于船静止时,船的加速度即为质点系质心的加速度,根据质心运动定理可知船尾螺旋桨转动时的推力()=(50001000)021200(N)e C F ma .=+⨯=在船的行进过程中,以船的行进方向为x 、x '轴正方向.设船相对于岸的速度、加速度用x 、x 表示,汽车相对于船的速度、加速度用x '、x '表示,则汽车相对于岸的速度、加速度为x x '+、x x '+.根据质点系的动量定理()d [()]d e m x m x x F t'++=船车 即 ()()]e m x m x x F '++=船车500010001000051200x x .+-⨯=可求出此时船的加速度的大小2028m s x .=.6-3.三只质量均为0m 的小船鱼贯而行,速率都是v ,中间一船同时以相对本船的速率u 沿水平方向把两个质量均为m 的物体抛到前后两只船上,求两物体落入船后三只船的速率(忽略水对船的阻力).解 以船行方向为速度正方向,设两物体落入船后三只船的速率为1v 、2v 、3v . 以中间船及两物体为质点系,因为在抛出物体的过程中水平方向不受外力,所以质点系水平方向动量守恒00222(2)()()m m v m v m v u m v u +=+++-所以 2v v =以前船与抛入物体为质点系,因为在抛入物体的过程中水平方向不受外力,所以质点系水平方向动量守恒001()()m v m v u m m v ++=+所以 10mu v v m m=++ 以后船与抛入物体为质点系,同样,根据质点系水平方向动量守恒003()()m v m v u m m v +-=+30mu v v m m =-+6-4.质量为70kg 的人和质量为210kg 的小船最初处于静止,后来人从船尾向船头走了3.2m ,不计船所受阻力,问船向那个方向运动,移动了几米?(用质心运动定理求解.)解 建立与地面固连的坐标系Ox ,x 轴的方向为从船尾指向船头.人视为质点1,坐标为1x ;船视为质点2,坐标为2x ;此二质点构成质点系.质点系所受合外力为零,由质心运动定理可知质点系质心加速度为零;由于质心速度为常量,质点系初始状态静止,所以质心速度为零,即质心位置保持不变 110220112201212C C m x m x m x m x x x m m m m ++===++ 11220m x m x ∆+∆=由于123.2x x ∆=+∆,代入上式得12123.2 3.2700.8(m)70210m x m m ⨯∆=-=-=-++ 即船向后移动了0.8米.6-5.试证明质量为m ,长为l 的匀质细杆对过杆中点且与杆垂直的轴的转动惯量为2112ml . 证明 以杆中心为原点,沿杆建立坐标系Oxy 如图.杆的线密度l m lρ=(即单位长度的质量). 用一系列与杆垂直的不同x 的面,把杆分割成无限多个无限小的质元,图中画出了在~d x x x +范围内的小质元.此小质元质量d d d l m m x x lρ==,到Oy 轴的距离为||x ,对Oy 轴的转动惯量为22d d d m I x m x x l==.则整个细杆对Oy 轴的转动惯量 /223/22/2/211d 312l l l l m m I x x x ml l l --===⎰6-6.如图,半径0.1m R =的定滑轮,可绕过轮心的z 轴转动,转动惯量为20.1kg m J =⋅.一不可伸长之轻绳无滑地跨过定滑轮,一端竖直地悬一质量1kg m =的重物,另一端a 受竖直向下的力F 作用,20.8N F =.试用质点系角动量定理求a 点加速度.解 用滑轮、绳、重物构成质点系,质点系所受外力为F 、重物重力mg 和轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理2d d ()()d d J Rmv J mR FR mgR t tωω+=+=- 所以2d d FR mgR t J mR ω-=+,a 点加速度为 22d d F mg a R i R i t J mR ω-==+ 220.819.80.01 1.0(m s )0.110.01i i -⨯==+⨯6-7.可利用阿特伍德机(例题6-3-4)测滑轮转动惯量.设10.46kg m =,20.50kg m =,滑轮半径0.05m R =.由静止开始释放重物测得2m 在5.0s 内下降0.75m .求滑轮转动惯量J .解 (因为不要求求出绳内张力,故可用质点系角动量定理求解.)用滑轮、绳、重物构成质点系,质点系所受外力为重物和滑轮的重力、以及轮轴处所受支撑力N F .根据质点系对z 轴的角动量定理1122d ()d J Rm v Rm v t ω++ 21221d [()]d J m m R m gR m gR tω=++=- 所以21212()d d ()m m gR t J m m Rω-=++,2m 下降加速度的大小为 212212()d d m m g a R t m m J R ω-==++ 可见质点2m 作匀加速直线运动.由2212x a t ∆=,求出220.060m s a =.由上式可知 221122()[]m m g J R m m a -=-- 222(050046)98005[050046]13910kg m 006........--⨯=⨯--=⨯⋅6-8.匀质细杆长2l ,质量为0m ,杆上穿有两个质量均为m 的小球.初始时杆以角速度0ω绕过杆中点O 且与杆垂直的光滑竖直轴转动,两小球均位于距O 点2l 处.求当两个小球同时滑动到杆的两端点时杆的角速度的大小.解 将杆和两个小球作为质点系.由于竖直轴光滑,轴受到的约束力对竖直转动轴力矩为零;细杆和小球的重力与竖直转动轴平行,对竖直转动轴力矩为零.由于质点系所受外力对竖直转动轴合力矩为零,所以质点系对竖直转动轴角动量守恒,设末态角速度为ω,则002222l l J m J ml l ωωωω+⋅=+⋅ 由于220011(2)123J m l m l ==,所以000(23)2(6)m m m m ωω+=+.6-9.工程上常用摩擦啮合器使两个飞轮以相同的转速转动,如图,飞轮A 、B 可绕同一固定轴转动,C 为啮合器.设飞轮A 、B 对轴的转动惯量210kg m A J =⋅,220kg m B J =⋅,开始A 轮转速600r min A n =(转每分),B 轮静止,求两轮啮合后的转速.解 将二飞轮A 、B 作为质点系.由于二飞轮所受重力和支撑力对固定轴力矩均为零,飞轮所受外阻(动)力矩比二飞轮啮合时飞轮间的相互作用力矩小得多,故啮合过程中质点系对固定轴的角动量近似守恒,有2()2A A A B J n J J n ππ⋅=+10600200(r min )1020A A A B J n n J J ⨯===++6-10.有两根原长为0l 、劲度系数为k 的轻弹簧串接于O 点,另两端各系一质量为m 的滑块,置于光滑水平面上.现将两滑块拉开,使其相距2l (0l l >),从静止放手,求两弹簧恢复原长时,弹簧弹性力对两滑块做功之和.(用三种方法求解)解法一 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用弹簧弹性势能求解.弹簧弹性力对两滑块做功之和等于两弹簧弹性势能增量的负值220012[0()]()2W k l l k l l =-⨯--=- 解法二 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.在惯性系中积分求功.以弹簧自由伸长处为原点、沿弹簧建立x 轴,则00220012()d 2()()2l l W kx x k l l k l l -=⨯-=⨯-=-⎰ 解法三 由于在运动过程中O 点为质心,由质心运动定理可知O 点固定不动.利用求一对力做功之和的方法,在与一个滑块相对静止的参考系中积分求功.以一个滑块为原点、沿弹簧建立x 轴,当另一滑块位于x 处时,每个弹簧的伸长量为02x l - 00220022[()]d 2()d()222l l l l x x x W k l x k l =--=--⎰⎰ 022202012()|()22l l x k l k l l =--=-6-11.两个滑冰运动员质量均为70kg ,均以6.5m s 速率沿相反方向滑行,滑行路线间的垂直距离为10m .当彼此相错时,各抓住10m 长绳的一端,然后开始旋转.(1)在抓住绳端之前,各自对绳中点的角动量多大?抓住后又为多大?(2)他们各自收绳,到绳长5m 时,各自速率多大?(3)绳长5m 时绳内张力多大?(4)收绳过程中二人总动能如何变化?(5)二人共做多少功?解 (1)抓绳之前,每个运动员对绳中心角动量均为570 6.5L =⨯⨯22275(kg m s)=⋅. 抓绳之后,视两个运动员和绳为质点系,所受外力矢量和为零,所以质点系质心(绳中心)位置不变,绳中心仍为固定点,每个运动员对绳中心的角动量仍为22275kg m s ⋅.(2)绳的张力T F 为质点系内力.收绳过程中质点系所受外力对绳中心的力矩为零,所以质点系的角动量守恒,设收绳后运动员速率为v ,则 2 2.57022275v ⨯⨯⨯=⨯ 所以13m s v =.(3)当绳长5m 时,对每一个运动员,由牛顿第二定律可得2T 70134732(N)2.5F ⨯== (4)质点系总动能的增量等于组成质点系的每个质点动能增量之和22k k01270(13 6.5)8873(J)2E E -=⨯⨯⨯-= (5)根据质点系的动能定理,二运动员总共做功等于质点系动能增量,k k08873(J)W E E =-=6-12.匀质细杆长7m 5l =,质量为m ,可绕过其一端的光滑水平轴在竖直平面内转动,在杆自由下垂时有一质量为6m 的黏性小球沿水平方向飞来并黏附于杆的中点,使杆摆动的最大角度为60ο.求小球飞来时的速率.(210m g =)解 在小球与杆的碰撞过程中,以小球和杆为质点系.质点系所受外力中,杆的重力mg 和杆所受轴的支撑力N F 对轴O 的力矩为零;小球重力m g '对轴O 的力矩近似为零;所以质点系的角动量近似守恒221[()]262362l m l m l m v v ml ω'==+ 故92v l ω=.在小球和杆一起上摆的过程中,以小球和杆为质点系,仅有小球和杆所受重力做功,而重力为保守力,所以机械能守恒22211[()]()cos60236262m l m l ml m g ωο+=+ 因此2149g lω=.根据以上结果即可求出9146321(m s)292g v l gl l ===.6-13.在光滑水平桌面上,有一质量为m 的滑块,滑块与一弹簧相连,弹簧另一端固定于O 点,劲度系数为k .当弹簧处于原长0l 时,一质量为0m 的子弹以速度0v 垂直于弹簧地射入滑块,并嵌在其中.之后当滑块运动到B 点时,弹簧长度为l ,如图所示.求滑块于B 时的速度v .解 在子弹射入滑块的过程中,由子弹和滑块构成质点系.因质点系在0v 方向不受外力,故质点系沿0v 方向动量守恒000()m v m m v '=+所以000()v m v m m '=+.在子弹和滑块由A B →的过程中,视子弹和滑块为一个质点.由于过程中只有弹簧弹性力做功,弹簧弹性力为保守力,故质点机械能守恒;又因质点受力对过O 点的竖直轴力矩为零,所以质点对过O 点的竖直轴角动量守恒.222000111()()()222m m v m m v k l l '+=++- 000()()sin m m v l m m vl θ'+=+所以 22212000200()[]()m v k l l v m m m m -=-++ 000222120000arcsin [()()]m v l l m v m m k l l θ=-+-6-14.大容器内水的自由表面的高度为0h ,放在水平地面上,离自由表面h 深处有一小孔A ,小孔横截面积远小于容器横截面积.求:(1)由小孔A 流出的水流到达地面的水平射程x ;(2)与小孔A 在同一竖直线上,距自由表面多深处再开一孔,可使水流的水平射程与前者相等?(3)在多深处开孔,可使水流具有最大水平射程?最大水平射程是多少?解 (1)由于容器横截面积远大于小孔横截面积,水流稳定后可认为容器中水面高度不变.认为水是理想流体.水流稳定后,取一条从容器中水自由表面到小孔的流线,以容器底为重力势能零点,由伯努利方程200001()2gh p g h h v p ρρρ+=-++所以小孔流速2v gh =.流体微团从流出小孔到落地降落的高度2012h h gt -=,可知降落时间02()h h t g-=,因此水平射程02()x vt h h h ==-. (2)在h '深处另开一孔而水平射程相同,则由002()2()h h h h h h ''-=-可求出0h h h '=-.(略去h h '=.)(3)根据(1)02()x h h h =-,由002(2)d 0d 2()h h x h h h h -==-,有唯一极值点012h h =使水流具有最大射程.当012h h =时,max 0x x h ==.6-15.如图是测量液体流量的流量计原理图.已知细管和粗管的横截面积为1S 、2S ,使用时把它串接在水平液流管道中,稳定流动时两竖直管内液体自由表面高度差为h .求流量表达式.解 沿管道中心轴取一流线,对该流线上1、2两点,根据伯努利方程,因12h h =,故2211221122v p v p ρρ+=+ (1) 连续性方程 1122v S v S = (2) 1、2两点压强差 21p p gh ρ-= (3) 由(1)、(3)式,可得22122v v gh -=由(2)式,得1122v S v S =,代入上式 221122(1)2S v gh S -= ,即1222212gh v S S S =- 所以 11221222212gh Q v S v S S S S S ===-6-16.如图装置,出口处堵塞时,注满可视为理想流体的水.水平细管横截面积处处相等,其直径远小于大容器直径.打开塞子在水流稳定后,求两竖直细管内水面高度.解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点,根据伯努利方程22201223304111222p gh p v p v p v ρρρρ+=+=+=+ 因为234S S S ==,根据连续性方程223344S v S v S v ==可得 234v v v ==所以 230p p p ==两竖直细管内为静止流体,根据2002p p p gh ρ==+3003p p p gh ρ==+所以230h h ==.6-17.如题6-16图,若其中装有密度为31000kg m 的黏性流体,流动稳定后10.18m h =,20.1m h =,30.05m h =.求出口流速.(不计大容器内内能量损失)解 由于细管直径远小于大容器直径,水流稳定后可认为大容器中水面高度不变.在水流稳定之前,竖直细管内的水会流出,而水流稳定后竖直细管内水面高度不变.作从大容器水面开始经水平细管的流线,取水平细管处为势能零点.根据连续性方程,因为水平细管横截面处处相等,故水平细管中的2、3、4点流速相等,以v 表示其流速.根据不可压缩黏性流体作稳定流动时的功能关系式,对3、4点,有2230341122p v p v W ρρ+=++ 竖直细管内为静止流体,可知303p p gh ρ=+,所以 343W gh ρ=根据不可压缩黏性流体作稳定流动时的功能关系式,对1、4点,有20101412p gh p v W ρρ+=++ 由于水平细管横截面处处相等,不计大容器内内能量损失,故可知34143W W =,所以132(3)298(0183005)0767(m s)v g h h ....=-=⨯⨯-⨯=(第六章题解结束)。
大学物理2-1第八章(气体动理论)习题答案第8 章8-1 目前可获得的极限真空为1.33?10?11Pa,,求此真空度下1cm3体积内有多少个分子?(设温度为27℃)[解] 由理想气体状态方程P?nkT得P?故N?NVkT,N??11PVkT?300 ?61.33?10?1?101.38?10?23?3.21?10(个) 38-2 使一定质量的理想气体的状态按p?V图中的曲线沿箭头所示的方向发生变化,图线的BC段是以横轴和纵轴为渐近线的双曲线。
(1)已知气体在状态A时的温度是TA?300K,求气体在B、C、D时的温度。
(2)将上述状态变化过程在V?T图(T为横轴)中画出来,并标出状态变化的方向。
[解] (1)由理想气体状态方程PV/T=恒量,可得:由A→B这一等压过程中VATAVBVA?VBTB2010 则TB??TA??300?600 (K)因BC段为等轴双曲线,所以B→C为等温过程,则TC?TB?600 (K)C→D为等压过程,则VDTD?VCTCTD?VDVC?TC?2040?600?300 (K)(2)403020100)8-3 有容积为V的容器,中间用隔板分成体积相等的两部分,两部分分别装有质量为m的分子N1 和N2个, 它们的方均根速率都是?0,求:(1)两部分的分子数密度和压强各是多少?(2)取出隔板平衡后最终的分子数密度和压强是多少?[解] (1) 分子数密度n1?N1V1?2N1V8-1 n2?N2V2?2N2V由压强公式:P?13nmV2,132mN1V03VNV?2可得两部分气体的压强为P1?n1mV0?2P2?13n2mV0?22mN2V03V2(2) 取出隔板达到平衡后,气体分子数密度为n?N1?N2V混合后的气体,由于温度和摩尔质量不变,所以方均根速率不变,于是压强为:P?13nmV0?2(N1?N2)mV03V28-4 在容积为2.5?10?3m3的容器中,储有1?1015个氧分子,4?1015个氮分子,3.3?10?7g氢分子混合气体,试求混合气体在433K 时的压强。