2019-2020学年高考模拟试题(数学理科)新课标ⅰ卷(word版,(有答案))
- 格式:doc
- 大小:1.53 MB
- 文档页数:19
2019-2020年高三数学理科模拟试卷及答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数2(23)(1)z x x x i =+-+-为纯虚数,则实数x 的值为 A .3 B .1 C .-3 D .1或-3 2.已知{}n a 为等差数列,若1598a a a π++=,则28cos()a a +的值为 A .21-B .23-C .21D .233.若椭圆22221(0)x y a b a b +=>>的离心率为32,则双曲线12222=-bx a y 的渐近线方程为A .12y x =±B .2y x =±C .4y x =±D .14y x =±4.函数()sin()f x A x ωϕ=+(其中0,||2A πϕ><)的图象如图所示,为了得到x x g 2sin )(=的图像,则只需将()f x 的图像A .向右平移6π个长度单位B .向右平移12π个长度单位 C .向左平移6π个长度单位D .向左平移12π个长度单位5.设p ∶210||2x x -<-,q ∶260x x +->,则p 是q 的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件6.新学期开始,某校接受6名师大毕业生到校学习 。
学校要把他们分配到三个年级,每个年级2人,其中甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为A .18B .15C .12D .97.已知直线x y a +=与圆224x y +=交于,A B 两点,且||||OA OB OA OB +=- (其中O 为坐标原点),则实数a 的值为 A .2 B .6 C .2或2- D .6或6-8.已知22a <<,则函数22()2f x a x x =-+-的零点个数为 A .1 B .2 C .3 D .49.P 为双曲线16922y x -=1的右支上一点,,M N 分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则PM PN -的最大值为A .6B .7C .8D .910.已知函数()f x 对任意x R ∈都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,且(1)2f =,则(2011)f =A .2B .3C .4D .6第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分.将答案填写在题中的横线上.11. 右图中的三个直角三角形是一个体积 为320cm 的几何体的三视图,则h= cm12.已知223+=2·23,338+=3·38,4415+=4·415,…。
绝密★启封并使用完毕前试题类型:A 2019-2020年高考全国卷1(乙卷)理科数学试题及答案word注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合,,则(A)(B)(C)(D)(2)设,其中x,y是实数,则(A)1(B)(C)(D)2(3)已知等差数列前9项的和为27,,则(A)100(B)99(C)98(D)97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A)(B)(C)(D)(5)已知方程–=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(A)(–1,3) (B)(–1,3) (C)(0,3) (D)(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是(A)17π(B)18π(C)20π(D)28π(7)函数y=2x2–e|x|在[–2,2]的图像大致为(A)(B)(C)(D)(8)若,则(A )(B )(C )(D )(9)执行右面的程序图,如果输入的,则输出x ,y 的值满足(A )(B )(C )(D )(10)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的标准线于D 、E 两点.已知|AB |=,|DE|=,则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,平面ABCD =m ,平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(A)(B ) (C) (D)12.已知函数()sin()(0),24f x x+x ππωϕωϕ=>≤=-,为的零点,为图像的对称轴,且在单调,则的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =.(14)的展开式中,x 3的系数是.(用数字填写答案)(15)设等比数列满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为。
绝密★启用前2019-2020年高考第一次模拟考试数学(理科)试题 含答案注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须填写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:棱锥的体积公式:13V Sh =.其中S 表示棱锥的底面积,h 表示棱锥的高. 一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{4,5,6,8},{3,5,7,8}A B ==,则AB 中元素的个数为A .8B .7C .6D .5 2.已知复数(87)(3)z i i =---,则z 在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3. “a b >”是 “22ac bc >”的A.充分不必要条件B.必要不充分条件C. 充要条件D. 既不充分也不必要条件4.已知双曲线22221x y a b-=(0,0)a b >>的一条渐近线的斜率为12,则该双曲线的离心率为B.C.2D.5.不等式组5315+15 3.x y y x x y +≤⎧⎪≤⎨⎪-≤⎩,,表示的平面区域的面积为A. 7B.5C. 3D.146.设,l m 是两条不同的直线,,αβ是两个不同的平面,则下列命题为真命题的是 A.若//,//,//m l m l αα则; B.若,,//m l m l αα⊥⊥则; C.若//,,//,l m l m αβαβ⊥⊥则; D. 若,//,,//,//m m l l αββααβ⊂⊂则; 7.将5本不同的书摆成一排,若书甲与书乙必须相邻,而书丙与书丁不能相邻,则不同的摆法种数为A. 48B. 24C. 20D. 12 8.非空数集A 如果满足:①0A ∉;②若对,x A ∀∈有1A x∈,则称A 是“互倒集”.给出以下数集:①2{|10}x R x ax ∈++=; ②2{|410}x x x -+<;③ln 1{|,[,1)(1,]}x y y x e x e =∈⋃;④22,[0,1)51.[1,2]x x x x x y y +∈+∈⎧⎫⎧⎪⎪⎪⎪⎪⎪=⎨⎨⎬⎪⎪⎪⎪⎪⎪⎩⎩⎭.其中“互倒集”的个数是A.4B. 3C.2D. 1二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9-13题)9.已知(sin ,cos ),2,1a b αα==(-),若a b ⊥,则tan α的值为 . 10.已知函数log a y x =(0,1)a a >≠的图象经过点1(2,)2,则其反函数的解析式y = .11.在△ABC 中,A B C ∠∠∠、、的对边分别为a b c 、、,若3a =,2B A ∠=∠,cos A =,则b =______ . 12.某射击运动员在练习射击中,每次射击命中目标的概率是35,则这名运动员在10次射击中,至少有9次命中的概率是 .(记1035p =(),结果用含p 的代数式表示)13.已知函数3()f x x =对应的曲线在点(,())()k k a f a k N *∈处的切线与x 轴的交点为1(,0)k a +,若11a =31010(1()3f a ++=- .(二)选做题(14、15题,考生只能从中选做一题)14. (坐标系与参数方程选做题) 在极坐标系中,直线sin()24πρθ+=被圆=4ρ截得的弦长为 .15.(几何证明选讲选做题)如图1,BE 、CF 分别为钝角△ABC 的两条高,已知1,AE =3,AB CF ==则BC 边的长18.(1)证明:AB ⊥平面BCD ,CD ⊂平面BCD A B C D ∴⊥,-------------------1分又BC CD ⊥, AB BC B =, CD ∴⊥平面ABC ,------------------------------2分又E 、F 分别是AC 、AD 的中点,∴//.EF CD ---------------------------------------3分∴EF ⊥平面ABC又EF ⊂平面BEF ,∴平面BEF ⊥平面ABC -----------4分(3)解法1:以点C 为坐标原点,CB 与CD 所在的直线分别为x 、y 轴建立空间直角坐标系如图示,--------------------------------------------------------9分则(000)C ,,,(100),(010),(10B D A ,,,,111(,0(,,22222E F ,∴1(,022BE =-,,11(,222BF =-,,---------------10分 设平面BEF 的一个法向量为(,,)n a b c =,由0n BE n BF ⎧⋅=⎪⎨⋅=⎪⎩得102211022a c a b ⎧-+=⎪⎪⎨⎪-++=⎪⎩令c =6,0a b ==,∴(6,0,n =,------------------12分∵BA =是平面BCD 的法向量,设平面BEF 与平面BCD 所成的锐二面角大小为θ,则cos ||||6n BA n BA θ⋅===⋅⨯,---------------------------------------------------14分19.解:(1)由2122232(21)S a a a =+=-⨯-和211a =可得15a = --------------------2分(2)解法1:当2n ≥时,由1n n n a S S -=-得13(1)(1)3(1)(2)n n n a na n n n a n n -=-------,---------------------------------4分⇒1(1)(1)6(1)n n n a n a n ----=-16(2,)n n a a n n N *-⇒-=≥∈---------------------6分∴数列{}n a 是首项15a =,公差为6的等差数列,∴16(1)61n a a n n =+-=--------------------------------------------------------7分 ∴21()322n n n a a S n n +==+-----------------------------------------------------8分(2)解法1:由曲线C 关于y 轴对称可知,若存在点N ,使得以PQ 为直径的圆恒过点N ,则点N 必在y 轴上,设(0,)N n ,--------------------------------------------------6分又设点200(,)4x P x ,由直线2:l y kx m =+与曲线C 有唯一公共点P 知,直线2l 与曲线C 相切,由214y x =得1'2y x =,∴001'|2x x k y x ===,---------------------------------------7分∴直线2l 的方程为2000()42x xy x x -=-,--------------------------------------------8分令1y =-得2022x x x -=,∴Q 点的坐标为002(,1)2x x --,-----------------------------9分200002(,),(,1)42x x NP x n NQ n x ∴=-=------------------------------------------10分∵点N 在以PQ 为直径的圆上,∴22220002(1)()(1)20(*)244x x x NP NQ n n n n n ⋅=--+-=-++-=---------------12分要使方程(*)对0x 恒成立,必须有21020n n n -=⎧⎨+-=⎩解得1n =,-------------------------13分∴在坐标平面内存在点N ,使得以PQ 为直径的圆恒过点N ,其坐标为(0,1).---------14分②③联立解得0,1.x y =⎧⎨=⎩或0,1.x y =⎧⎨=-⎩,-----------------------------------------------12分 ∴在坐标平面内若存在点N ,使得以PQ 为直径的圆恒过点N ,则点N 必为(0,1)或(0,1)-, 将(0,1)的坐标代入①式得,①式, 左边=00002(1)2(1)()[]y y x x --+--002(1)2(1)0y y =-+-==右边, 将(0,1)-的坐标代入①式得,①式, 左边=00002(1)()[]2(1)y x y x ---=-不恒等于0,------------------------------------13分∴在坐标平面内是存在点N ,使得以PQ 为直径的圆恒过点N ,点N 坐标为为(0,1).--14分]设1()cos(1)H x x x =-,则()()()()()2222c o s 1s i n 1s i n 1c o s 1'()c o s (1)c o s (1)x x x x x x H x x x x x -------==------7分当()0,1x ∈时,()sin 10x -<,()cos 10x ->所以'()0H x <在()0,1上恒成立,即函数()H x 在()0,1上单调递减,-------------------8分∴当()0,1x ∈时,()(1)1H x H >=,∴1a ≤.-----------------------------------------------------------------------9分(3)证法1:由(2)知,当1a =时,()sin(1)ln G x x x =--(1)0G >=,sin(1)ln x x ⇒->1sin(1)ln x x⇒-<,------------------------------------------10分∵对任意的k N *∈有21(0,1)(1)k ∈+,∴211(0,1)(1)k -∈+ ∴22211(1)sin ln ln 1(1)(2)1(1)k k k k k +<=++-+,--------------------------------------12分∴22222211123(1)sin sin sin ln ln ln23(1)1324(2)n n n n ++++<++++⨯⨯+ 22223(1)2(1)ln[]ln1324(2)2n n n n n++=⋅⋅⋅=⨯⨯++ln 2<, 即211sin ln 2(1)nk k =<+∑.--------------------------------------------------------14分。
2020年普通高等学校招生全国统一考试模拟试题(新课标 第二十套)数学试卷(理工类)(选自2019年普通高等学校招生全国统一考试新课标Ⅰ卷)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22、23题为选考题,其它题为必考题。
满分150分,考试时间120分钟第Ⅰ卷 选择题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合}242{60{}M x x N x x x =−<<=−−<,,则M N =A .}{43x x −<<B .}42{x x −<<−C .}{22x x −<<D .}{23x x <<2.设复数z 满足=1i z −,z 在复平面内对应的点为(x ,y ),则 A .22+11()x y +=B .221(1)x y +=−C .22(1)1y x +−= D .22(+1)1y x +=3.已知0.20.32 log 0.220.2a b c ===,,,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12−(12−≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12−.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos ++x xx x在[,]−ππ的图像大致为 A.B.C .D .6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是 A .516B .1132C .2132D .11167.已知非零向量a ,b 满足||2||=a b ,且()−a b ⊥b ,则a 与b 的夹角为A .π6B .π3C .2π3D .5π68.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+9.记n S 为等差数列{}n a 的前n 项和.已知4505S a ==,,则 A .25n a n =−B . 310n a n =−C .228n S n n=−D .2122n S n n =− 10.已知椭圆C 的焦点为121,01,0F F −(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=11.关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数②f (x )在区间(2π,π)单调递增 ③f (x )在[,]−ππ有4个零点 ④f (x )的最大值为2其中所有正确结论的编号是 A .①②④B .②②C .①②D .①①12.已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB的中点,∠CEF =90°,则球O 的体积为 A.B.C.D第Ⅱ卷 非选择题二、填空题:本题共4小题,每小题5分,共20分。
绝密★启封并使用完毕前试题类型:A注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
2019-2020年高考新课标1卷数学(理科)试题及答案一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设复数z满足=i,则|z|=(A)1 (B)(C)(D)2【答案】A(2)sin20°cos10°-con160°sin10°=(A)(B)(C)(D)【答案】D【解析】原式=sin20°cos10°+cos20°sin10°=sin30°=,故选D.(3)设命题P:nN,>,则P为(A)nN, >(B)nN, ≤(C)nN, ≤(D)nN, =【答案】C【解析】:,故选C.(4)投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为(A)0.648 (B)0.432 (C)0.36 (D)0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为=0.648,故选A.(5)已知M(x0,y0)是双曲线C:上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是(A)(-,)(B)(-,)(C)(,)(D)(,)【答案】A(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有A.14斛B.22斛C.36斛D.66斛【答案】B【解析】设圆锥底面半径为r,则=,所以米堆的体积为=,故堆放的米约为÷1.62≈22,故选B.(7)设D为ABC所在平面内一点=3,则(A)=+ (B)=(C)=+ (D)=【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB=+=+=+-==,故选A.(8)函数f(x)=的部分图像如图所示,则f(x)的单调递减区间为(A)(),k (b)(),k(C)(),k(D)(),k【答案】B(9)执行右面的程序框图,如果输入的t=0.01,则输出的n= (A)5 (B)6 (C)7 (D)8【答案】C(10)的展开式中,y²的系数为(A)10 (B)20 (C)30(D)60【答案】A【解析】在的5个因式中,2个取因式中剩余的3个因式中1个取,其余因式取y,故的系数为=30,故选A.(11)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示。
2019-2020年高三3月高考模拟理科数学含答案本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页. 考试时间120分钟.满分150分,考试结束后,将本试卷和答题卡一并交回.注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.每小题给出的四个选项中只有一项是符合题目要求的.1.已知全集,集合,,则A.B.C.D.2.已知复数(是虚数单位),它的实部和虚部的和是A.4 B.6 C.2 D.33.某苗圃基地为了解基地内甲、乙两块地种植的同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组数据,对两块地抽取树苗的高度的平均数和中位数进行比较,下面结论正确的是A.B.C.D.4.已知实数满足,则目标函数的最小值为A.B.5 C.6 D.75.“”是“函数在区间上为增函数”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数的图象是A. B. C. D.7.阅读右边的程序框图,运行相应的程序,输出的结果为A.B.C.D.8.二项式的展开式中常数项是A.28 B.-7 C.7 D.-289.已知直线与圆相交于两点,且则的值是A.B.C.D.010.右图是函数在区间上的图象.为了得到这个函数的图象,只需将的图象上所有的点A.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变B.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变C.向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变D.向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变11.一个几何体的三视图如右图所示,则它的体积为A.B.C.D.12.设235111111,,a dxb dxc dxx x x===⎰⎰⎰,则下列关系式成立的是A.B.C.D.第7题图第11题图第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题4分,共16分.13.若点在直线上,其中则的最小值为.14.已知抛物线的焦点恰好是双曲线的右顶点,且渐近线方程为,则双曲线方程为.(),,nf x=三、解答题:本大题共6小题,共74分.17.(本题满分12分)已知,,且.(1)将表示为的函数,并求的单调增区间;(2)已知分别为的三个内角对应的边长,若,且,,求的面积.18.(本题满分12分)已知四棱锥的底面是等腰梯形,且,2,2PO ABCD PO AB CD⊥===底面分别是的中点.(1)求证:;(2)求二面角的余弦值.EA19.(本题满分12分)数列的前项和为,,,等差数列满足.(1)分别求数列,的通项公式;(2)设,求证.20.(本题满分12分)某学生参加某高校的自主招生考试,须依次参加A、B、C、D、E五项考试,如果前四项中有两项不合格或第五项不合格,则该考生就被淘汰,考试即结束;考生未被淘汰时,一定继续参加后面的考试。
2019-2020年高考数学模拟试卷6—10套(理科)高考理科数学模拟试卷(六)时间:120分钟 分值:150分注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.21ii+=-( ) A.1322i - B. 1322i + C. 3122i - D. 31i 22+ 2.已知集合{}22(,)|1,,A x y x y x y =+=∈∈Z Z ,则A 中元素的个数为( ) A. 1 B. 2C. 3D. 43.函数sin ()xf x x=的部分图象大致为( ) A. B.C. D.4.已知M ,N 是四边形ABCD 所在平面内的点,满足:,2MA MC MB MD DN NC +=+=u u u r u u u u r u u u r u u u u r u u u r u u u r,则( )A. 12AN AB AD =+u u u r u u u r u u u rB. 1 2AN AB AD =+u u u r u u u r u u u rC. 23AN AB AD =+u u u r u u u r u u u rD. 11 22AN AB AD =+u u u r u u u r u u u r5.已知双曲线2222:1(0,0)x y C a b a b -=>>的一个顶点A 到渐近线的距离为2,则C的离心率为( )C. 2D. 46.设等差数列{}n a 的前n 项和为n S ,且1133S =,则3510a a a ++的值是( ) A. 3B. 6C. 9D. 167.执行如图所示程序框图,如果输入的0.1t =,则输出的n=( )A. 3B. 4C. 5D. 68.一个多面体的直观图和三视图如图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为( )A.34B.23C.13D.129.已知正四棱柱1111ABCD A B C D -,1AB =,12AA =,点E 为1BB 的中点,则点1A 到平面AEC 的距离为( )D. 110.已知函数()2sin()(0)3f x x πωω=+>,若方程()2f x =在[0,2]上有且只有两个实数根,则ω的取值范围为( ) A. [),2ππB. 13,212ππ⎡⎫⎪⎢⎣⎭ C. 1325,1212ππ⎡⎫⎪⎢⎣⎭ D. 25,12ππ⎡⎫⎪⎢⎣⎭11.已知A ,B ,P 是双曲线2222:1(0,0)x y C a b a b-=>>上不同的三点,直线PA 的斜率为1k ,直线PB 的斜率为2k ,且12k k ,是关于x 的方程2430x mx ++=的两个实数根,若0OA OB +=u u u r u u u r r,则双曲线C 的离心率是( )A. 2D.3212.设函数ln ,02()sin ,262x x f x x x π⎧<⎪=⎨⎛⎫< ⎪⎪⎝⎭⎩„„,若1234x x x x ,,,互不相等,且1234()()()()f x f x f x f x k ====,则1234x x x x k ++++的最大值为( )A. 111e e++B.15lne 2+ C. 12 D.25ln 22+ 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.若实数x ,y 满足:2211y x y x y x ≥-⎧⎪≥-+⎨⎪≤+⎩,则3z x y =-的最大值是________;14.已知等比数列{}n a 的前n 项和为n S ,满足11a =,33=S ,则n S =________; 15.已知函数()()()sin 0,0,f x A x A ωϕωϕπ=+>><的图象过点,012P π⎛⎫⎪⎝⎭,且图象上与点P 最近的一个最高点是,23Q π⎛⎫⎪⎝⎭,把函数()f x 的图象上所有点的横坐标伸长为原来的3πϕ倍,纵坐标不变,得到函数()g x 的图象,则函数()g x 的单调递增区间是________;16.已知'()f x 是函数cx bx ax x f ++=232131)(的导函数,且1'(1)2f a =-,322a c b >>,则下列说法正确的是___________. ①)0(0f '>; ②曲线()y f x =在2bx a=-处的切线斜率最小; ③函数()f x 在(,)-∞+∞存在极大值和极小值; ④'()f x 在区间)2,0(上至少有一个零点.三、解答题:共70分。
2019-2020年高三校模拟考试数学(理)试题含答案注意:本卷共22题,满分150分,考试时间120分钟第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合}{,,,,,U =123456,}{,,S =145,}{,,T =234,则)(T C S U 等于 A .}{,,,1456 B .}{4C .}{,15D .}{,,,,123452.若复数iia 213++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为 A .-6 B .13 C .32D .133.设a ∈R ,则“a =-2”是“直线l 1:ax +2y -1=0与直线l 2:x +(a +1)y +4=0平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的体积为A .16B .13C .23D .15.已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l m ⊥,l n ⊥,且l α⊄,l β⊄,则A .//αβ,且//l αB .αβ⊥,且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l6.()cos()(,0)f x A x A ωϕω=+>的图象如图所示,为得到()sin()6g x A x πω=-+的图象,可以将)(x f 的图象A .向右平移65π个单位长度 B .向右平移125π个单位长度 C .向左平移65π个单位长度 D .向左平移125π个单位长度 7.数列{}n a 共有11项,1110,4,a a ==且11(1,2,...,10)k k a a k +-==,则满足该条件的不同数列的个数为A .100B .120C .140D .1608.若正数,x y 满足2610x xy +-=,则2x y +的最小值是A .3 B .3 C .3 D9.已知抛物线24y x =,圆22:(1)1F x y -+=,过点F 作直线l ,自上而下顺次与上述两曲线交于点,,,A B C D (如图所示),则AB CD ⋅的值正确的是A .等于1B .最小值是1C .等于4D .最大值是410.若函数()f x =22(1)()x x ax b -++的图像关于直线x =2对称,则()f x 的最大值是A .9B .14C .15D .16第Ⅱ卷(非选择题部分 共100分)二、填空题:本大题共7小题,每小题4分,共28分。
2019-2020年高考数学模拟试卷(理科)(一)含解析一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.设集合M={m∈Z|﹣3<m<2},N={n∈N|﹣1≤n≤3},则M∩N=()A. {0,1} B. {﹣1,0,1} C. {0,1,2} D. {﹣1,0,1,2}2.已知x,y∈R,则“x•y>0”是“x>0且y>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.函数f(x)=的定义域为()A. B. C. D. [1,+∞)4.已知α∈(﹣,0),cosα=,则tanα等于()A.﹣ B.﹣ C. D.5.直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,则实数a的值为()A. B. C. D.6.已知点A(﹣1,1),B(﹣4,5),若,则点C的坐标为()A.(﹣10,13) B.(9,﹣12) C.(﹣5,7) D.(5,﹣7)7.已知函数,则f(0)等于()A.﹣3 B. C. D. 38.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发 B.乙比甲跑的路程多C.甲、乙两人的速度相同 D.甲比乙先到达终点9.已知函数,若f(2)=f(﹣2),则k=()A. 1 B.﹣1 C. 2 D.﹣210.二次函数f(x)=ax2+bx+c(a>0)的图象与x轴交点的横坐标为﹣5和3,则这个二次函数的单调减区间为()A.(﹣∞,﹣1] B. [2,+∞) C.(﹣∞,2] D. [﹣1,+∞)11.函数y=sinxsin(﹣x)的最小正周期是()A. B.π C. 2π D. 4π12.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A. B. C. D.13.某工厂去年的产值为160万元,计划在今后五年内,每一年比上一年产值增加5%,那么从今年起到第五年这个工厂的总产值是()A. 121.55 B. 194.48 C. 928.31 D. 884.1014.直线x+y﹣2=0与圆(x﹣1)2+(y﹣2)2=1相交于A,B两点,则弦|AB|=()A. B. C. D.15.已知二项式(﹣)n的展开式的第6项是常数项,则n的值是()A. 5 B. 8 C. 10 D. 1516.已知实数x,y满足,则z=4x+y的最大值为()A. 10 B. 8 C. 2 D. 017.在正四面体ABCD中,点E,F分别是AB,BC的中点,则下列结论错误的是()A.异面直线AB与CD所成的角为90°B.直线AB与平面BCD成的角为60°C.直线EF∥平面ACDD.平面AFD垂直平面BCD18.某商场以每件30元的价格购进一种玩具.通过试销售发现,逐渐提高售价,每天的利润增大,当售价提高到45元时,每天的利润达到最大值为450元,再提高售价时,由于销售量逐渐减少利润下降,当售价提高到60元时,每天一件也卖不出去.设售价为x,利润y 是x的二次函数,则这个二次函数的解析式是()A. y=﹣2(x﹣30)(x﹣60) B. y=﹣2(x﹣30)(x﹣45)C. y=(x﹣45)2+450 D. y=﹣2(x﹣30)2+45019.函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A. B. C. D. 120.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A. B.C. D.二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)21.关于x的不等式ax2﹣5x+b<0的解集是(2,3),则a+b的值等于.22.已知=(cosx,sinx),=(cosx+sinx,sinx﹣cosx),x∈R,则<,>的值是.23.过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则= .24.已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.25.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示.若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.已知等差数列{a n}满足:a5=5,a2+a6=8.(1)求{a n}的通项公式;(2)若b n=2,求数列{b n}的前n项和S n.27.已知函数f(x)=x+(1)求证:函数y=f(x)是奇函数;(2)若a>b>1,试比较f(a)和f(b)的大小.28.已知△ABC中,内角A,B,C的对边分别为a,b,c,若=(b+a,﹣c),=(b﹣a,a+c),且;(1)求角B的值;(2)若a=6,b=6,求△ABC的面积.29.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC 的中点,PO⊥平面ABCD,PO=2,M为PD的中点.(1)证明:PB∥平面ACM;(2)证明:AD⊥平面PAC.30.焦点在x轴上的椭圆C的一个顶点与抛物线E:x2=4y的焦点重合,且离心率e=,直线l经过椭圆C的右焦点与椭圆C交于M,N两点.(1)求椭圆C的方程;(2)若•=﹣2,求直线l的方程.2015年山东省青岛市高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题(本大题共20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)1.设集合M={m∈Z|﹣3<m<2},N={n∈N|﹣1≤n≤3},则M∩N=()A. {0,1} B. {﹣1,0,1} C. {0,1,2} D. {﹣1,0,1,2}考点:交集及其运算.专题:集合.分析:由题意知集合M={m∈z|﹣3<m<2},N={n∈N|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.解答:解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.点评:此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.已知x,y∈R,则“x•y>0”是“x>0且y>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:我们可先判断x•y>0”时,x>0且y>0是否成立,再判断x>0且y>0时,x•y >0”是否成立,再根据充要条件的定义即可得到结论.解答:解:若x•y>0”时,如x=﹣1,y=﹣1,则x•y>0,即x>0且y>0不成立,故命题:x•y>0”⇒命题乙:x>0且y>0为假命题;若x>0且y>0成立,则x•y>0一定成立,即⇒x•y>0为真命题故命题x>0且y>0成立⇒命题x•y>0也为真命题故“x•y>0”是“x>0且y>0”的必要不充分条件故选:B点评:本题考查的知识点是充要条件的定义,我们先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论是解答本题的关键.3.函数f(x)=的定义域为()A. B. C. D. [1,+∞)考点:函数的定义域及其求法.专题:计算题;函数的性质及应用.分析:要使函数有意义,则需2x﹣1≥0,且1﹣x>0,解得即可得到定义域.解答:解:要使函数有意义,则需2x﹣1≥0,且1﹣x>0,解得,,则定义域为[,1).故选A.点评:本题考查函数的定义域的求法,注意偶次根式被开方式非负,对数的真数大于0,属于基础题.4.已知α∈(﹣,0),cosα=,则tanα等于()A.﹣ B.﹣ C. D.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:利用同角三角函数间的关系式可求得sinα的值,继而可得tanα的值.解答:解:∵α∈(﹣,0),cosα=,∴sinα=﹣=﹣,∴tanα==﹣.故选:A.点评:本题考查同角三角函数间的关系式,考查运算求解能力,属于基础题.5.直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,则实数a的值为()A. B. C. D.考点:直线的一般式方程与直线的垂直关系.专题:直线与圆.分析:由已知得3(a﹣1)+a=0,由此能求出结果.解答:解:∵直线l1:(a﹣1)x+y﹣1=0和l2:3x+ay+2=0垂直,∴3(a﹣1)+a=0,解得a=.故选:D.点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意直线垂直的性质的合理运用.6.已知点A(﹣1,1),B(﹣4,5),若,则点C的坐标为()A.(﹣10,13) B.(9,﹣12) C.(﹣5,7) D.(5,﹣7)考点:向量数乘的运算及其几何意义.专题:平面向量及应用.分析:根据向量的坐标公式进行求解即可.解答:解:设C(x,y),则由,得(x+4,y﹣5)=3(3,﹣4)=(9,﹣12),即,得,即C(5,﹣7),故选:D点评:本题主要考查向量的坐标公式以及向量运算,比较基础.7.已知函数,则f(0)等于()A.﹣3 B. C. D. 3考点:函数解析式的求解及常用方法.专题:计算题.分析:由已知中函数,要求f(0)的值,可令g(x)=0,求出对应x值后,代入可得答案.解答:解:令g(x)=1﹣2x=0则x=则f(0)===3故选D点评:本题考查的知识点是函数求值,其中根据g(x)=0,求出对应x值,是解答本题的关键.8.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发 B.乙比甲跑的路程多C.甲、乙两人的速度相同 D.甲比乙先到达终点考点:函数的表示方法.专题:规律型.分析:根据图象法表示函数,观察甲,乙的出发时间相同;路程S相同;到达时间不同,速度不同来判断即可.解答:解:从图中直线的看出:K甲>K乙;S甲=S乙;甲、乙同时出发,跑了相同的路程,甲先与乙到达.故选D.点评:本题考查函数的表示方法,图象法.9.已知函数,若f(2)=f(﹣2),则k=()A. 1 B.﹣1 C. 2 D.﹣2考点:函数的值.专题:函数的性质及应用.分析:根据分段函数的解析式和f(2)=f(﹣2)列出方程,由对数、指数的运算求出k 的值.解答:解:∵,且f(2)=f(﹣2),∴,则2﹣2k﹣1=2,即﹣2k﹣1=1,解得k=﹣1,故选:B.点评:本题考查分段函数的函数值,以及对数、指数的运算,属于基础题.10.二次函数f(x)=ax2+bx+c(a>0)的图象与x轴交点的横坐标为﹣5和3,则这个二次函数的单调减区间为()A.(﹣∞,﹣1] B. [2,+∞) C.(﹣∞,2] D. [﹣1,+∞)考点:二次函数的性质.专题:函数的性质及应用.分析:由题意得到函数的对称轴,结合二次项系数大于0,从而求出函数的递减区间.解答:解:若二次函数的图象与x轴交点的横坐标为﹣5和3,∴对称轴x==﹣1,∵a>0,∴函数f(x)在(﹣∞,﹣1]递减,在(﹣1,+∞)递增,故选:A.点评:本题考查了二次函数的性质,求出函数的对称轴是解答本题的关键,本题是一道基础题.11.函数y=sinxsin(﹣x)的最小正周期是()A. B.π C. 2π D. 4π考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:由诱导公式及二倍角公式可求函数解析式为:y=sin2x,由三角函数的周期性及其求法即可得解.解答:解:∵y=sinxsin(﹣x)=sinxcosx=sin2x∴最小正周期T=.故选:B.点评:本题主要考查了诱导公式及二倍角公式,三角函数的周期性及其求法的应用,属于基本知识的考查.12.从2名男生和2名女生中,任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A. B. C. D.考点:等可能事件的概率.专题:概率与统计.分析:试验包含的所有事件是从4个人安排两人,共12种,其中事件“星期六安排一名男生、星期日安排一名女生”包含4种,再由概率公式得到结果.解答:解:由题意知本题是一个古典概型,试验包含的所有事件是从4个人安排两人,总共有C42A22=12种.其中期六安排一名男生、星期日安排一名女生,总共有C21C21=4种,∴其中至少有1名女生的概率P=.故选:A点评:古典概型要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体.13.某工厂去年的产值为160万元,计划在今后五年内,每一年比上一年产值增加5%,那么从今年起到第五年这个工厂的总产值是()A. 121.55 B. 194.48 C. 928.31 D. 884.10考点:等比数列的性质;有理数指数幂的化简求值.专题:函数的性质及应用;等差数列与等比数列.分析:由题意依次列出每年的产值,构成等比数列,求和可得.解答:解:由题意知,去年产值是160万,第一年要比去年产值增加5%,故第一年就是160(1+0.05)=1.05×160第二年又比第一年增加5%,第二年是160(1+0.05)(1+0.05)=160×1.052,依此类推,第五年是160×1.055,在每年的产值,构造一个等比数列,∴5年总产值为:S==884.10,故选:D点评:本题主要考查函数的应用问题,根据条件结合等比数列的求和公式是解决本题的关键.14.直线x+y﹣2=0与圆(x﹣1)2+(y﹣2)2=1相交于A,B两点,则弦|AB|=()A. B. C. D.考点:直线与圆的位置关系.专题:直线与圆.分析:利用点到直线的距离公式可得:圆心到直线x﹣y﹣1=0的距离d,即可得出弦长|AB|.解答:解:由圆(x﹣1)2+(y﹣2)2=1,可得圆心M(1,2),半径r=1.∴圆心到直线x+y﹣2=0的距离d==.∴弦长|AB|=2=2×=.故选:D.点评:本题考查了直线与圆的位置关系、点到直线的距离公式,属于基础题.15.已知二项式(﹣)n的展开式的第6项是常数项,则n的值是()A. 5 B. 8 C. 10 D. 15考点:二项式系数的性质.专题:计算题;二项式定理.分析:根据二项式展开式的通项公式T r+1中第6项是常数项,列出方程,求出n的值.解答:解:∵二项式(﹣)n的展开式通项公式为T r+1=••=(﹣1)r••,且第6项是常数项,∴r=5时,=0,解得n=15;∴n的值是15.故选:D.点评:本题考查了二项式定理的应用问题,也考查了逻辑推理与计算能力,是基础题目.16.已知实数x,y满足,则z=4x+y的最大值为()A. 10 B. 8 C. 2 D. 0考点:简单线性规划.专题:不等式的解法及应用.分析:画出足约束条件的平面区域,再将平面区域的各角点坐标代入进行判断,即可求出4x+y的最大值.解答:解:已知实数x、y满足,在坐标系中画出可行域,如图中阴影三角形,三个顶点分别是A(0,0),B(0,2),C(2,0),由图可知,当x=2,y=0时,4x+y的最大值是8.故选:B.点评:本题考查线性规划问题,难度较小.目标函数有唯一最优解是最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.17.在正四面体ABCD中,点E,F分别是AB,BC的中点,则下列结论错误的是()A.异面直线AB与CD所成的角为90°B.直线AB与平面BCD成的角为60°C.直线EF∥平面ACDD.平面AFD垂直平面BCD考点:空间中直线与平面之间的位置关系.专题:空间位置关系与距离.分析:过A作AG⊥CD,则G为CD中点,连接AG,AF,BG,DF,则BG⊥CD,DF⊥BC,利用正四面体的性质对选项分别分析选择.解答:解:如图过A作AG⊥CD,则G为CD中点,连接AG,AF,BG,DF,则BG⊥CD,DF⊥BC,所以CD⊥平面ABG,所以CD⊥AB,故A正确;正四面体ABCD中,A在平面BCD的射影为O,则O在BG上,并且O为△BCD的中心,则直线AB与平面BCD成的角为∠ABO,又BO=,即=sin∠ABO,所以∠ABO≠60°;故B错误;正四面体ABCD中,点E,F分别是AB,BC的中点,所以EF∥AC,EF⊄平面ACD,AC⊂平面ACD,所以EF∥平面ACD;故C正确;因为几何体为正四面体,所以A在底面BCD的射影为底面的中心,所以AO⊥平面BCD,AO ⊂平面AFD,所以平面AFD⊥平面BCD;故D正确;故选:B.点评:本题以正四面体为载体,考查了线面平行、面面垂直的判定定理的运用以及空间角的求法;关键是转化为线线关系解决.18.某商场以每件30元的价格购进一种玩具.通过试销售发现,逐渐提高售价,每天的利润增大,当售价提高到45元时,每天的利润达到最大值为450元,再提高售价时,由于销售量逐渐减少利润下降,当售价提高到60元时,每天一件也卖不出去.设售价为x,利润y 是x的二次函数,则这个二次函数的解析式是()A. y=﹣2(x﹣30)(x﹣60) B. y=﹣2(x﹣30)(x﹣45)C. y=(x﹣45)2+450 D. y=﹣2(x﹣30)2+450考点:函数解析式的求解及常用方法.专题:函数的性质及应用.分析:由题意可设解析式为y=a(x﹣45)2+450,其中a<0,代入(60,0)可得a值,可得解析式.解答:解:由题意可得所求二次函数开口向下,顶点坐标为(45,450),故解析式为y=a(x﹣45)2+450,其中a<0,再由题意可得当x=60时,y=0,代入解析式可得0=225a+450,解得a=﹣2,∴所求解析式为y=﹣2(x﹣45)2+450,变形可得y=﹣2(x﹣30)(x﹣60),故选:A.点评:本题考查待定系数法求二次函数的解析式,属基础题.19.函数f(x)=sin(ωx+φ)(x∈R)(ω>0,|φ|<)的部分图象如图所示,如果,且f(x1)=f(x2),则f(x1+x2)=()A. B. C. D. 1考点:由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:通过函数的图象求出函数的周期,利用函数的图象经过的特殊点求出函数的初相,得到函数的解析式,利用函数的图象与函数的对称性求出f(x1+x2)即可.解答:解:由图知,T=2×=π,∴ω=2,因为函数的图象经过(﹣),0=sin(﹣+ϕ)∵,所以ϕ=,∴,,所以.故选C.点评:本题考查三角函数的解析式的求法,函数的图象的应用,函数的对称性,考查计算能力.20.已知双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A. B.C. D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:先求出焦点坐标,利用双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程.解答:解:∵双曲线的一个焦点在直线l上,令y=0,可得x=﹣5,即焦点坐标为(﹣5,0),∴c=5,∵双曲线﹣=1(a>0,b>0)的一条渐近线平行于直线l:y=2x+10,∴=2,∵c2=a2+b2,∴a2=5,b2=20,∴双曲线的方程为=1.故选:D.点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题.二、填空题(本大题5小题,每题4分,共20分.请将答案填在答题卡相应题号的横线上)21.关于x的不等式ax2﹣5x+b<0的解集是(2,3),则a+b的值等于7 .考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:根据一元二次不等式与对应方程之间的关系,得出方程的两个根为2和3,再利用根与系数的关系求出a、b的值即可.解答:解:∵关于x的不等式ax2﹣5x+b<0的解集是(2,3),∴关于x的方程ax2﹣5x+b=0的两个根为2和3,∴=2+3,=2×3;解得a=1,b=6;∴a+b=1+6=7.故答案为:7.点评:本题考查了一元二次不等式与对应方程之间的关系应用问题,也考查了根与系数的应用问题,是基础题目.22.已知=(cosx,sinx),=(cosx+sinx,sinx﹣cosx),x∈R,则<,>的值是.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件求得•、||=1、||的值,再根据cos<,>=,求得<,>的值.解答:解:由题意可得,•=cosx(cosx+sinx)=sinx(sinx﹣cosx)=1,||=1,||==2,∴cos<,>===,∴<,>=,故答案为:.点评:本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量坐标形式的运算,属于基础题.23.过抛物线y2=4x的焦点F的直线与抛物线交于A、B两点,则= ﹣3 .考点:抛物线的简单性质;平面向量数量积的运算.专题:计算题.分析:由抛物线y2=4x与过其焦点( 1,0)的直线方程联立,消去y整理成关于x的一元二次方程,设出A(x1,y1)、B(x2,y2)两点坐标,=x1•x2+y1•y2,由韦达定理可以求得答案.解答:解:由题意知,抛物线y2=4x的焦点坐标为( 1,0),∴直线AB的方程为y=k(x ﹣1),由得k2x2﹣(2k2+4)x+k2=0,设A(x1,y1),B(x2,y2),则,y1•y2=k(x1﹣1)•k(x2﹣1)=k2[x1•x2﹣(x1+x2)+1]∴=x1•x2+y1•y2=,故答案为:﹣3.点评:本题的考点是直线与圆锥曲线的关系,主要考查抛物线的标准方程,以及简单性质的应用,关键是利用=x1•x2+y1•y2,进而得解.24.已知一个正方体的所有顶点在一个球面上.若球的体积为,则正方体的棱长为.考点:球内接多面体;球的体积和表面积.专题:空间位置关系与距离;立体几何.分析:设出正方体棱长,利用正方体的体对角线就是外接球的直径,通过球的体积求出正方体的棱长.解答:解:因为正方体的体对角线就是外接球的直径,设正方体的棱长为a,所以正方体的体对角线长为:a,正方体的外接球的半径为:,球的体积为:,解得a=.故答案为:.点评:本题考查正方体与外接球的关系,注意到正方体的体对角线就是球的直径是解题的关键,考查空间想象能力与计算能力.25.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示.若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为20 .考点:频率分布直方图.专题:概率与统计.分析:根据频率分布直方图,求出视力在0.9以上的频率,即可得出该班学生中能报A专业的人数.解答:解:根据频率分布直方图,得:视力在0.9以上的频率为(1.00+0.75+0.25)×0.2=0.4,∴该班学生中能报A专业的人数为50×0.4=20;故答案为:20.点评:本题考查了频率分布直方图的应用问题,解题时应利用频率分布直方图,会求某一范围内的频率以及频数,是基础题.三、解答题(本大题5小题,共40分.请在答题卡相应的题号处写出解答过程)26.已知等差数列{a n}满足:a5=5,a2+a6=8.(1)求{a n}的通项公式;(2)若b n=2,求数列{b n}的前n项和S n.考点:数列的求和;等差数列的通项公式.专题:等差数列与等比数列.分析:(1)利用等差数列的通项公式即可得出;(2)利用等比数列的前n项和公式即可得出.解答:解:(1)由条件知:,得,∴{a n}的通项公式为a n=n.(2)∵,,∴数列{b n}是以b1=2,公比q=2的等比数列,∴.点评:本题考查了等差数列与等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.27.已知函数f(x)=x+(1)求证:函数y=f(x)是奇函数;(2)若a>b>1,试比较f(a)和f(b)的大小.考点:函数奇偶性的判断;不等式比较大小.专题:函数的性质及应用.分析:(1)根据函数奇偶性的定义即可证明函数y=f(x)是奇函数;(2)利用作差法即可比较大小.解答:证明:(1)函数的定义域为:x∈R,x≠0,关于原点对称,又故函数y=f(x)是奇函数.…(3分)(2)f(a)﹣f(b)=,∵a>b>1,∴a﹣b>0,ab>1,∴f(a)﹣f(b)>0,∴f(a)>f(b).…(8分)点评:本题主要考查函数奇偶性的判断,以及函数值的大小比较,利用作差法是解决本题的关键.28.已知△ABC中,内角A,B,C的对边分别为a,b,c,若=(b+a,﹣c),=(b﹣a,a+c),且;(1)求角B的值;(2)若a=6,b=6,求△ABC的面积.考点:余弦定理;正弦定理.专题:解三角形;平面向量及应用.分析:(1)由题意可得,由余弦定理可得cosB,结合B的范围即可得解.(2)由正弦定理可求sinA,结合A的范围可求A,C,由三角形面积公式即可得解.解答:解:(1)因为,所以,即:a2+c2﹣b2=﹣ac,所以,因为0<B<π,所以.…(4分)(2)因为,所以,因为0<A<π,所以,,所以.…(8分)点评:本题主要考查了正弦定理,余弦定理,三角形面积公式,平面向量及应用,解题时要注意分析角的范围,属于中档题.29.如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC 的中点,PO⊥平面ABCD,PO=2,M为PD的中点.(1)证明:PB∥平面ACM;(2)证明:AD⊥平面PAC.考点:直线与平面平行的判定;直线与平面垂直的判定.专题:常规题型.分析:(1)连接BD、OM,由M,O分别为PD和AC中点,得OM∥PB,从而证明PB∥平面ACM;(2)由PO⊥平面ABCD,得PO⊥AD,由∠ADC=45°,AD=AC,得AD⊥AC,从而证明AD⊥平面PAC.解答:证明:(1)连接BD和OM∵底面ABCD为平行四边形且O为AC的中点∴BD经过O点在△PBD中,O为BD的中点,M为PD的中点所以OM为△PBD的中位线故OM∥PB∵OM∥PB,OM⊂平面ACM,PB⊄平面ACM∴由直线和平面平行的判定定理知 PB∥平面ACM.(2)∵PO⊥平面ABCD,且AD⊂平面ABCD∴PO⊥AD∵∠ADC=45°且AD=AC=1∴∠ACD=45°∴∠DAC=90°∴AD⊥AC∵AC⊂平面PAC,PO⊂平面PAC,且AC∩PO=O∴由直线和平面垂直的判定定理知 AD⊥平面PAC.点评:本题主要考查了直线和平面平行及垂直的判定定理.30.焦点在x轴上的椭圆C的一个顶点与抛物线E:x2=4y的焦点重合,且离心率e=,直线l经过椭圆C的右焦点与椭圆C交于M,N两点.(1)求椭圆C的方程;(2)若•=﹣2,求直线l的方程.考点:椭圆的简单性质.专题:平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程.分析:(1)求得抛物线的焦点,由椭圆的离心率公式和a,b,c的关系,可得a,b,进而得到椭圆方程;(2)讨论直线的斜率不存在和存在,联立椭圆方程,运用韦达定理和向量的数量积的坐标表示,计算可得斜率k,进而得到所求直线方程.解答:解:(1)因为抛物线的焦点为,所以,又,a2=b2+c2,所以a=2,所以椭圆的标准方程为;(2)当直线的斜率不存在时,直线方程为x=1,解得,,此时不合题意.设直线的方程为y=k(x﹣1),则M(x1,y1),N(x2,y2)满足:,(1)代入(2)得:(3+4k2)x2﹣8k2x+4k2﹣12=0,则,,所以,所以,所以直线的方程为或.点评:本题考查椭圆的方程和性质,主要考查椭圆的离心率和方程的运用,联立直线方程,运用韦达定理,同时考查向量的数量积的坐标表示,属于中档题.。