高级运筹学K-T条件极值试题(含答案)
- 格式:docx
- 大小:321.54 KB
- 文档页数:10
1. 假设有一百万元可以投资到三支股票上,设随机变量iR 表示投资到股票i 上的一元钱每年能够带来的收益。
通过对历史数据分析,知期望收益1()0.09E R =,2()0.07E R =,3()0.06E R =,三支股票的协方差矩阵为0.200.030.040.030.200.050.040.050.15⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
假设使用股票涨跌稳定性来评测风险,试构建优化模型,在保证期望年收益率不低于0.075的情况下,风险最小,同时表示为非线性优化的向量形式。
解:设123(,,)T X x x x =,其中123,,x x x 分别表示投资组合中123,,R R R 的所占的比例,有1231x x x ++= ……①保证期望收益率不低于0.075:112233()()()0.075x E R x E R x E R ++≥ ……②建立如下优化模型:222123121323min ()0.200.200.150.060.080.10f X x x x x x x x x x =+++++ ..s t 1231x x x ++=1230.090.070.060.075x x x ++≥123,,0x x x ≥记:0.200.030.040.030.200.050.040.050.15A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦表示成向量形式:min ()T f X X AX =..s t 1111T X ⎛⎫⎪= ⎪ ⎪⎝⎭0.090.070.0750.06T X ⎛⎫ ⎪≥ ⎪ ⎪⎝⎭123,,0x x x ≥2. 用伪算法语言描述“成功-失败”搜索方法。
解:1s :初始化:0x , h,ε>02s :x=0x ;1f =f(x) 3s :2f =f(x+h)4s : if 2f <1f go to 5s ;elsego to 6s ; end5s : x=x+h;2f =1f ;h=2h6s : if ||h ε<go to 7s ; else go to 8s ; end7s : x x *=8s : 4h h =-; go to 3s . □3. 请简述黄金分割法的基本思想,并尝试导出区间收缩比率φ≈0.618.基本思想:黄金分割法就是用不变的区间缩短率ϕ,来代替Fibonacci 法每次不同的缩短率,因而可以看成是Fibonacci 法的近似。
练习题(博弈论部分): 1、化简下面的矩阵对策问题:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2504363432423622415332412A2、列出下列矩阵对策的线性规划表达式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=334133313A3、用线性方程组解 “齐王赛马”的纳什均衡。
解:已知齐王的赢得矩阵为A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------3111111311111131111113111111311111134、已知对策400008060A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的最优解为:)133,134,136(),134,133,136(**==Y X ,对策值1324*=V ,求以下矩阵对策的最优解和对策值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=203820442020202032'A5、设矩阵对策的支付矩阵为:353432323A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其策略和策略的值。
6、求解下列矩阵对策的解:123312231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦练习题(多属性决策部分):1、拟在6所学校中扩建一所,经过调研和分析,得到目标属性值如下表(费用和学生就读距离越小越好)试用加权和法分析应扩建那所学校?讨论权重的选择对决策的影响!2、拟选择一款洗衣机,其性能参数(在洗5Kg 衣物的消耗)如下表,设各目标的重要性相同,采用折中法选择合适的洗衣机3、六方案四目标决策问题的决策矩阵如下表,各目标的属性值越大越好,{0.3,0.2,0.4,0.1}TW =请用ELECTRE法求解,折中法,加权法求解排队论练习:例1:在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。
求:(1)顾客来理发不必等待的概率;(2)理发馆内顾客平均数;(3)顾客在理发馆内平均逗留时间;(4)如果顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及人员。
问平均到达率提高多少时店主才能做这样考虑呢?例2:某机关接待室只有一位对外接待人员,每天工作10小时,来访人员和接待时间都是随机的。
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“√”,错误者写“×”。
)1. 图解法提供了求解线性规划问题的通用方法。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j ≥0,则问题达到最优。
( )3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。
( )4. 满足线性规划问题所有约束条件的解称为基本可行解。
( )5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。
( )6. 对偶问题的目标函数总是与原问题目标函数相等。
( )7. 原问题与对偶问题是一一对应的。
( )8. 运输问题的可行解中基变量的个数一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。
( )15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )三、填空题1. 图的组成要素;。
2. 求最小树的方法有、。
3. 线性规划解的情形有、、、。
4. 求解指派问题的方法是。
5. 按决策环境分类,将决策问题分为、、。
6. 树连通,但不存在。
四、下列表是线性规划单纯形表(求Z max ),请根据单纯形法原理和算法。
1. 计算该规划的检验数2. 计算对偶问题的目标函数值3. 确定上表中输入,输出变量五、已知一个线性规划原问题如下,请写出对应的对偶模型21max 6x x S +=⎪⎩⎪⎨⎧≥≥+≤+0,16327212121x x x x x x六、下图为动态规划的一个图示模型,边上的数字为两点间的距离,请用逆推法求出S 至F 点的最短路径及最短路长。
运筹学试题及答案解析编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(运筹学试题及答案解析)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为运筹学试题及答案解析的全部内容。
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错?错4、如果某一整数规划:MaxZ=X1+X2X1+9/14X2≤51/14-2X1+X2≤1/3X1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进行分枝,应该分为 X1≤1 和 X1≥2 .5、在用逆向解法求动态规划时,f k(s k)的含义是:从第k个阶段到第n个阶段的最优解。
6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D和B的关系为 D 包含 B7.已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“≤"型不等式)其中X3,X4,X5为松驰变量。
问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8。
线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9。
极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT(b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
数学:运筹学试题及答案(强化练习)1、单选不属一般系统,特别是人造系统特征的是()A.整体性B.集合性C.目的性D.规模性正确答案:D2、名词解释概率向量正确答案:任意一个向量u=(u1,u2,…,un),如果(江南博哥)它内部的各种元素为非负数,且总和等于1,则此向量称为概率向量。
3、填空题影子价格实际上是与原问题各约束条件相联系的()的数量表现。
正确答案:对偶变量4、单选关于线性规划和其对偶规划的叙述中,正确的是()A.极大化问题(原始规划)的任意一个可行解所对应的目标函数值是对偶问题最优目标函数值的一个下界B.极小化问题(对偶规划)的任意一个可行解所对应的目标函数值是原始问题最优目标函数值的一个下界C.若原始问题可行,则其目标函数无界的充要条件是对偶问题有可行解D.若对偶问题可行,则其目标函数无界的充要条件是原始问题可行正确答案:A5、单选为建立运输问题的改进方案,在调整路线中调整量应为()。
A.奇数格的最小运量B.奇数格的最大运量C.偶数格的最小运量D.偶数格的最大运量正确答案:A6、单选下述选项中结果一般不为0的是()。
A.关键结点的结点时差B.关键线路的线路时差C.始点的最早开始时间D.活动的专用时差正确答案:D7、填空题动态规划中,把所给问题的过程,分为若干个相互联系的()正确答案:阶段8、多选系统评价常用的理论有()A.数量化理论B.效用理论C.最优化理论D.不确定性理论E.模糊理论正确答案:A, B, C, D9、填空题常用的两种时差是工作()和工作自由时差。
正确答案:总时差10、填空题()(EOQ)是使总的存货费用达到最低的某种存货台套的最佳订货量。
正确答案:经济订货量11、填空题分枝定界法一般每次分枝数量为()正确答案:2个12、单选用单纯形法求解线性规划时,不论是极大化或是极小化问题,均用最小比值原则确定出基变量,该说法()。
A.正确B.不正确C.可能正确D.以上都不对正确答案:A13、名词解释安全库存量正确答案:也称保险库存量,是为了预防可能出现的缺货现象而保持的额外库存量14、填空题若线性规划问题有(),必在某顶点上得到。
《运筹学试题与答案》一、判断题:在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写“T”,错误者写“F”。
1. 线性规划问题的每一个基本可行解对应可行域的一个顶点。
( )2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j≤0,则问题达到最优。
( )3. 若线性规划的可行域非空有界,则其顶点中必存在最优解。
( )4. 满足线性规划问题所有约束条件的解称为可行解。
( )5. 在线性规划问题的求解过程中,基变量和非机变量的个数是固定的。
( )6. 对偶问题的对偶是原问题。
( )7. 在可行解的状态下,原问题与对偶问题的目标函数值是相等的。
( )8. 运输问题的可行解中基变量的个数不一定遵循m+n-1的规则。
( )9. 指派问题的解中基变量的个数为m+n。
( )10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。
( )11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。
( )12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往是不相等。
( )13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。
( )14. 单目标决策时,用不同方法确定的最佳方案往往是不一致的。
( )15. 动态规则中运用图解法的顺推方法和网络最短路径的标号法上是一致的。
( )二、单项选择题1、对于线性规划问题标准型:maxZ=CX, AX=b, X≥0, 利用单纯形法求解时,每作一次迭代,都能保证它相应的目标函数值Z必为()。
A. 增大B. 不减少C. 减少D. 不增大2、若线性规划问题的最优解不唯一,则在最优单纯形表上()。
A. 非基变量的检验数都为零B. 非基变量检验数必有为零C. 非基变量检验数不必有为零者D. 非基变量的检验数都小于零3、线性规划问题的数学模型由目标函数、约束条件和()三个部分组成。
A. 非负条件B. 顶点集合C. 最优解D. 决策变量4、已知x1= ( 2, 4), x2=(4, 8)是某线性规划问题的两个最优解,则()也是该线性规划问题的最优解。
《运筹学》样卷参考答案(48课时)一、判断题(对的记√,错的记×,共10分,每小题2分)1.线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大;()y 说明在最优生产计划中第i种资源2.已知*y为线性规划的对偶问题的最优解,若*0i已完全耗尽;( ) 3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解、有无穷多最优解、无界解和无可行解;()4.求解整数规划是可以先不考虑变量的整数约束,而是先求解相应的线性规划问题,然后对求解结果中的非整数的变量凑整即得最优解。
()5.11个公司之间可能只有4个公司与偶数个公司有业务联系;()答案:1. T; 2. T; 3. F; 4. F; 5. F二、选择题(共15分,每小题3分)1.在利用图解法求解最大利润问题中中,通过各极点作与目标函数直线斜率相同的平行线,这些平行线称之为。
( )A.可行解B.可行域C.等利润线D.等成本线2.用单纯形法求解线性规划问题时引入的松弛变量在目标函数中的系数为。
( )A.0B.很大的正数C.很大的负数D.13.以下关系中,不是线性规划与其对偶问题的对应关系的是。
( )A.约束条件组的系数矩阵互为转置矩阵B.一个约束条件组的常数列为另一个目标函数的系数行向量C.两个约束条件组中的方程个数相等D.约束条件组的不等式反向4.需求量大于供应量的运输问题需要做的是。
( )A.虚设一个需求点B.删去一个供应点C.虚设一个供应点,取虚设供应量为恰当值D.令供应点到虚设的需求点的单位运费为05.对一个求目标函数最大的混合整数规划问题,以下命题中不正确的是。
()A.其线性规划松弛问题的最优解可能是该整数规划问题的最优解。
B.该问题可行解的个数一定是有限的;C.任一可行解的目标函数值不可能大于其线性规划松弛问题的目标函数值;D.该问题可行解中可能存在不取整数值的变量。
练习题(博弈论部分):1、化简下面的矩阵对策问题:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=2504363432423622415332412A2、列出下列矩阵对策的线性规划表达式⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=334133313A3、用线性方程组解 “齐王赛马”的纳什均衡。
解:已知齐王的赢得矩阵为A =⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------3111111311111131111113111111311111134、已知对策400008060A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦的最优解为:)133,134,136(),134,133,136(**==Y X ,对策值1324*=V ,求以下矩阵对策的最优解和对策值⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=203820442020202032'A5、设矩阵对策的支付矩阵为:353432323A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求其策略和策略的值。
6、求解下列矩阵对策的解:123312231A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦练习题(多属性决策部分):2、拟选择一款洗衣机,其性能参数(在洗5Kg衣物的消耗)如下表,设各目标的重要性相同,采用折中W=3、六方案四目标决策问题的决策矩阵如下表,各目标的属性值越大越好,{0.3,0.2,0.4,0.1}T请用ELECTRE法求解,折中法,加权法求解排队论练习:例1:在某单人理发馆,顾客到达为普阿松流,平均到达间隔为20分钟,理发时间服从负指数分布,平均时间为15分钟。
求:(1)顾客来理发不必等待的概率;(2)理发馆内顾客平均数;(3)顾客在理发馆内平均逗留时间;(4)如果顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及人员。
问平均到达率提高多少时店主才能做这样考虑呢?例2:某机关接待室只有一位对外接待人员,每天工作10小时,来访人员和接待时间都是随机的。
若来访人员按普阿松流到达,其到达速率λ=7人/小时,接待时间服从负指数分布,其服务速率μ=7.5人/小时。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选岀一个正确答案, 分。
每小题1分,共10分)1 .线性规划具有唯一最优解是指A .最优表中存在常数项为零B •最优表中非基变量检验数全部非零C •最优表中存在非基变量的检验数为零D •可行解集合有界2 •设线性规划的约束条件为则基本可行解为3 min Z = 3工]+4勺,;f] + 工2 > 4,2工1+ 工2 - 2,心花一Q 则A •无可行解B .有唯一最优解 medn 答案选错或未选者,该题不得A . (0, 0, 4, 3) B. (3, 4, 0, 0) C • (2, 0,1,0) D • (3, 0, 4, 0)C .有多重最优解D .有无界解4 .互为对偶的两个线性规划任意可行解X和丫,存在关系C . Z >W5 .有6个产地4个销地的平衡运输问题模型具有特征A .有10个变量24个约束B .有24个变量10个约束C .有24个变量9个约束D .有9个基变量10个非基变量6.下例错误的说法是A.标准型的目标函数是求最大值B .标准型的目标函数是求最小值C .标准型的常数项非正D•标准型的变量一定要非负7. m+n — 1个变量构成一组基变量的充要条件是8 .互为对偶的两个线性规划问题的解存在关系A .原问题无可行解,对偶问题也无可行解B •对偶问题有可行解,原问题可能无可行解C .若最优解存在,则最优解相同D •一个问题无可行解,则另一个问题具有无界解9.有m 个产地n 个销地的平衡运输问题模型具有特征mn 个变量 m+n 个约束 …m+n-1 个基变量m+n — 1 个基变量,mn — m — n — 1 个非基变量10 •要求不超过第一目标值、恰好完成第二目标值,目标函数是m+n — 1 个变量恰好构成一个闭回路m+n — 1 个变量不包含任何闭回路m+n — 1 个变量中部分变量构成一个闭回路m+n — 1 个变量对应的系数列向量线性相关B •有 m+n 个变量 mn 个约束C •有 mn 个变量m+n — 1约束A •有D •有20.对偶问题有可行解,则原问题也有可行解 X15 分)12.凡基本解一定是可行解 X 同1914.可行解集非空时,则在极点上至少有一点达到最优值 15.互为对偶问题,或者同时都有最优解,或者同时都无最优解17.要求不超过目标值的目标函数是 二說+18.求最小值问题的目标函数值是各分枝函数值的下界19.基本解对应的基是可行基 X 当非负时为基本可行解,对应的基叫可行基min ZP i d iP 2 (d 2 d 2)minP 2(d 2d 2)min P i d iP 2(d 2 d 2)minP i d iP 2(d 2 d 2)二、判断题 (你认为下列命题是否正确,对正确的打;错误的打“X”。
运筹学试题及答案4套《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。
-1311611-2002-111/21/21407三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序a b c d e f g h 紧前工序——a a b,c b,c,d b,c,d e试画出该工程的网络图。
(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。
六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。
2 -1 1 0 02 3 11311111610 0 -3 -1 -2 0(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地产地甲乙丙丁产量A41241116B2103910C8511622需求量814121448《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。
二、(20分)已知运输表如下:销地产地B1B2B3B4供应量A1503 2 7 6A275 2 360A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。
(整理)《运筹学》期末考试试题及参考答案------------------------------------------作者xxxx------------------------------------------日期xxxx《运筹学》试题参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为 可行解 。
2、在线性规划问题中,图解法适合用于处理 变量 为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点,化为供求平衡的标准形式 。
4、在图论中,称 无圈的 连通图为树。
5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题: 1)max z = 6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x , 解:此题在“《运筹学》复习参考资料。
do c”中已有,不再重复. 2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺⑴⑵ ⑶ ⑷ ⑸、⑹可行解域为ab cda,最优解为b 点。
由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫ ⎝⎛21x x =(11,0)T∴m in z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:A B C 甲 9 4 3 70 乙 4 6 10 1203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解.(10分) 解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z是产品售后的总利润,则m ax z =70x 1+120x 2s .t 。
⾼级运筹学选择判断题选择题动态规划部分1、关于动态规划问题的下列命题中错误的是(A )A、动态规划分阶段顺序不同,则结果不同B、状态对决策有影响C、动态规划中,定义状态时应保证在各个阶段中所做决策的相对独⽴性D、动态规划的求解过程都可以⽤列表形式实现2、动态规划不适⽤于解决(A)A.排队问题B.背包问题C.资源分配问题D.⽣产存储问题3、采⽤动态规划策略求解问题的显著特征是满⾜最优性原理,其含义是(B)A.当前所作决策不会影响后⾯的决策B.原问题的最优解包含其⼦问题的最优解C.问题可以找到最优解,但利⽤贪⼼算法不能找到最优解D.每次决策必须是当前看来的最优决策才可以找到最优解4、下列哪个不是动态规划的适⽤条件?(D)A 最优化原理B ⽆后效性C ⼦问题的重叠性D ⼦问题之间互不独⽴5、动态规划的研究对象是(B)A⽆后效性B多阶段决策问题C基本⽅程D最优决策序列6、关于最优性原理,下⾯那个叙述是正确的(A)A⼦策略⼀定是最优的 B⼦策略不是最优的 C⼦策略是否最优和前⾯决策有关 D⼦策略是否最优与后⾯策略有关7、迭代⽅法是诸多求解最优化问题的核⼼思想,除下列哪项之外(D)A.线性规划B.动态规划C.⾮线性规划D.排队优化8、关于动态规划⽅法,下⾯的说法错误的是(C)A到⽬前为⽌,没有⼀个统⼀的标准模型可供应⽤B应⽤存在局限性C⾮线性规划⽅法⽐动态规划⽅法更易获得全局最优解D能利⽤经验,提⾼求解的效率9、对于动态规划的描述,下⾯说法不正确的是:(C)A.动态规划的核⼼是基本⽅程B.对于同⼀个动态规划问题,应⽤顺序和逆序两种解法会得到相同的最优解C.若动态规化问题的初始状态是已知的,⼀般采⽤顺序解法进⾏求解D.最优性原理可以描述为“策略具有的基本性质是:⽆论初始状态和初始决策如何,对于前⾯决策所造成的某⼀状态⽽⾔,余下的决策序列必构成最优策略”10、动态规划是决策问题。
(B)A. 单阶段B. 多阶段C. 与阶段⽆关D. 以上均不是11、下列选项中求解与时间有关的是(B)a整数规划 b动态规划 c线性规划 d⾮线性规划12、规划论内容不包括(D)A线性规划 B⾮线性规划 C动态规划 D⽹络分析13、哪⼀项不是多阶段决策问题的特点(B)A可⽤动态规划进⾏求解B有统⼀的动态规划模式和明确定义的规则C过程的过去历史通过当前状态影响未来发展D可分为多个互相联系的单阶段过程排队论部分1. 排队模型M/M/1/C/N指的是顾客到达服从参数为λ的,服务时间服从参数为µ的,个服务台,系统容量为。
《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。