材料属性简介
- 格式:doc
- 大小:129.50 KB
- 文档页数:7
常用材料属性ABS:丙烯腈-丁二烯-苯乙烯塑料 (Acrylonitrile Butadiene Styrene plastic)比重:1.05克/立方厘米成型收缩率:0.4-0.7%成型温度:200-240℃ 干燥条件:80-90℃ 2小时高强度,热稳定性,化学稳定性,电性能良好,有高抗冲、阻燃、增强、透明等级别,着色性,表面可电镀喷漆处理。
PC:聚碳酸酯(Polycarbonate)比重:1.18-1.20克/立方厘米成型收缩率:0.5-0.8%成型温度:230-320℃ 干燥条件:110-120℃ 8小时冲击强度高,尺寸稳定性好,无色透明,光泽度,着色性好,电绝缘性、耐腐蚀性、耐磨性好,但自润滑性差,有应力开裂倾向,干燥高温下长期使用,湿高温易水解,与其它树脂相溶性差,成型温度范围宽,流动性差.PS: 聚苯乙烯(Polystyrene)比重:1.05克/立方厘米成型收缩率:0.6-0.8%成型温度:170-250℃无色透明仅次于有机玻璃,电绝缘性优良,化学稳定性良好,着色性耐水性,不耐苯.汽油等有机溶剂.不易分解但热膨胀系数大,强度一般,质脆,易产生应力脆裂, 吸湿小,不须充分干燥,流动性较好PMMA(亚克力)聚甲基丙烯酸甲酯(Polymethyl Methacrylate)比重:1.18克/立方厘米成型收缩率:0.5-0.7%成型温度:160-230℃ 干燥条件:70-90℃ 4小时透明性极好,透光达92%,强度较高,耐腐蚀,绝缘性良好, 但质脆,其表面硬度稍低,易熔于有机溶剂, 吸湿大, 不易分解,流动性中等, 易发生填充不良,粘模,收缩,熔接痕等.POM:聚甲醛(Polyoxymethylene)比重:1.41-1.43克/立方厘米成型收缩率:1.2-3.0%成型温度:170-200℃ 干燥条件:80-90℃ 2小时强度、刚度高,弹性好,耐磨性自润滑性,吸水小,尺寸稳定性好,易燃烧,极易分解,分解温度为240度。
1、铜的自然属性铜是人类最早发现的古老金属之一,早在三千多年前人类就开始使用铜。
自然界中的铜分为自然铜、氧化铜矿和硫化铜矿。
自然铜及氧化铜的储量少,现在世界上80%以上的铜是从硫化铜矿精炼出来的,这种矿石含铜量极低,一般在2--3%左右。
金属铜,元素符号Cu,原子量63.54,比重8.92,熔点1083Co。
纯铜呈浅玫瑰色或淡红色。
铜具有许多可贵的物理化学特性,例如其热导率和电导率都很高,化学稳定性强,抗张强度大,易熔接,具抗蚀性、可塑性、延展性。
纯铜可拉成很细的铜丝,制成很薄的铜箔。
能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金,形成的合金主要分成三类:黄铜是铜锌合金,青铜是铜锡合金,白铜是铜钴镍合金。
铜冶金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法冶炼为主,其产量约占世界铜总产量的85%,现代湿法冶炼的技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。
2、铜的主要用途铜是与人类关系非常密切的有色金属,被广泛地应用于电气、轻工、机械制造、建筑工业、国防工业等领域,在我国有色金属材料的消费中仅次于铝。
铜在电气、电子工业中应用最广、用量最大,占总消费量一半以上。
用于各种电缆和导线,电机和变压器的绕阻,开关以及印刷线路板等。
在机械和运输车辆制造中,用于制造工业阀门和配件、仪表、滑动轴承、模具、热交换器和泵等。
在化学工业中广泛应用于制造真空器、蒸馏锅、酿造锅等。
在国防工业中用以制造子弹、炮弹、枪炮零件等,每生产100万发子弹,需用铜13--14吨。
在建筑工业中,用做各种管道、管道配件、装饰器件等。
以下是各行业铜消费占铜总消费量的比例:行业铜消费量占总消费量的比例电子(包括通讯) 48%建筑24%一般工程12%交通7%其他9%锌的自然属性金属锌,化学符号Zn,原子量65.4,熔点为419.73度,沸点907度。
锌是自然界分布较广的金属元素。
主要以硫化物、氧化物状态存在。
材料的属性材料的属性是指材料所具有的特点和性质,包括物理性质、化学性质、力学性质、热性质等。
首先是物理性质。
这包括材料的颜色、密度、熔点、沸点、导电性、导热性等。
不同材料的这些属性不同,比如金属通常具有良好的导电导热性,而陶瓷则具有较高的绝缘性能。
其次是化学性质。
这包括材料与其他物质的相互作用,包括氧化、腐蚀、还原等反应。
例如,金属可以与氧气反应产生氧化物,也可以被硫酸等强酸腐蚀;而塑料则具有较好的耐腐蚀性。
再者是力学性质,指材料的强度、硬度、延展性、韧性等性质。
这些属性决定了材料在外力作用下的表现,比如金属的韧性较好,可以在一定范围内承受变形而不断裂。
最后是热性质。
这包括材料的热膨胀系数、热导率、热稳定性等。
材料的热性质对其在高温下的表现和应用至关重要。
比如耐高温材料需要具有较低的热膨胀系数和较高的热稳定性。
材料的属性对其在实际应用中起着重要作用。
根据不同的要求,选择合适的材料可以提高产品的性能和可靠性。
例如,在汽车制造中,采用高强度的钢材可以提高汽车的安全性;在电子产品制造中,选用导电性能好又具备较好绝缘性的材料能够提高电子产品的性能和可靠性。
材料的属性也对材料的加工和处理产生影响。
不同材料的性质决定了其在加工过程中的可塑性、可焊性等。
比如金属材料容易进行塑性变形和焊接,而陶瓷材料则较难进行加工变形。
总之,材料的属性是材料所具有的特点和性质,涵盖了物理性质、化学性质、力学性质和热性质等方面。
对于材料的选择和应用、加工处理等都起着重要的指导作用。
因此,了解和熟悉材料的属性对于工程和科学研究具有重要意义。
材料属性简介:一、屈服强度微解释:指材料在出现屈服现象时所能承受的最大应力当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
概念屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。
大于此极限的外力作用,将会使零件永久失效,无法恢复。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
屈服强度:大于此极限的外力作用,将会使零件永久失效,没法恢复。
这个压强叫做屈服强度。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。
通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。
因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。
1、铜的自然属性铜是人类最早发现的古老金属之一,早在三千多年前人类就开始使用铜。
自然界中的铜分为自然铜、氧化铜矿和硫化铜矿。
自然铜及氧化铜的储量少,现在世界上80%以上的铜是从硫化铜矿精炼出来的,这种矿石含铜量极低,一般在2--3%左右。
金属铜,元素符号Cu,原子量63.54,比重8.92,熔点1083Co。
纯铜呈浅玫瑰色或淡红色。
铜具有许多可贵的物理化学特性,例如其热导率和电导率都很高,化学稳定性强,抗张强度大,易熔接,具抗蚀性、可塑性、延展性。
纯铜可拉成很细的铜丝,制成很薄的铜箔。
能与锌、锡、铅、锰、钴、镍、铝、铁等金属形成合金,形成的合金主要分成三类:黄铜是铜锌合金,青铜是铜锡合金,白铜是铜钴镍合金。
铜冶金技术的发展经历了漫长的过程,但至今铜的冶炼仍以火法冶炼为主,其产量约占世界铜总产量的85%,现代湿法冶炼的技术正在逐步推广,预计本世纪末可达总产量的20%,湿法冶炼的推出使铜的冶炼成本大大降低。
2、铜的主要用途铜是与人类关系非常密切的有色金属,被广泛地应用于电气、轻工、机械制造、建筑工业、国防工业等领域,在我国有色金属材料的消费中仅次于铝。
铜在电气、电子工业中应用最广、用量最大,占总消费量一半以上。
用于各种电缆和导线,电机和变压器的绕阻,开关以及印刷线路板等。
在机械和运输车辆制造中,用于制造工业阀门和配件、仪表、滑动轴承、模具、热交换器和泵等。
在化学工业中广泛应用于制造真空器、蒸馏锅、酿造锅等。
在国防工业中用以制造子弹、炮弹、枪炮零件等,每生产100万发子弹,需用铜13--14吨。
在建筑工业中,用做各种管道、管道配件、装饰器件等。
以下是各行业铜消费占铜总消费量的比例:行业铜消费量占总消费量的比例电子(包括通讯) 48%建筑24%一般工程12%交通7%其他9%锌的自然属性金属锌,化学符号Zn,原子量65.4,熔点为419.73度,沸点907度。
锌是自然界分布较广的金属元素。
主要以硫化物、氧化物状态存在。
常用材料及其特性一、常用材料简介材料是指人们在制作、建设和生活中所使用的物质,广泛应用于各个领域。
不同的材料具有不同的特性和用途,下面将介绍几种常用材料以及它们的特性。
二、金属材料金属材料是指具有金属元素构成的材料,包括铁、铝、铜、锌等。
金属材料的主要特性是导电性和导热性好,具有一定的硬度和韧性,可以制作出各种强度高、耐腐蚀的产品。
金属材料常用于制造机械、建筑结构、电子产品等领域。
三、塑料材料塑料材料是一种由高分子化合物制成的非晶态固体材料,具有优异的可塑性和成型性。
塑料材料的特点是轻质、绝缘性好、耐腐蚀、成本低等,广泛应用于包装、家居用品、电器外壳等领域。
常见的塑料材料有聚乙烯、聚氯乙烯、聚苯乙烯等。
四、玻璃材料玻璃材料是一种无定形固体材料,主要成分是硅酸盐和其它金属氧化物。
玻璃材料的主要特性是透明、硬度高、耐热、耐酸碱等,广泛应用于建筑、器皿、光学器材等领域。
常见的玻璃材料有硼硅酸盐玻璃、钠钙玻璃等。
五、陶瓷材料陶瓷材料是指由非金属无机物经过烧结而成的材料,具有良好的耐高温、耐腐蚀、绝缘性能。
陶瓷材料广泛应用于建筑、电子器件、化工等领域。
常见的陶瓷材料有瓷器、耐火砖、陶瓷电容器等。
六、纤维材料纤维材料是由纤维构成的材料,具有良好的柔软性和高强度。
纤维材料的主要特性是轻盈、耐磨、隔热、吸湿等,广泛应用于纺织、航空航天、建筑等领域。
常见的纤维材料有棉纤维、尼龙纤维、碳纤维等。
七、复合材料复合材料是由两种或更多种材料组成的复合材料,通过不同材料的组合可以获得更好的综合性能。
复合材料的特性根据不同组合方式而定,可以兼具金属材料、塑料材料、纤维材料等的特点。
复合材料广泛应用于航空、汽车、体育器材等领域。
八、总结通过对常用材料的介绍,我们可以了解到不同材料具有不同的特性和应用领域。
金属材料适用于机械和建筑领域,塑料材料适用于包装和电器外壳等领域,玻璃材料适用于建筑和光学器材领域,陶瓷材料适用于建筑和化工领域,纤维材料适用于纺织和航空航天领域,复合材料具有更好的综合性能,应用广泛。
常用工程材料属性工程材料是指广泛应用于各类工程领域中的材料,它们具有特定的物理、化学和力学性质,以满足工程项目的需求。
下面将介绍一些常用的工程材料属性。
1.强度:强度是指材料抵抗外力作用的能力。
材料的强度可以通过抗拉强度、屈服强度、压缩强度和剪切强度来衡量。
强度越高,材料越能承受更大的压力或拉力,适用于需要抵抗外力作用的工程项目。
2.刚度:刚度是指材料抵抗变形的能力。
刚度可以通过杨氏模量来衡量,杨氏模量越高,材料越难发生变形,刚度越大。
刚度高的材料适用于需要保持形状和结构稳定性的工程项目。
3.导热性:导热性是指材料传导热量的能力。
导热性可以通过热导率来衡量,热导率越高,材料越能迅速传导热量。
导热性能优良的材料适用于需要快速传导热量的工程项目,如散热器和导热管等。
4.导电性:导电性是指材料导电的能力。
导电性可以通过电导率来衡量,电导率越高,材料越能有效地传导电流。
导电性能优良的材料适用于需要导电的工程项目,如电线、电子器件等。
5.耐腐蚀性:耐腐蚀性是指材料抵抗腐蚀介质侵蚀的能力。
耐腐蚀性可以通过对抗氧化、酸碱等腐蚀性介质的能力来衡量。
耐腐蚀性优良的材料适用于需要长期使用在腐蚀环境下的工程项目,如化工管道、海洋结构等。
6.可加工性:可加工性是指材料在制造过程中的加工性能。
可加工性好的材料可以容易地进行切削、焊接、锻造、冲压等工艺加工。
可加工性对于需要进行复杂形状和尺寸的制造工程项目非常重要。
7.密度:密度是指材料单位体积的质量。
密度越大,材料越重。
密度对于需要减轻负荷和提高结构稳定性的工程项目非常重要。
8.耐磨性:耐磨性是指材料抵抗摩擦和磨损的能力。
耐磨性可以通过硬度来衡量,硬度越高,材料越耐磨。
耐磨性能优良的材料适用于需要长期使用在高摩擦和磨损环境下的工程项目,如轴承、刀具等。
除了上述常见的工程材料属性,实际工程中还有很多其他的属性需要考虑,如可塑性、耐火性、吸声性、防水性、隔热性等。
根据具体的工程项目的需求,选取合适的材料属性是确保工程质量和性能的关键因素。
常规金属材料属性表材料名称:1. 物理属性:- 密度:- 电导率:- 热导率:- 熔点:- 热膨胀系数:2. 机械性能:- 强度(抗拉强度、屈服强度等):- 弹性模量:- 延伸率:- 断裂韧性:- 硬度:3. 磁性:- 磁导率:- 磁饱和磁感应强度:- 磁滞回线特性:4. 腐蚀性:- 耐蚀性:- 耐热性:- 耐氧化性:5. 其他属性:- 可加工性:- 可焊接性:- 可切削性:- 环保性:通过上述常规金属材料属性表,我们可以对不同金属材料的性能进行了解和比较。
这些属性反映了金属材料的特点和适用范围,为选择和应用金属材料提供了参考依据。
在物理属性部分,密度是指单位体积的质量,主要影响材料的重量和体积。
电导率和热导率是材料导电、导热能力的指标,关系到材料在电热应用中的效果。
熔点是指材料从固态转化为液态的温度,与材料的加工和使用温度有关。
热膨胀系数衡量了材料在温度变化下的膨胀程度,对于热胀冷缩的工程设计十分重要。
在机械性能方面,强度是衡量材料抵抗外力破坏的能力。
弹性模量则代表了材料在受力后的变形程度,与材料的刚性有关。
延伸率是指材料在受力作用下的伸长能力,对于材料的可塑性和韧性有影响。
断裂韧性揭示了材料在受力下发生断裂前的能吸收的能量,与材料的抗冲击性和耐用性密切相关。
硬度衡量了材料抵抗划伤或压痕的能力,对于工件表面硬度和耐磨性至关重要。
磁性是金属材料的重要特性之一。
通过磁导率可以了解材料导磁性能,磁饱和磁感应强度则表征了材料饱和磁化程度。
磁滞回线特性反映了材料在磁场作用下磁化和去磁的过程。
腐蚀性是指材料在各种环境条件下与介质发生化学反应的程度。
耐蚀性衡量材料在腐蚀介质中的稳定性,耐热性表示材料在高温环境下的稳定性,耐氧化性则对材料在氧化环境下的抵抗能力进行评估。
除了上述基本属性外,金属材料的加工性、焊接性和切削性也需要考虑。
可加工性是指材料在制造加工过程中的可塑性和可变形性。
可焊接性是材料在焊接过程中的可靠性和接口强度。
材料科学深入了解材料属性材料科学是一门研究材料的组成、结构、性能和制备的多学科综合性科学。
深入了解材料属性对于材料科学的研究和应用具有重要意义。
本文将从材料的组成、结构和性能三个方面,介绍材料科学中对材料属性的深入了解。
一、材料的组成材料的组成是指材料的基本成分和元素组成。
不同的材料具有不同的组成,决定了材料的基本性质。
在材料科学中,常用的材料分为金属材料、无机非金属材料和有机高分子材料等。
金属材料主要由金属元素组成,具有高强度、导电性等优良性能;无机非金属材料以氧化物为主要成分,如陶瓷材料、塑料材料等;有机高分子材料主要由碳、氢、氧等元素组成,如塑料、橡胶等。
进一步了解材料的组成,可以通过化学分析、质谱分析等手段进行。
二、材料的结构材料的结构是指材料内部的原子、分子或离子的排列顺序和空间位置关系。
材料的结构对其性能和功能起着决定性影响。
晶体结构是材料中最常见的结构之一,通过晶体学方法可以确定材料的晶体结构。
晶体结构的了解可以帮助科学家和工程师掌握材料的热稳定性、机械性能等。
此外,非晶态和纳米结构也是研究材料结构的重要方向。
通过电子显微镜等仪器和技术可以观察和研究材料的结构特征。
三、材料的性能材料的性能是指材料在特定条件下所表现出的特点和特性。
不同的材料具有不同的性能,如机械性能、热性能、电性能、光学性能等。
深入了解材料的性能可以为材料的合理选择和应用提供科学依据。
例如,了解材料的力学性能可以为工程设计中的材料选取及结构设计提供参考,了解材料的热性能可以为能源开发、储存等领域提供支持。
通过材料测试和分析技术,可以获得材料的力学性能、热性能、电性能等数据,进一步了解材料的特性。
结论材料科学的发展为深入了解材料属性提供了丰富的理论和实验基础。
只有深入了解材料的组成、结构和性能,才能对材料进行科学合理的选取、应用和改进。
通过不断深入研究材料,材料科学家和工程师能够开发出更优良的材料,推动科技进步和社会发展。
材料属性简介:一、屈服强度微解释:指材料在出现屈服现象时所能承受的最大应力当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
概念屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。
大于此极限的外力作用,将会使零件永久失效,无法恢复。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
屈服强度:大于此极限的外力作用,将会使零件永久失效,没法恢复。
这个压强叫做屈服强度。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。
通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。
因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。
材料属性简介:一、屈服强度微解释:指材料在出现屈服现象时所能承受的最大应力当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
概念屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。
对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。
大于此极限的外力作用,将会使零件永久失效,无法恢复。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
屈服强度:大于此极限的外力作用,将会使零件永久失效,没法恢复。
这个压强叫做屈服强度。
如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。
(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。
通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。
因为在应力超过材料屈服极限后产生颈缩,应变增大,使材料破坏,不能正常使用。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为上屈服点和下屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)。
建筑钢材以屈服强度作为设计应力的依据。
概要yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。
(1)对于屈服现象明显的材料,屈服强度就是屈服点的应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的原始标距)时的应力。
通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。
因为在应力超过材料屈服极限后产生塑性变形,应变增大,使材料失效,不能正常使用。
当应力超过弹性极限后,进入屈服阶段后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。
当应力达到B点后,塑性应变急剧增加,应力应变出现微小波动,这种现象称为屈服。
这一阶段的最大、最小应力分别称为下屈服点和上屈服点。
由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(ReL或Rp0.2)。
a.屈服点yield point(ζs)试样在试验过程中力不增加(保持恒定)仍能继续伸长(变形)时的应力。
b.上屈服点upper yield point(ζsu)试样发生屈服而力首次下降前的最大应力。
c.下屈服点lower yield point(ζSL)当不计初始瞬时效应时屈服阶段中的最小应力。
有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。
首先解释一下材料受力变形。
材料的变形分为弹性变形(外力撤销后可以恢复原来形状)和塑性变形(外力撤销后不能恢复原来形状,形状发生变化,伸长或缩短)建筑钢材以屈服强度作为设计应力的依据。
所谓屈服,是指达到一定的变形应力之后,金属开始从弹性状态非均匀的向弹-塑性状态过渡,它标志着宏观塑性变形的开始。
类型(1):银文屈服:银纹现象与应力发白。
(2):剪切屈服。
屈服强度测定无明显屈服现象的金属材料需测量其规定非比例延伸强度或规定残余伸长应力,而有明显屈服现象的金属材料,则可以测量其屈服强度、上屈服强度、下屈服强度。
一般而言,只测定下屈服强度。
通常测定上屈服强度及下屈服强度的方法有两种:图示法和指针法。
图示法试验时用自动记录装置绘制力-夹头位移图。
要求力轴比例为每mm所代表的应力一般小于10N/mm2,曲线至少要绘制到屈服阶段结束点。
在曲线上确定屈服平台恒定的力Fe、屈服阶段中力首次下降前的最大力Feh或者不到初始瞬时效应的最小力Fel。
屈服强度、上屈服强度、下屈服强度可以按以下公式来计算:屈服强度计算公式:Re=Fe/So;Fe为屈服时的恒定力。
上屈服强度计算公式:Reh=Feh/So;Feh为屈服阶段中力首次下降前的最大力。
下屈服强度计算公式:Rel=Fel/So;Fel为不到初始瞬时效应的最小力Fel。
指针法试验时,当测力度盘的指针首次停止转动的恒定力或者指针首次回转前的最大力或者不到初始瞬时效应的最小力,分别对应着屈服强度、上屈服强度、下屈服强度。
标准建设工程上常用的屈服标准有三种:1、比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用ζp表示,超过ζp时即认为材料开始屈服。
2、弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。
国际上通常以Rel表示。
应力超过Rel时即认为材料开始屈服。
3、屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为Rp0.2。
影响因素影响屈服强度的内在因素有:结合键、组织、结构、原子本性。
如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。
从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化;(2)形变强化;(3)沉淀强化和弥散强化;(4)晶界和亚晶强化。
沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。
在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。
影响屈服强度的外在因素有:温度、应变速率、应力状态。
随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。
应力状态的影响也很重要。
虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。
我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。
工程意义传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[ζ]=ζys/n,安全系数n因场合不同可从1.1到2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[ζ]=ζb/n,安全系数n一般取6。
需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。
屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。
例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。
因此,屈服强度是材料性能中不可缺少的重要指标。
二、弹性模量微解释:又称杨氏模量。
弹性材料的一种最重要、最具特征的力学性质。
是物体弹性t变形难易程度的表征。
用E表示。
定义为理想材料有小形变时应力与相应的应变之比。
E以单位面积上承受的力表示,单位为牛/米^2。
模量的性质依赖于形变的性质。
剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
模量的倒数称为柔量,用J表示。
定义一般地讲,对弹性体施加一个外界作用(称为“应力”)后,弹性体会发生形状的改变(称为“应变”),“弹性模量”的一般定义是:应力除以应变。
例如:线应变——对一根细杆施加一个拉力F,这个拉力除以杆的截面积S,称为“线应力”,杆的伸长量dL除以原长L,称为“线应变”。
线应力除以线应变就等于杨氏模量E=( F/S)/(dL/L)剪切应变——对一块弹性体施加一个侧向的力f(通常是摩擦力),弹性体会由方形变成菱形,这个形变的角度a称为“剪切应变”,相应的力f除以受力面积S称为“剪切应力”。
剪切应力除以剪切应变就等于剪切模量G=( f/S)/a 体积应变——对弹性体施加一个整体的压强p,这个压强称为“体积应力”,弹性体的体积减少量(-dV)除以原来的体积V 称为“体积应变”,体积应力除以体积应变就等于体积模量: K=P/(-dV/V)在不易引起混淆时,一般金属材料的弹性模量就是指杨氏模量,即正弹性模量。
单位:E(弹性模量)兆帕(MPa)意义弹性模量是工程材料重要的性能参数,从宏观角度来说,弹性模量是衡量物体抵抗弹性变形能力大小的尺度,从微观角度来说,则是原子、离子或分子之间键合强度的反映。
凡影响键合强度的因素均能影响材料的弹性模量,如键合方式、晶体结构、化学成分、微观组织、温度等。
因合金成分不同、热处理状态不同、冷塑性变形不同等,金属材料的杨氏模量值会有5%或者更大的波动。
但是总体来说,金属材料的弹性模量是一个对组织不敏感的力学性能指标,合金化、热处理(纤维组织)、冷塑性变形等对弹性模量的影响较小,温度、加载速率等外在因素对其影响也不大,所以一般工程应用中都把弹性模量作为常数。
弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。
弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。
它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。
说明又称杨氏模量,弹性材料的一种最重要、最具特征的力学性质,是物体弹性变形难易程度的表征,用E表示。
定义为理想材料有小形变时应力与相应的应变之比。
E以ζ单位面积上承受的力表示,单位为N/m^2。
模量的性质依赖于形变的性质。
剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。
模量的倒数称为柔量,用J表示。
拉伸试验中得到的屈服极限ζs和强度极限ζb,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料塑性变形的能力。
为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。
一般按引起单位应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中A0为零件的横截面积。
由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。