(完整word版)初三下学期数学好题难题集锦含答案,推荐文档
- 格式:doc
- 大小:1.41 MB
- 文档页数:20
九年级下册圆形拔高习题(中等及较难)一、选择题1、如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为( )A .B .2C .D .2、如图,⊙O是△ABC的外接圆,∠BOC=3∠AOB,若∠ACB=20°,则∠BAC的度数是( )A .120°B .80°C .60°D .30°3、如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则的长为( )A .πB .πC .πD .π4、如图所示,AB是⊙O的直径,点C为⊙O外一点,CA,CD是⊙O的切线,A,D为切点,连接BD,AD.若∠ACD=30°,则∠DBA的大小是( )A .15°B .30°C .60°D .75°5、如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( )A .25°B .40°C .50°D .65°6、如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点E,过点D的切线交EC的延长线于点G,连接AD,分别交CE、CB于点P、Q,连接AC.给出下列结论:①∠BAD=∠ABC;②AD=CB;③点P是△ACQ的外心;④GP=GD;⑤CB∥GD.其中正确结论的序号是()A .①②④B .②③⑤C .③④D .②⑤7、一个直角三角形的斜边长为8,内切圆半径为1,则这个三角形的周长等于( )A .21B .20C .19D .188、如图,△ABC 是圆O 的内接三角形,且AB≠AC,∠ABC 和∠ACB 的平分线,分别交圆O 于点D ,E ,且BD=CE ,则∠A 等于( )A .90°B .60°C .45°D .30°9、如图,半径为5的⊙O 中,弦AB ,CD 所对的圆心角分别是∠AOB,∠COD.已知AB=8,∠AOB+∠COD=180°,则弦CD 的弦心距等于( )A .B .3C .D .410、如图,AB 是半圆O 的直径,AC 为弦,OD⊥AC 于D ,过点O 作OE∥AC 交半圆O 于点E ,过点E 作EF⊥AB 于F ,若AC=4,则OF 的长为( )A .1B .C .2D .411、如图,正方形ABCD 的边长为1,将长为1的线段QR 的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A 出发,按A→B→C→D→A 的方向滑动到A 停止,同时点R 从点B 出发,按B→C→D→A→B 的方向滑动到B停止,在这个过程中,线段QR的中点M所经过的路线围成的图形面积为()A.B.4-πC.πD.二、填空题12、如图,点C在以AB为直径的半圆上,AB=4,∠CBA=30°,点D在AO上运动,点E与点D关于AC对称:DF⊥DE于点D,并交EC的延长线于点F,下列结论:①CE=CF;②线段EF的最小值为;③当AD=1时,EF与半圆相切;④当点D从点A运动到点O时,线段EF扫过的面积是4.其中正确的序号是__________.13、如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为__________.14、已知正三角形的面积是cm,则正三角形外接圆的半径是__________cm.15、如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是__________.16、如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为__________.三、解答题17、如图,圆心角∠AOB=120°,弦AB=2cm.(1)求⊙O的半径r;(2)求劣弧的长(结果保留π).18、在△ABC中,CE,BD分别是边AB,AC上的高,F是BC边上的中点.(1)指出图中的一个等腰三角形,并说明理由.(2)若∠A=x°,求∠EFD的度数(用含x的代数式表达).(3)猜想∠ABC和∠EDA的数量关系,并证明.19、如图,直线AB经过⊙O上的点C,直线AO与⊙O交于点E和点D,OB与OD交于点F,连接DF,DC.已知OA=OB,CA=CB,DE=10,DF=6.(1)求证:①直线AB是⊙O的切线;②∠FDC=∠EDC;(2)求CD的长.20、如图,AB是⊙O的直径,点C、D在⊙O上,∠A=2∠BCD,点E在AB的延长线上,∠AED=∠ABC(1)求证:DE与⊙O相切;(2)若BF=2,DF=,求⊙O的半径.21、如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分的面积(结果保留π).22、如图1,在△ABC中,点D在边BC上,∠ABC:∠ACB:∠ADB=1:2:3,⊙O是△ABD的外接圆.(1)求证:AC是⊙O的切线(2)当BD是⊙O的直径时(如图2),求∠CAD的度数.23、如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长。
专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
数学难题一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO1=_________,BO n=_________.2.如图,在平面直角坐标系xoy中,A(﹣3,0),B(0,1),形状相同的抛物线C n(n=1,2,3,4,…)的顶点在直线AB上,其对称轴与x轴的交点的横坐标依次为2,3,5,8,13,…,根据上述规律,抛物线C2的顶点坐标为_________;抛物线C8的顶点坐标为_________.二.解答题(共28小题)3.已知:关于x的一元二次方程kx2+2x+2﹣k=0(k≥1).(1)求证:方程总有两个实数根;(2)当k取哪些整数时,方程的两个实数根均为整数.4.已知:关于x的方程kx2+(2k﹣3)x+k﹣3=0.(1)求证:方程总有实数根;(2)当k取哪些整数时,关于x的方程kx2+(2k﹣3)x+k﹣3=0的两个实数根均为负整数?5.在平面直角坐标系中,将直线l:沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线C1:沿x轴平移,得到一条新抛物线C2与y轴交于点D,与直线AB交于点E、点F.(1)求直线AB的解析式;(2)若线段DF∥x轴,求抛物线C2的解析式;(3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH 的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,又平分△AFH的周长,求直线m 的解析式.6.已知:关于x的一元二次方程﹣x2+(m+4)x﹣4m=0,其中0<m<4.(1)求此方程的两个实数根(用含m的代数式表示);(2)设抛物线y=﹣x2+(m+4)x﹣4m与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,﹣2),且AD•BD=10,求抛物线的解析式;(3)已知点E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有y1、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.7.点P为抛物线y=x2﹣2mx+m2(m为常数,m>0)上任一点,将抛物线绕顶点G逆时针旋转90°后得到的新图象与y轴交于A、B两点(点A在点B的上方),点Q为点P旋转后的对应点.(1)当m=2,点P横坐标为4时,求Q点的坐标;(2)设点Q(a,b),用含m、b的代数式表示a;(3)如图,点Q在第一象限内,点D在x轴的正半轴上,点C为OD的中点,QO平分∠AQC,AQ=2QC,当QD=m 时,求m的值.8.关于x的一元二次方程x2﹣4x+c=0有实数根,且c为正整数.(1)求c的值;(2)若此方程的两根均为整数,在平面直角坐标系xOy中,抛物线y=x2﹣4x+c与x轴交于A、B两点(A在B左侧),与y轴交于点C.点P为对称轴上一点,且四边形OBPC为直角梯形,求PC的长;(3)将(2)中得到的抛物线沿水平方向平移,设顶点D的坐标为(m,n),当抛物线与(2)中的直角梯形OBPC 只有两个交点,且一个交点在PC边上时,直接写出m的取值范围.9.如图,已知AD为△ABC的角平分线,EF为AD的垂直平分线.求证:FD2=FB•FC.10.如图,AD是△ABC的角平分线,EF是AD的垂直平分线.求证:(1)∠EAD=∠EDA.(2)DF∥AC.(3)∠EAC=∠B.11.已知:关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0(m为实数)(1)若方程有两个不相等的实数根,求m的取值范围;(2)在(1)的条件下,求证:无论m取何值,抛物线y=(m﹣1)x2+(m﹣2)x﹣1总过x轴上的一个固定点;(3)关于x的一元二次方程(m﹣1)x2+(m﹣2)x﹣1=0有两个不相等的整数根,把抛物线y=(m﹣1)x2+(m ﹣2)x﹣1向右平移3个单位长度,求平移后的解析式.12.已知△ABC,以AC为边在△ABC外作等腰△ACD,其中AC=AD.(1)如图1,若∠DAC=2∠ABC,AC=BC,四边形ABCD是平行四边形,则∠ABC=_________;(2)如图2,若∠ABC=30°,△ACD是等边三角形,AB=3,BC=4.求BD的长;(3)如图3,若∠ACD为锐角,作AH⊥BC于H.当BD2=4AH2+BC2时,∠DAC=2∠ABC是否成立?若不成立,请说明你的理由;若成立,证明你的结论.13.已知关于x的方程mx2+(3﹣2m)x+(m﹣3)=0,其中m>0.(1)求证:方程总有两个不相等的实数根;(2)设方程的两个实数根分别为x1,x2,其中x1>x2,若,求y与m的函数关系式;(3)在(2)的条件下,请根据函数图象,直接写出使不等式y≤﹣m成立的m的取值范围.14.已知:关于x的一元二次方程x2+(n﹣2m)x+m2﹣mn=0①(1)求证:方程①有两个实数根;(2)若m﹣n﹣1=0,求证:方程①有一个实数根为1;(3)在(2)的条件下,设方程①的另一个根为a.当x=2时,关于m的函数y1=nx+am与y2=x2+a(n﹣2m)x+m2﹣mn的图象交于点A、B(点A在点B的左侧),平行于y轴的直线L与y1、y2的图象分别交于点C、D.当L沿AB由点A平移到点B时,求线段CD的最大值.15.如图,已知抛物线y=(3﹣m)x2+2(m﹣3)x+4m﹣m2的顶点A在双曲线y=上,直线y=mx+b经过点A,与y轴交于点B,与x轴交于点C.(1)确定直线AB的解析式;(2)将直线AB绕点O顺时针旋转90°,与x轴交于点D,与y轴交于点E,求sin∠BDE的值;(3)过点B作x轴的平行线与双曲线交于点G,点M在直线BG上,且到抛物线的对称轴的距离为6.设点N在直线BG上,请直接写出使得∠AMB+∠ANB=45°的点N的坐标.16.如图,AB为⊙O的直径,AB=4,点C在⊙O上,CF⊥OC,且CF=BF.(1)证明BF是⊙O的切线;(2)设AC与BF的延长线交于点M,若MC=6,求∠MCF的大小.17.如图1,已知等边△ABC的边长为1,D、E、F分别是AB、BC、AC边上的点(均不与点A、B、C重合),记△DEF的周长为p.(1)若D、E、F分别是AB、BC、AC边上的中点,则p=_________;(2)若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是_________.小亮和小明对第(2)问中的最小值进行了讨论,小亮先提出了自己的想法:将△ABC以AC边为轴翻折一次得△AB1C,再将△AB1C以B1C为轴翻折一次得△A1B1C,如图2所示.则由轴对称的性质可知,DF+FE1+E1D2=p,根据两点之间线段最短,可得p≥DD2.老师听了后说:“你的想法很好,但DD2的长度会因点D的位置变化而变化,所以还得不出我们想要的结果.”小明接过老师的话说:“那我们继续再翻折3次就可以了”.请参考他们的想法,写出你的答案.18.已知关于x的方程x2﹣(m﹣3)x+m﹣4=0.(1)求证:方程总有两个实数根;(2)若方程有一个根大于4且小于8,求m的取值范围;(3)设抛物线y=x2﹣(m﹣3)x+m﹣4与y轴交于点M,若抛物线与x轴的一个交点关于直线y=﹣x的对称点恰好是点M,求m的值.19.在Rt△ABC中,∠ACB=90°,tan∠BAC=.点D在边AC上(不与A,C重合),连接BD,F为BD中点.(1)若过点D作DE⊥AB于E,连接CF、EF、CE,如图1.设CF=kEF,则k=_________;(2)若将图1中的△ADE绕点A旋转,使得D、E、B三点共线,点F仍为BD中点,如图2所示.求证:BE﹣DE=2CF;(3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.20.我们给出如下定义:如果四边形中一对顶点到另一对顶点所连对角线的距离相等,则把这对顶点叫做这个四边形的一对等高点.例如:如图1,平行四边形ABCD中,可证点A、C到BD的距离相等,所以点A、C是平行四边形ABCD的一对等高点,同理可知点B、D也是平行四边形ABCD的一对等高点.(1)如图2,已知平行四边形ABCD,请你在图2中画出一个只有一对等高点的四边形ABCE(要求:画出必要的辅助线);(2)已知P是四边形ABCD对角线BD上任意一点(不与B、D点重合),请分别探究图3、图4中S1,S2,S3,S4四者之间的等量关系(S1,S2,S3,S4分别表示△ABP,△CBP,△CDP,△ADP的面积):①如图3,当四边形ABCD只有一对等高点A、C时,你得到的一个结论是_________;②如图4,当四边形ABCD没有等高点时,你得到的一个结论是_________.21.已知:关于x的一元一次方程kx=x+2 ①的根为正实数,二次函数y=ax2﹣bx+kc(c≠0)的图象与x轴一个交点的横坐标为1.(1)若方程①的根为正整数,求整数k的值;(2)求代数式的值;(3)求证:关于x的一元二次方程ax2﹣bx+c=0 ②必有两个不相等的实数根.22.已知抛物线经过点A(0,4)、B(1,4)、C(3,2),与x轴正半轴交于点D.(1)求此抛物线的解析式及点D的坐标;(2)在x轴上求一点E,使得△BCE是以BC为底边的等腰三角形;(3)在(2)的条件下,过线段ED上动点P作直线PF∥BC,与BE、CE分别交于点F、G,将△EFG沿FG翻折得到△E′FG.设P(x,0),△E′FG与四边形FGCB重叠部分的面积为S,求S与x的函数关系式及自变量x的取值范围.23.已知二次函数y=ax2+bx+c的图象分别经过点(0,3),(3,0),(﹣2,﹣5).求:(1)求这个二次函数的解析式;(2)求这个二次函数的最值;(3)若设这个二次函数图象与x轴交于点C,D(点C在点D的左侧),且点A是该图象的顶点,请在这个二次函数的对称轴上确定一点B,使△ACB是等腰三角形,求出点B的坐标.24.根据所给的图形解答下列问题:(1)如图1,△ABC中,AB=AC,∠BAC=90°,AD⊥BC于D,把△ABD绕点A旋转,并拼接成一个与△ABC 面积相等的正方形,请你在图中完成这个作图;(2)如图2,△ABC中,AB=AC,∠BAC=90°,请你设计一种与(1)不同的方法,将这个三角形拆分并拼接成一个与其面积相等的正方形,画出利用这个三角形得到的正方形;(3)设计一种方法把图3中的矩形ABCD拆分并拼接为一个与其面积相等的正方形,请你依据此矩形画出正形,并根据你所画的图形,证明正方形面积等于矩形ABCD的面积的结论.25.例.如图①,平面直角坐标系xOy中有点B(2,3)和C(5,4),求△OBC的面积.解:过点B作BD⊥x轴于D,过点C作CE⊥x轴于E.依题意,可得S△OBC=S梯形BDEC+S△OBD﹣S△OCE==×(3+4)×(5﹣2)+×2×3﹣×5×4=3.5.∴△OBC的面积为3.5.(1)如图②,若B(x1,y1)、C(x2,y2)均为第一象限的点,O、B、C三点不在同一条直线上.仿照例题的解法,求△OBC的面积(用含x1、x2、y1、y2的代数式表示);(2)如图③,若三个点的坐标分别为A(2,5),B(7,7),C(9,1),求四边形OABC的面积.26.阅读:①按照某种规律移动一个平面图形的所有点,得到一个新图形称为原图形的像.如果原图形每一个点只对应像的一个点,且像的每一个点也只对应原图形的一个点,这样的运动称为几何变换.特别地,当新图形与原图形的形状大小都不改变时,我们称这样的几何变换为正交变换.问题1:我们学习过的平移、_________、_________变换都是正交变换.②如果一个图形绕着一个点(旋转中心)旋转n°(0<n≤360)后,像又回到原图形占据的空间(重合),则称该变换为该图形的n度旋转变换.特别地,具有180˚旋转变换的图形称为中心对称图形.例如,图A中奔驰车标示意图具有120°,240°,360°的旋转变换.图B的几何图形具有180°的旋转变换,所以它是中心对称图形.问题2:图C和图D中的两个几何图形具有n度旋转变换,请分别写出n的最小值.答:(图C)_________;答:(图D)_________.问题3:如果将图C和图D的旋转中心重合,组合成一个新的平面图形,它具有n度旋转变换,则n的最小值为_________.问题4:请你在图E中画出一个具有180°旋转变换的正多边形.(要求以O为旋转中心,顶点在直线与圆的交点上)27.已知:点P为线段AB上的动点(与A、B两点不重合).在同一平面内,把线段AP、BP分别折成△CDP、△EFP,其中∠CDP=∠EFP=90°,且D、P、F三点共线,如图所示.(1)若△CDP、△EFP均为等腰三角形,且DF=2,求AB的长;(2)若AB=12,tan∠C=,且以C、D、P为顶点的三角形和以E、F、P为顶点的三角形相似,求四边形CDFE 的面积的最小值.28.在平面直角坐标系xOy中,已知直线y=﹣x+交x轴于点C,交y轴于点A.等腰直角三角板OBD的顶点D与点C重合,如图A所示.把三角板绕着点O顺时针旋转,旋转角度为α(0°<α<180°),使B点恰好落在AC上的B'处,如图B所示.(1)求图A中的点B的坐标;(2)求α的值;(3)若二次函数y=mx2+3x的图象经过(1)中的点B,判断点B′是否在这条抛物线上,并说明理由.29.已知:如图,AC是⊙O的直径,AB是弦,MN是过点A的直线,AB等于半径长.(1)若∠BAC=2∠BAN,求证:MN是⊙O的切线.(2)在(1)成立的条件下,当点E是的中点时,在AN上截取AD=AB,连接BD、BE、DE,求证:△BED 是等边三角形.30.在一个夹角为120°的墙角放置了一个圆形的容器,俯视图如图,在俯视图中圆与两边的墙分别切于B、C两点.如果用带刻度的直尺测量圆形容器的直径,发现直尺的长度不够.(1)写出此图中相等的线段.(2)请你设计一种可以通过计算求出直径的测量方法.(写出主要解题过程)2012年初中难题数学组卷参考答案与试题解析一.填空题(共2小题)1.如图,矩形纸片ABCD中,AB=,BC=.第一次将纸片折叠,使点B与点D重合,折痕与BD交于点O1;O1D的中点为D1,第二次将纸片折叠使点B与点D1重合,折痕与BD交于点O2;设O2D1的中点为D2,第三次将纸片折叠使点B与点D2重合,折痕与BD交于点O3,….按上述方法折叠,第n次折叠后的折痕与BD交于点O n,则BO1=2,BO n=.考点:翻折变换(折叠问题);矩形的性质。
初三下学期数学好题难题集锦一、分式:1、如果abc=1,求证++=1.2、已知+=,则+等于多少?3、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度.4、(2009•邵阳)已知M=、N=,用“+”或“﹣”连接M、N,有三种不同的形式,M+N、M﹣N、N﹣M,请你任取其中一种进行计算,并简求值,其中x:y=5:2.二、反比例函数:5、一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:(1)求y与x之间的函数关系式;(2)“E”图案的面积是多少?(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.6、(2009•邵阳)如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点.(1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例.7、如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于_________.8、(2009•郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y 轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP 面积相等如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.9、如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A、点B,与反比例函数y在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D 作DF上X轴于F.(1)求m,n的值;(2)求直线AB的函数解析式.三、勾股定理:10、清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;第三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗请写出证明过程.11、(2009•温州)一张等腰三角形纸片,底边长15cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A、第4张B、第5张C、第6张D、第7张12、(2009•茂名)如图,甲,乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A与甲,乙楼顶B、C刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是_________米.13、(2009•恩施州)恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,AB=50km、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X 垂直,垂足为P),P到A、B的距离之和S1=PA+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接BA'交直线X于点P),P到A、B的距离之和S2=PA+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=PA+PB的值为最小;(3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.14、(2009•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;(2)若AD=DC=2,求AB的长.四、四边形:15、(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.16、(2008•山西)如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.17、(2008•资阳)如图,在△ABC中,∠A,∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.(1)点D是△ABC的_________心;(2)求证:四边形DECF为菱形.18、(2008•哈尔滨)在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.(1)当点P在线段ED上时(如图1),求证:BE=PD+PQ;(2)若BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与x 的函数关系式(不要求写出自变量x的取值范围);(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长.19、(2008•常州)如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.20、(2008•常州)已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.21、(2008•潍坊)如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.(1)当折痕的另一端F在AB边上时,如图.求△EFG的面积;(2)当折痕的另一端F在AD边上时,如图.证明四边形BGEF为菱形,并求出折痕GF 的长.22、(2008•新疆)(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)(2)写出你的作法.23、(2008•海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.(1)求证:①PE=PD;②PE⊥PD;(2)设AP=x,△PBE的面积为y.①求出y关于x的函数关系式,并写出x的取值范围;②当x取何值时,y取得最大值,并求出这个最大值.24、(2008•义乌市)如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断;(2)将原题中正方形改为矩形(如图4﹣6),且AB=a,BC=b,CE=ka,CG=kb(a≠b,k >0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由;(3)在第(2)题图5中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.五、几何:25、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)26、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)27、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)28、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CEBO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF29、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)30、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)31、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)32、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.33、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)34、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .求证:AE =AF .(初二)35、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .求证:PA =PF .(初二)36、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于B 、D .求证:AB =DC ,BC =AD .(初三)E37、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5. 求:∠APB 的度数.(初二)38、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB .(初二)39、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)40、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)41、设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.42、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.43、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.44、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.AP CB ACBPDEDCB A A CBPD五、数据的分析:45、(2005•南平)为了帮助贫困失学儿童,宿迁市团委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后取回本金,而把利息捐赠给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.(1)求该学校的人均存款数;(2)已知银行一年定期存款的年利率是2.25%(“爱心储蓄”免收利息税),且每351元能提供给1位失学儿童一年的基本费用,那么该学校一学年能够帮助多少位失学儿童?46、(2005•河北)如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图.教练组规定:体能测试成绩70分以上(包括70分)为合格.(1)请根据图中所提供的信息填写右表:(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,_________的体能测试成绩较好;②依据平均数与中位数比较甲和乙,_________的体能测试成绩较好.③依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.47、(2005•重庆)如图所示,A、B两个旅游点从2001年至2005年“五•一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求A、B两个旅游点从2001到2005年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系y=5﹣.若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?答案与评分标准一、分式:1、如果abc=1,求证++=1.考点:分式的混合运算。
如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式. (3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.28、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。
为减员增效,决定从中调配x 人去生产新开发的B 种产品,根据评估,调配后,继续生产A 种产品的员工平均每人每年创造的利润可增加20%,生产B 种产品的员工平均每人每年可创造利润1.54m 万元。
(1)调配后,企业生产A 种产品的年利润为_________万元,企业生产B 种产品的年利润为_________万元(用含x 和m 的代数式表示)。
若设调配后企业全年总利润为y 万元,则y 与x 之间的关系式为y =____________。
(2)若要求调配后,企业生产A 种产品的年利润不小于调配前企业年利润的54,生产B 种产品的年利润大于调配前企业年利润的一半,应有哪几种调配方案 ?请设计出来,并指出其中哪种方案全年总利润最大(必要时,运算过程可保留3个有效数字)。
(3)企业决定将(2)中的年最大总利润(设m =2)继续投资开发新产品。
现有6种产品可供选择(不得重复投资同一种产品)各产品所需资金及所获年利润如下表:如果你是企业决策者,为使此项投资所获年利润不少于145万元,你可以投资开发哪些产品?请写出两种投资方案。
25.解:(1)连结AD ,得OA=3,AD=23 ……………………1分∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上, (3)分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分x∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ON ∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分28、解:(1)m x %)201()300(+⋅-,mx 54.1,mx m x y 54.1%)201)(300(++-=(2)由题意得⎪⎪⎩⎪⎪⎨⎧⨯>⨯≥+-mmx m m x 3002154.130054%)201(0300(解得773197<x ≤100。
九年级数学几何模型压轴题专题练习(解析版)一、初三数学旋转易错题压轴题(难)1.如图 1,在 Rt∆ΛSC 中,Z4 = 90o, AB=AC f点 D, E 分别在边 AB, AC 上,AD=AE f连接DC,点M, P, N分别为DE, DC, BC的中点.(1)观察猜想:图1中,线段PM与PN的数量关系是_,位置关系是_;(2〉探究证明:把AADF绕点A逆时针方向旋转到图2的位置,连接BD, CE,判断APMN的形状,并说明理由;(3)拓展延伸:把AADF绕点A在平面内自由旋转,若AD=4, AB=IO f请直接写出APMN面积的最人值.【答案】(I)PM=PΛ∕, PM丄PN;(2) APMN是等腰直角三角形.理由见解析;(3)49 S A.PMN⅜⅛大=.【解析】【分析】(1)由已知易得加=C利用三角形的中位线得出PM = ;CE , PN = ;BD,即可2 2得出数量关系,再利用三角形的中位线得出PM//CE得出ZDPM = ZDc4,最后用互余即可得出位置关系;(2)先判断出MBQ三AACE,得出皮) = CE,同(1)的方法得出PM=-BD i2PN = LBD t即可得出PM = PN,同(1)的方法由2ZMPN = ZDCE+ ZDCB+ ZDBC= ZACB+ ZABC ,即可得出结论;(3〉方法1:先判断出MN最人时,APMN的面积最大,进而求出AN, AM,即可得出MN最)<=AM + AN,最后用面积公式即可得出结论.方法2:先判断出BD最大时,WMN的面积最大,而Br)最人是AB + AD = 14,即可得出结论.【详解】解:(1)•••点P, N是BC, CD的中点,.∙.PN□BD, PN = -BD,2•••点P, M是CD,DE的中点,..PM//CE9 PM=丄CE ,2∙.∙AB=AC, AD=AE^:.BD = CE ,:.PM = PN,-PN//BD f.∙. ZDPN = ZADC,':PMIlCE.:.ZDPM = ZDCA,∙.∙ ZfiAC = 90。
北师大版中考数学复习:中点问题常考热点专项练习题汇编一.选择题1.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF⊥AE交CB的延长线于F,下列结论正确的有:()①AP=FP,②AE=AO,③若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,④CE•EF=EQ•DE.A.4个B.3个C.2个D.1个2.如图,矩形ABCD中,AB=2,AD=2,动点P从点A出发向终点D运动,连BP,并过点C作CH⊥BP,垂足为H.①△ABP∽△HCB;②AH的最小值为﹣;③在运动过程中,BP扫过的面积始终等于CH扫过的面积;④在运动过程中,点H的运动路径的长为π,其中正确的有个()个.A.1B.2C.3D.43.如图,在矩形ABCD中,E,F分别为边BC,CD的中点,线段AE,AF与对角线BD分别交于点G,H.设矩形ABCD的面积为S,则以下4个结论中:①AG:GE=2:1;②BG:GH:HD=1:1:1;③S1+S2+S3=S;④S2:S4:S6=1:2:4.正确的结论有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,D是AC边上的中点,连接BD,把△BDC沿BD翻折,得到△BDC',DC′与AB交于点E,连接AC',若AD=AC′=2,BD=3,则点D到BC′的距离为()A.B.C.D.5.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE⊥BF;②S△BCF=5S△BGE;③QB=QF;④tan∠BQP=.A.1B.2C.3D.46.正方形ABCD中,对角线AC、BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.下列结论:①AD垂直平分EE′,②tan∠ADE=﹣1,③C△ADE﹣C△ODE=2﹣1,④S四边形AEFB=,其中结论正确的个数是()A.4个B.3个C.2个D.1个7.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S△ABC=2S△ABF.其中正确的结论有()A.4个B.3个C.2个D.1个8.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③S正方形ABCD:S正方形ECGF=9﹣4:4;④EM:MG =1:(1+),其中正确的结论有()A.1个B.2个C.3个D.4个9.如图,正方形ABCD中,P为对角线上的点,PB=AB,连PC,作CE⊥CP交AP的延长线于E,AE交CD于F,交BC的延长线于G,则下列结论:①E为FG的中点;②FG2=4CF•CD;③AD=DE;④CF=2DF.其中正确的个数是()A.1个B.2个C.3个D.4个二.填空题10.如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM的延长线于点F,BD=2,CD=1.下列结论:①∠AED =∠ADC,②=,③BF=2AC,④BE=DE.其中结论正确的个数有.11.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=4,BC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F,若△AB′F为直角三角形,则AE的长为.12.已知:△ABC中,D为BC的中点,E为AB上一点,且BE=AB,F为AC上一点,且CF=AC,EF交AD于P,则EP:PF=.13.如图,在正方形ABCD中,AB=8,AC与BD交于点O,N是AO的中点,点M在BC 边上,且BM=6.P为对角线BD上一点,则PM﹣PN的最大值为.14.如图,正方形ABCD的边CD与正方形CGFE的边CE重合,O是EG的中点,∠EGC 的平分线GH过点D,交BE于H,连接OH、FH、EG与FH交于M,对于下面四个结论:①GH⊥BE;②HO BG;③点H不在正方形CGFE的外接圆上;④△GBE∽△GMF.其中正确的结论有.15.如图,正方形ABCD中,F为AB上一点,E是BC延长线上一点,且AF=EC,连接EF,DE,DF,M是FE中点,连接MC,设FE与DC相交于点N.则4个结论:①DN=DG;②△BFG∽△EDG∽△BDE;③CM垂直BD;④若MC=,则BF=2;正确的结论有.16.如图,四边形ABCD中,AB=AD,∠DAB=90°,AC与BD交于点H,AE⊥BC于点E,AE交BD于点G,点F是BD的中点,连接EF,若HG=10,GB=6,tan∠ACB=1,则下列结论:①∠DAC=∠CBD;②DH+GB=HG;③4AH=5HC;④EC﹣EB=EF;其中正确结论序号是.17.如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.18.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP 翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA,NA.则以下结论中正确的有(写出所有正确结论的序号)①△CMP∽△BP A;②四边形AMCB的面积最大值为10;③当P为BC中点时,AE为线段NP的中垂线;④线段AM的最小值为2;⑤当△ABP≌△ADN时,BP=4﹣4.三.解答题19.在矩形ABCD中,AB=12cm,BC=16cm,EF分别是AB、BD的中点,连接EF,点P 从点E出发沿EF方向匀速运动,速度为1cm/s.同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动,连接PQ.设运动时间为t(0<t<8)s.解答下列问题:(1)如图①,求证:△BEF∽△DCB;(2)如图②,过点Q作QG⊥AB,垂足为G,若四边形EPQG为矩形,t=;(3)当△PQF为等腰三角形时,请直接写出t的值.20.如图①,在Rt△ABC中,∠ABC=90°,AB=BC,延长CA至点E,作DE⊥CE交BA 的延长线于点D,连接CD,点F为CD的中点,连接EF,BF.(1)直接写出线段EF和BF之间的数量关系为;(2)将△ADE绕点A顺时针旋转到图②的位置,猜想EF和BF之间的关系,并加以证明;(3)若AC=3,AE=2,将△ADE绕点A顺时针旋转,当A,E,B共线时,请直接写出EF的长.参考答案一.选择题1.解:连接AF.∵PF⊥AE,∴∠APF=∠ABF=90°,∴A,P,B,F四点共圆,∴∠AFP=∠ABP=45°,∴∠P AF=∠PF A=45°,∴AP=FP,故①正确,设BE=EC=a,则AE=a,OA=OC=OB=OD=a,∴,即AE=AO,故②正确,根据对称性可知,△OPE≌△OQE,∴S△OEQ=S四边形OPEQ=2,∵OB=OD,BE=EC,∴CD=2OE,OE∥CD,∴,△OEQ∽△CDQ,∴S△ODQ=4,S△CDQ=8,∴S△CDO=12,∴S正方形ABCD=48,故③错误,∵∠EPF=∠DCE=90°,∠PEF=∠DEC,∴△EPF∽△ECD,∴,∵EQ=PE,∴CE•EF=EQ•DE,故④正确,故选:B.2.解:①∵四边形ABCD是矩形,∴∠BAP=90°,AD∥BC,∴∠APB=∠HBC.∵CH⊥BP,∴∠BHC=90°.∴∠BAP=∠CHB=90°.∴△ABP∽△HCB.∴①的结论正确;②如下图,点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,设BC的中点为O,∵AH+HO≥AO,∴当A,H,O在一条直线上时,AH最小.∵BC=2,∴OB=BC=.∴AO==,∴AH的最小值=AO﹣OB=﹣,∴②的结论正确;③BP扫过的面积=.∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴CH扫过的面积为S扇形OBH+S△OHC.∵CD=2,BC=2,∴tan∠DBC=,∴∠DBC=30°,∴∠HOC=2∠DBC=60°,∴∠BOH=120°.∴CH扫过的面积为S扇形OBH+S△OHC=+××=π+,∴③的结论错误;④∵点H的运动轨迹是以BC的中点为圆心,AB为半径的圆弧,∴点H的运动路径的长为:=.∴④的结论错误;综上,正确的结论有:①②,故选:B.3.解:①∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∵E是BC的中点,∴BE=BC,∵AD∥BE,∴==2,即AG:GE=2:1;故①正确;②∵AD∥BE,∴,∴BG=BD,同理得:DH=BD,∴BG=GH=HD,∴BG:GH:HD=1:1:1;故②正确;③∵AD∥BE,∴△BEG∽△DAG,∴=,∵BG=GH=HD,∴S5=S3=S4,设S1=x,则S5=S3=S4=2x,∴S=12x,同理可得:S2=x,∴S1+S2+S3=x+x+2x=4x=S;故③正确;④由③知:S6=6x﹣x﹣x=4x,∴S2:S4:S6=1:2:4,故④正确;所以本题的4个结论都正确;故选:D.4.解:如图,连接CC',交BD于点M,过点D作DH⊥BC'于点H,∵AD=AC′=2,D是AC边上的中点,∴DC=AD=2,由翻折知,△BDC≌△BDC',BD垂直平分CC',∴DC=DC'=2,BC=BC',CM=C'M,∴AD=AC′=DC'=2,∴△ADC'为等边三角形,∴∠ADC'=∠AC'D=∠C'AC=60°,∵DC=DC',∴∠DCC'=∠DC'C=×60°=30°,在Rt△C'DM中,∠DC'C=30°,DC'=2,∴DM=1,C'M=DM=,∴BM=BD﹣DM=3﹣1=2,在Rt△BMC'中,BC'===,∵S△BDC'=BC'•DH=BD•CM,∴DH=3×,∴DH=,故选:B.5.解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故①正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,∴S△BCF=5S△BGE,故②正确.根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,故③正确;∵QF=QB,PF=1,则PB=2,在Rt△BPQ中,设QB=x,∴x2=(x﹣1)2+4,∴x=,∴QB=,PQ===,∴tan∠BQP==,故④错误;故选:C.6.解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,故①正确,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=DO=+1,∴tan∠ADE=tan∠ODE==﹣1,故②正确,∴AB=AD=AO=2+,∴C△ADE﹣C△ODE=AD+AE﹣DO﹣EO=,故③错误,∴S△AEB=S△AED=×1×(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S四边形AEFB=S△AEB+S△BEF=,故④错误,故选:C.7.解:如图,过D作DM∥BE交AC于N,交BC于M,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∴∠EAC=∠ACB,∵BE⊥AC于点F,∴∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴=,∵AE=AD=BC,∴=,∴CF=2AF,故②正确;∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DN垂直平分CF,∴DF=DC,故③正确;∵CF=2AF,∴S△ABC=3S△ABF.∴④不正确;其中正确的结论有3个,故选:B.8.解:∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,即HG⊥BE,故①正确;在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO=BG,且HO∥BG,故②正确;设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=b=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1;则S正方形ABCD:S正方形ECGF=(﹣1)2=3﹣2,故③错误;∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴===,故④正确.故选:C.9.解:①如图:正方形ABCD中BA=BC,∠ABP=∠CBP,BP=BP,∴△ABP≌△CBP,那么∠1=∠2,在直角三角形ABG中∠1与∠G互余,∠PCE=90°,那么∠2与∠5互余,∴∠5=∠G,∴EC=EG.在直角三角形FCG中∠3与∠G互余,∠4与∠5也互余,而∠5=∠G,∴∠3=∠4,∴EC=EF,从而得出EG=EF,即E为FG的中点.∴①正确.③∵AB=BC,∠ABD=∠CBD,BP=BP,∴△ABP≌△CBP,∴∠1=∠2,∵AB∥CD,∴∠1=∠DF A,∵AB=BP,∴∠1=∠BP A,∵∠DPF=∠APB,∵EF=CE,∴∠3=∠4,∴∠4=∠DPE,∴D、P、C、E四点共圆,∴∠DEA=∠DCP,∵∠1+∠DAP=90°,∠2+∠DCP=90°,∴∠DAP=∠DCP=∠DEA,∴AD=DE,∴③正确,②∵∠3=∠4,AD=DE(③已求证),∴△CEF∽△CDE,∴=,即CE2=CF•CD,∵∠3=∠4,∴CE=EF,∵E为FG的中点.∴FG=2CE,即CE=FG,∴=CF•CD,即FG2=4CF•CD,∴②正确.④∵四边形ABCD是正方形,∴△PDF∽△PBA,∴==,∴=,∴=,即CF=DF,∴④错误,综上所述,正确的由①②③.故选:C.二.填空题(共9小题)10.解:①∠AED=90°﹣∠EAD,∠ADC=90°﹣∠DAC,∵AD平分∠CAB,∴∠EAD=∠DAC,∴∠AED=∠ADC,故①正确;②∵∠EAD=∠DAC,∠ADE=∠ACD=90°,∴△ADE∽△ACD,∴,∵AC的值未知,故②不一定正确;③连接DM,∵MD为斜边AE的中线,∴DM=MA,∴∠MDA=∠MAD=∠DAC,∴DM∥BF∥AC,∴,∴,∴BF=2AC,故③正确;④由③知,,∵,∴DM∥AC,DM⊥BC,∴∠MDA=DAC=DAM,∵∠ADE=90°,∴DM=MA=ME,∵BM=2AM,∴BE=EM,∴ED=BE,故④正确,故答案为:3个.11.解:①如图1中,当∠AFB′=90°时.在Rt△ABC中,∵∠B=30°,AC=4,∴AB=2AC=8,∵BD=CD,∴BD=CD=BC=2,由折叠的性质得:∠BFD=90°,B'E=BE,∴∠BDF=60°,∴∠EDB=∠EDF=30°,∴∠B=∠EDB=30°,∴BE=DE=B'E,∵∠C=∠BFD=90°,∠DBF=∠ABC=90°,∴△BDF∽△BAC,∴,即=,解得:BF=3,设BE=DE=x,在Rt△EDF中,DE=2EF,∴x=2(3﹣x),解得:x=2,∴AE=8﹣2=6.②如图2中,当∠AB′F=90°时,作EH⊥AB′交AB′的延长线于H.设AE=x.∵AD=AD,CD=DB′,∴Rt△ADC≌Rt△ADB′(HL),∴AC=AB′=4,∵∠AB′E=∠AB′F+∠EB′F=90°+30°=120°,∴∠EB′H=60°,在Rt△EHB′中,B′H=B′E=(8﹣x),EH=B′H=(8﹣x),在Rt△AEH中,∵EH2+AH2=AE2,∴[(8﹣x)]2+[4+(8﹣x)]2=x2,解得:x=,综上所述,满足条件的AE的值为6或.故答案为:6或.12.解:∵BE=AB,CF=AC,∴则=,=,分别作EE1,FF1平行于BC且与AD交于E1、F1两点.则EE1∥FF1,∴△EE1P∽△FF1P,=,==,==,又BD=CD,∴=,∴==,故答案为:.13.解:如图所示,以BD为对称轴作N的对称点N',连接MN′并延长交BD于P,连NP,根据轴对称性质可知,PN=PN',∴PM﹣PN=PM﹣PN'≤MN',当P,M,N'三点共线时,取“=”,∵正方形边长为8,∴AC=AB=,∵O为AC中点,∴AO=OC=,∵N为OA中点,∴ON=,∴ON'=CN'=,∴AN'=,∵BM=6,∴CM=AB﹣BM=8﹣6=2,∴==,∴PM∥AB∥CD,∠CMN'=90°,∵∠N'CM=45°,∴△N'CM为等腰直角三角形,∴CM=MN'=2,即PM﹣PN的最大值为2,故答案为:2.14.解:①如图,∵四边形ABCD和四边形CGFE是正方形,∴BC=CD,CE=CG,∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴∠BEC=∠BGH,∵∠BGH+∠CDG=90°,∠CDG=∠HDE,∴∠BEC+∠HDE=90°,∴GH⊥BE,故①正确;②∵GH是∠EGC的平分线,∴∠BGH=∠EGH,在△BGH和△EGH中,,∴△BGH≌△EGH(ASA),∴BH=EH,又∵O是EG的中点,∴HO是△EBG的中位线,∴OH∥BG,HO=BG,故②正确;③由①得△EHG是直角三角形,∵O为EG的中点,∴OH=OG=OE,∴点H在正方形CGFE的外接圆上,故③错误;④如图2,连接CF,由③可得点H在正方形CGFE的外接圆上,∴∠HFC=∠CGH,∵∠HFC+∠FMG=90°,∠CGH+∠GBE=90°,∴∠FMG=∠GBE,又∵∠EGB=∠FGM=45°,∴△GBE∽△GMF,故④正确;故答案为:①②④.15.解:正方形ABCD中,AD=CD,在△ADF和△CDE中,,∴△ADF≌△CDE(SAS),∴∠ADF=∠CDE,DE=DF,∴∠EDF=∠FDC+∠CDE=∠FDC+∠ADF=∠ADC=90°,∴∠DEF=45°,∵∠DGN=45°+∠FDG,∠DNG=45°+∠CDE,∠FDG≠∠CDE,∴∠DGN≠∠DNG,∴DN≠DH,判断出①错误;∵△DEF是等腰直角三角形,∵∠ABD=∠DEF=45°,∠BGF=∠EGD(对顶角相等),∴△BFG∽△EDG,∵∠DBE=∠DEF=45°,∠BDE=∠EDG,∴△EDG∽△BDE,∴△BFG∽△EDG∽△BDE,故②正确;连接BM、DM.∵△AFD≌△CED,∴∠FDA=∠EDC,DF=DE,∴∠FDE=∠ADC=90°,∵M是EF的中点,∴MD=EF,∵BM=EF,∴MD=MB,在△DCM与△BCM中,,∴△DCM≌△BCM(SSS),∴∠BCM=∠DCM,∴CM在正方形ABCD的角平分线AC上,∴MC垂直平分BD;故③正确;过点M作MH⊥BC于H,则∠MCH=45°,∵MC=,∴MH=×=1,∵M是EF的中点,BF⊥BC,MH⊥BC,∴MH是△BEF的中位线,∴BF=2MH=2,故④正确;综上所述,正确的结论有②③④.故答案是:②③④.16.解:①以BD中点F为圆心,BD为直径可以作出△ABC的外接圆,∵tan∠ACB=45°,∴∠ACB=∠ADB=45°,∴A、B、C、D四点共圆,∴∠DAC=∠CBD,故①正确;②∵△ABH∽△GDA,∴AB2=BH•DG,即AB2=16×(10+DH),叉∵BD=AB,即16+DH=AB,解得DH=8,∵DH+GB=8+6=14≠10,∴DG+GB≠HG,故②错误;③∵△AHG∽△BHA,∴AH2=BH•HG=160,∴AH=4,根据相交弦定理:AH•HC=BH•DH,∴HC=,∴4AH=5HC,故③正确;④∵BD=BH+DH=24,△ABD为等腰直角三角形,∴AB=12,∵AC=AH+HC=,且△AEC是等腰直角三角形,∴AE=CE=,根据勾股定理可得,BE=,∴CE﹣BE=,由△ABH∽△DCH,得CD=,而FN=CD=,BF=12,由勾股定理可得,BN=,BE=,∴EN=BN﹣BE=,EF=,∴CE﹣EB=EF,故④正确.综上,正确的结论是①③④.故答案为:①③④.17.解:在BD上截取BE=CH,连接CO,OE,∵∠ACB=90°,CH⊥BD,∵AC=BC=3,CD=1,∴BD=,∴△CDH∽△BDC,∴,∴CH=,∵△ACB是等腰直角三角形,点O是AB中点,∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,∵∠DCH=∠CBD,∴∠OCH=∠ABD,在△CHO与△BEO中,,∴△CHO≌△BEO,∴OE=OH,∠BOE=∠HOC,∵OC⊥BO,∴∠EOH=90°,即△HOE是等腰直角三角形,∵EH=BD﹣DH﹣CH=﹣﹣=,∴OH=EH×=,故答案为:.18.解:∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠P AB=90°,∴∠CPM=∠P AB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BP A.故①正确,设PB=x,则CP=4﹣x,∵△CMP∽△BP A,∴=,∴CM=x(4﹣x),∴S四边形AMCB=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴x=2时,四边形AMCB面积最大值为10,故②正确,当PB=PC=PE=2时,由折叠知,AE=AB=AD,∠AEP=∠B=90°,∴∠AEN=90°=∠D,∵AN=AN,∴Rt△ADN≌Rt△AEN(HL),∴DN=EN,设ND=NE=y,在Rt△PCN中,(y+2)2=(4﹣y)2+22解得y=,∴NE≠EP,故③错误,作MG⊥AB于G,∴MG=AD=4,根据勾股定理得:AM==,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM最小值==5,故④错误.∵△ABP≌△ADN时,∴△ABP≌△ADN≌△AEN≌△AEP,∴∠P AB=∠DAN=22.5°,在AB上取一点K使得AK=PK,设PB=z,∴∠KP A=∠KAP=22.5°∵∠PKB=∠KP A+∠KAP=45°,∴∠BPK=∠BKP=45°,∴PB=BK=z,AK=PK=z,∴z+z=4,∴z=4﹣4,∴PB=4﹣4,故⑤正确.故答案为①②⑤.三.解答题(共22小题)19.(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AD∥BC,∴∠EBF==∠CDB,∵E、F分别是AB、BD的中点,∴EF是△ABD的中位线,∴EF∥AD,∴EF∥BC,∴∠EFB=∠CBD,∴△BEF∽△DCB;(2)当四边形EPQG为矩形时,如图所示,在矩形ABCD中,AB=12cm,BC=16cm,∴BD=20cm,AD=BC=16cm,∵E、F分别是AB、BD的中点,∴BF=DF=10cm,EF=AD=×16=8m,∴QF=(2t﹣10)cm,PF=(8﹣t)cm,∵四边形EPQG是矩形,∴PQ∥BE,∴△QPF∽△BEF,∴,∴,解得:t=,∴当t=时,四边形EPQG为矩形,故答案为;(3)当点Q在DF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(10﹣2t)cm,∴8﹣t=10﹣2t,解得:t=2,当点Q在BF上,PF=QF,如图所示,∵PF=(8﹣t)cm,QF=(2t﹣10)cm,∴8﹣t=2t﹣10,∴t=6,当点Q在BF上,PQ=QF,如图所示,过点Q作QG⊥EF于点G,则GQ∥BE,∴△QGF∽△BEF,∴,∵PQ=QF,∴GF=PF=(8﹣t),∴,∴t=,当点Q在BF上,PQ=PF,如图所示,过点P作PM⊥BF于点M,则∠PMF=∠BEF=90°,∵∠PFM=∠BFE,∴△PFM∽△BFE,∴,∵PQ=PF,∴MF=QF=(2t﹣10),∴,∴t=,综上所述,t=2或6或或时,△PQF是等腰三角形.20.解:(1)如图①中,结论:EF=BF.理由:∵DE⊥CE,∴∠CED=90°,∵∠CBD=90°,CF=DF,∴BF=CD,EF=CD,∴EF=BF.故答案为:EF=BF.(2)如图②中,结论:EF=BF,EF⊥BF.理由:过点C作CT∥DE交EF的延长线于点T,连接BT,ET,延长DE交BC于点J,设AB交DJ于点K.∵CT∥DE,∴∠CTF=∠DEF,∵∠CFT=∠DFE,CF=DF,∴△CFT≌△DFE(AAS),∴FT=EF,CT=DE,∵CT∥DJ,∴∠TCB=∠DJB,∵∠AEK=∠JBK=90°,∠AKE=∠JKB,∴∠EAK=∠BJK,∴∠BCT=∠BAE,∵AE=DE,CT=DE,∴CT=AE,∵CB=AB,∴△BCT≌△BAE(SAS),∴BT=BE,∠CBT=∠ABE,∴∠TBE=ABC=90°,∴△EBT是等腰直角三角形,∵FT=EF,∴BF⊥EF,BF=EF.(3)如图③﹣1中,当点E在BA的延长线上时,∵AB=BC,AC=3,∠ABC=90°,∴AB=AC=3,∵AE=2,∴BE=5,∵△BFE是等腰直角三角形,∴EF=AE=如图③﹣2中,当点E在线段AB上时,同法可得EF=,综上所述,满足条件的EF的长为或.。
经典几何专题(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC的延长线交MN 于E 、F .求证:∠DEN =∠F .A P C DB A F G CE BO D D 2 C 2B 2 A 2D 1 C 1 B 1C B DA A 1 BF经典几何专题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O(1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.宝剑锋从磨砺出,梅花香自苦寒来经典几何专题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .234经典几何专题(四)1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)宝剑锋从磨砺出,梅花香自苦寒来经典几何专题(五)1、设P是边长为1的正△ABC内任一点,l=PA+PB+PC,求证:3≤L<2.23、P4∠经典难题(一)1、2、宝剑锋从磨砺出,梅花香自苦寒来3、4、经典难题(二)1、2、宝剑锋从磨砺出,梅花香自苦寒来3、4、经典难题(三)1、2、3、4、宝剑锋从磨砺出,梅花香自苦寒来经典难题(四)1、2、3、4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =21S ABCD =S △DFC ∴21 AE ﹒DQ = 21 DG ﹒FC 又∵AE=FC,∴DQ=DG,∴PD 为∠APC 的角平分线,∴∠DPA=∠DPC经典难题(五)1、2、3、宝剑锋从磨砺出,梅花香自苦寒来3、4、。
中考初三数学整合压轴题100题附答案一、中考压轴题1.用两种方法解答:已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,求代数式(m2+mp+1)(n2+np+1)的值.【分析】本题主要是利用韦达定理来计算.已知m、n是关于x的方程x2+(p﹣2)x+1=0两个实数根,有四个等式可供使用:m+n=2﹣p①,mn=1②,m2+(p﹣2)m+1=0③,n2+(p﹣2)n+1=0④.通过变形方法,合理地选择解题方法.【解答】解:∵m、n是x2+(p﹣2)x+1=0的根,∴m+n=2﹣p,mn=1.方法一:m2+(p﹣2)m+1=0,n2+(p﹣2)n+1=0.即m2+pm+1=2m,n2+pn+1=2n.原式=2m×2n=4mn=4.方法二:(m2+mp+1)(n2+np+1)=(m2+mp)(n2+np)+m2+mp+n2+np+1=m2n2+m2np+mpn2+mnp2+m2+mp+n2+np+1=1+mp+np+p2+m2+n2+mp+np+1=2+p2+m2+n2+2(m+n)p=2+p2+m2+n2+2(2﹣p)p=2+p2+m2+n2+4p﹣2p2=2+(m+n)2﹣2mn+4p﹣2p2+p2=2+(2﹣p)2﹣2+4p﹣2p2+p2=4﹣4p+p2+4p﹣p2=4.【点评】本题主要是通过根与系数的关系来求值.注意把所求的代数式转化成m+n=2﹣p,mn=1的形式,正确对所求式子进行变形是解题的关键.2.已知:y关于x的函数y=(k﹣1)x2﹣2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k﹣1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.【分析】(1)分两种情况讨论,当k=1时,可求出函数为一次函数,必与x轴有一交点;当k≠1时,函数为二次函数,若与x轴有交点,则△≥0.(2)①根据(k﹣1)x12+2kx2+k+2=4x1x2及根与系数的关系,建立关于k的方程,求出k 的值;②充分利用图象,直接得出y的最大值和最小值.【解答】解:(1)当k=1时,函数为一次函数y=﹣2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k﹣1)x2﹣2kx+k+2=0.△=(﹣2k)2﹣4(k﹣1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1,函数图象与x轴两个交点,∴k<2,且k≠1.由题意得(k﹣1)x12+(k+2)=2kx1①,将①代入(k﹣1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=,x1x2=,∴2k•=4•.解得:k1=﹣1,k2=2(不合题意,舍去).∴所求k值为﹣1.②如图,∵k1=﹣1,y=﹣2x2+2x+1=﹣2(x﹣)2+.且﹣1≤x≤1.由图象知:当x=﹣1时,y最小=﹣3;当x=时,y最大=.∴y的最大值为,最小值为﹣3.【点评】本题考查了抛物线与x轴的交点、一次函数的定义、二次函数的最值,充分利用图象是解题的关键.3.如图①,有四张编号为1、2、3、4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如图②所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:(1)所求概率为;(2)方法①(树状图法)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为,方法②(列表法)1 2 3 4第一次抽取第二次抽取1(2,1)(3,1)(4,1)2(1,2)(3,2)(4,2)3(1,3)(2,3)(4,3)4(1,4)(2,4)(3,4)共有12种可能的结果:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),∵其中有两种结果(1,2),(2,1)是符合条件的,∴贴法正确的概率为.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.如图,反比例函数的图象经过点A(4,b),过点A作AB⊥x轴于点B,△AOB 的面积为2.(1)求k和b的值;(2)若一次函数y=ax﹣3的图象经过点A,求这个一次函数的解析式.【分析】(1)由△AOB的面积为2,根据反比例函数的比例系数k的几何意义,可知k的值,得出反比例函数的解析式,然后把x=4代入,即可求出b的值;(2)把点A的坐标代入y=ax﹣3,即可求出这个一次函数的解析式.【解答】解:(1)∵反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积为2,A(4,b),∴OB×AB=2,×4×b=2,∴AB=b=1,∴A(4,1),∴k=xy=4,∴反比例函数的解析式为y=,即k=4,b=1.(2)∵A(4,1)在一次函数y=ax﹣3的图象上,∴1=4a﹣3,∴a=1.∴这个一次函数的解析式为y=x﹣3.【点评】本题主要考查了待定系数法求一次函数的解析式和反比例函数中k的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.5.我国年人均用纸量约为28公斤,每个初中毕业生离校时大约有10公斤废纸;用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树.(1)若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使多少亩森林免遭砍伐?(2)我市从2000年初开始实施天然林保护工程,大力倡导废纸回收再生,如今成效显著,森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩.假设我市年用纸量的20%可以作为废纸回收、森林面积年均增长率保持不变,请你按全市总人口约为1000万计算:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的百分之几?(精确到1%)【分析】(1)因为每个初中毕业生离校时大约有10公斤废纸,用1吨废纸造出的再生好纸,所能节约的造纸木材相当于18棵大树,而平均每亩森林只有50至80棵这样的大树,所以有40000×10÷1000×18÷80,计算出即可求出答案;(2)森林面积大约由2003年初的50万亩增加到2005年初的60.5万亩,可先求出森林面积年均增长率,进而求出2005到2006年新增加的森林面积,而因回收废纸所能保护的最大森林面积=1000×10000×28×20%÷1000×18÷50,然后进行简单的计算即可求出答案.【解答】解:(1)4×104×10÷1000×18÷80=90(亩).答:若我市2005年4万名初中毕业生能把自己离校时的全部废纸送到回收站使之制造为再生好纸,那么最少可使90亩森林免遭砍伐.(2)设我市森林面积年平均增长率为x,依题意列方程得50(1+x)2=60.5,解得x1=10%,x2=﹣2.1(不合题意,舍去),1000×104×28×20%÷1000×18÷50=20160,20160÷(605000×10%)≈33%.答:在从2005年初到2006年初这一年度内,我市因回收废纸所能保护的最大森林面积相当于新增加的森林面积的33%.【点评】本题以保护环境为主题,考查了增长率问题,阅读理解题意,并从题目中提炼出平均增长率的数学模型并解答的能力;解答时需仔细分析题意,利用方程即可解决问题.6.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?【分析】(1)根据题意设平均每次下调的百分率为x,列出一元二次方程,解方程即可得出答案;(2)分别计算两种方案的优惠价格,比较后发现方案①更优惠.【解答】解:(1)设平均每次下调的百分率为x,则6000(1﹣x)2=4860,解得:x1=0.1=10%,x2=1.9(舍去),故平均每次下调的百分率为10%;(2)方案①购房优惠:4860×100×(1﹣0.98)=9720(元);方案②可优惠:80×100=8000(元).故选择方案①更优惠.【点评】本题主要考查一元二次方程的实际应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解,属于中档题.7.如图,一次函数y=﹣x﹣2的图象分别交x轴、y轴于A、B两点,P为AB的中点,PC⊥x轴于点C,延长PC交反比例函数y=(x<0)的图象于点Q,且tan∠AOQ=.(1)求k的值;(2)连接OP、AQ,求证:四边形APOQ是菱形.【分析】(1)由一次函数解析式确定A点坐标,进而确定C,Q的坐标,将Q的坐标代入反比例函数关系式可求出k的值.(2)由(1)可分别确定QC=CP,AC=OC,且QP垂直平分AO,故可证明四边形APOQ是菱形.【解答】(1)解:∵y=﹣x﹣2令y=0,得x=﹣4,即A(﹣4,0)由P为AB的中点,PC⊥x轴可知C点坐标为(﹣2,0)又∵tan∠AOQ=可知QC=1∴Q点坐标为(﹣2,1)将Q点坐标代入反比例函数得:1=,∴可得k=﹣2;(2)证明:由(1)可知QC=PC=1,AC=CO=2,且A0⊥PQ∴四边形APOQ是菱形.【点评】本题考查了待定系数法求函数解析式,又结合了几何图形进行考查,属于综合性比较强的题目,有一定难度.8.某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).①求w关于x的函数关系式;②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?(3)第二次,该公司准备投入132万元资金,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.【分析】(1)这是一个分段函数,分别求出其函数关系式;(2)①当2≤x<8时及当x≥8时,分别求出w关于x的表达式.注意w=销售总收入﹣经营总成本=w A+w B﹣3×20;②若该公司获得了30万元毛利润,将30万元代入①中求得的表达式,求出A类杨梅的数量;(3)本问是方案设计问题,总投入为132万元,这笔132万元包括购买杨梅的费用+A类杨梅加工成本+B类杨梅加工成本.共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,分别求出当2≤x<8时及当x≥8时w关于x的表达式,并分别求出其最大值.【解答】解:(1)①当2≤x<8时,如图,设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:,解得,∴y=﹣x+14;②当x≥8时,y=6.所以A类杨梅平均销售价格y与销售量x之间的函数关系式为:y=;(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(﹣x2+13x)+(108﹣6x)﹣60=﹣x2+7x+48;当x≥8时,w A=6x﹣x=5x;w B=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x∴w=w A+w B﹣3×20=(5x)+(108﹣6x)﹣60=﹣x+48.∴w关于x的函数关系式为:w=.②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;当x≥8时,﹣x+48=30,解得x=18.∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.①当2≤x<8时,w A=x(﹣x+14)﹣x=﹣x2+13x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m=﹣x2+7x+3m﹣12.将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64∴当x=4时,有最大毛利润64万元,此时m=,m﹣x=;②当x≥8时,w A=6x﹣x=5x;w B=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12∴w=w A+w B﹣3×m=(5x)+(6m﹣6x﹣12)﹣3m=﹣x+3m﹣12.将3m=x+60代入得:w=48∴当x>8时,有最大毛利润48万元.综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.【点评】本题是二次函数、一次函数的综合应用题,难度较大.解题关键是理清售价、成本、利润三者之间的关系.涉及到分段函数时,注意要分类讨论.9.经统计分析,某市跨河大桥上的车流速度v(千米/小时)是车流密度x(辆/千米)的函数,当桥上的车流密度达到220辆/千米时,造成堵塞,此时车流速度为0千米/小时;当车流密度不超过20辆/千米时,车流速度为80千米/小时,研究表明:当20≤x≤220时,车流速度v是车流密度x的一次函数.(1)求大桥上车流密度为100辆/千米时的车流速度;(2)在交通高峰时段,为使大桥上的车流速度大于40千米/小时且小于60千米/小时,应控制大桥上的车流密度在什么范围内?(3)车流量(辆/小时)是单位时间内通过桥上某观测点的车辆数,即:车流量=车流速度×车流密度.求大桥上车流量y的最大值.【分析】(1)当20≤x≤220时,设车流速度v与车流密度x的函数关系式为v=kx+b,根据题意的数量关系建立方程组求出其解即可;(2)由(1)的解析式建立不等式组求出其解即可;(3)设车流量y与x之间的关系式为y=vx,当x<20和20≤x≤220时分别表示出函数关系由函数的性质就可以求出结论.【解答】解:(1)设车流速度v与车流密度x的函数关系式为v=kx+b,由题意,得,解得:,∴当20≤x≤220时,v=﹣x+88,当x=100时,v=﹣×100+88=48(千米/小时);(2)由题意,得,解得:70<x<120.∴应控制大桥上的车流密度在70<x<120范围内;(3)设车流量y与x之间的关系式为y=vx,当0≤x≤20时y=80x,∴k=80>0,∴y随x的增大而增大,∴x=20时,y最大=1600;当20≤x≤220时y=(﹣x+88)x=﹣(x﹣110)2+4840,∴当x=110时,y最大=4840.∵4840>1600,∴当车流密度是110辆/千米,车流量y取得最大值是每小时4840辆.【点评】本题考查了车流量=车流速度×车流密度的运用,一次函数的解析式的运用,一元一次不等式组的运用,二次函数的性质的运用,解答时求出函数的解析式是关键.10.⊙O1与⊙O2相交于A、B两点,如图(1),连接O2O1并延长交⊙O1于P点,连接P A、PB并分别延长交⊙O2于C、D两点,连接CO2并延长交⊙O2于E点.已知⊙O2的半径为R,设∠CAD=α.(1)求CD的长(用含R、α的式子表示);(2)试判断CD与PO1的位置关系,并说明理由;(3)设点P’为⊙O1上(⊙O2外)的动点,连接P’A、P’B并分别延长交⊙O2于C’、D’,请你探究∠C’AD’是否等于α?C’D’与P’O1的位置关系如何?并说明理由.(注:图(2)与图(3)中⊙O1和⊙O2的大小及位置关系与图(1)完全相同,若你感到继续在图(1)中探究问题(3),图形太复杂,不便于观察,可以选择图(2)或图(3)中的一图说明理由).【分析】(1)作⊙O2的直径CE,连接DE.根据圆周角定理的推论,得∠E=∠CAD=α,再利用解直角三角形的知识求解;(2)连接AB,延长PO1与⊙O1相交于点E,连接AE.根据圆内接四边形的性质,得∠ABP′=∠C′,根据圆周角定理的推论,得∠ABP′=∠E,∠EAP′=90°,从而证明∠AP′E+∠C′=90°,则CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【解答】解:(1)连接DE.根据圆周角定理的推论,得∠E=∠CAD=α.∵CE是直径,∴∠CDE=90°.∴CD=CE•sin E=2R sinα;(2)CD与PO1的位置关系是互相垂直.理由如下:连接AB,延长PO1与⊙O1相交于点E,连接AE.∵四边形BAC′D′是圆内接四边形,∴∠ABP′=∠C′.∵P′E是直径,∴∠EAP′=90°,∴∠AP′E+∠E=90°.又∠ABP′=∠E,∴∠AP′E+∠C′=90°,即CD与PO1的位置关系是互相垂直;(3)根据同弧所对的圆周角相等,则说明∠C’AD’等于α;根据(2)中的证明过程,则可以证明C’D’与P’O1的位置关系是互相垂直.【点评】此题综合运用了圆周角定理及其推论、直角三角形的性质、圆内接四边形的性质.注意:连接两圆的公共弦、构造直径所对的圆周角都是圆中常见的辅助线.11.如图,已知直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,连接PC 并延长PC交y轴于点D(0,3).(1)求证:△POD≌△ABO;(2)若直线l:y=kx+b经过圆心P和D,求直线l的解析式.【分析】(1)首先连接PB,由直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,可求得∠APB=∠DPO=60°,∠ABO=∠POD=90°,即可得△P AB是等边三角形,可得AB=OP,然后由ASA,即可判定:△POD≌△ABO;(2)易求得∠PDO=30°,由OP=OD•tan30°,即可求得点P的坐标,然后利用待定系数法,即可求得直线l的解析式.【解答】(1)证明:连接PB,∵直径为OA的⊙P与x轴交于O、A两点,点B、C把三等分,∴∠APB=∠DPO=×180°=60°,∠ABO=∠POD=90°,∵P A=PB,∴△P AB是等边三角形,∴AB=P A,∠BAO=60°,∴AB=OP,∠BAO=∠OPD,在△POD和△ABO中,∴△POD≌△ABO(ASA);(2)解:由(1)得△POD≌△ABO,∴∠PDO=∠AOB,∵∠AOB=∠APB=×60°=30°,∴∠PDO=30°,∴OP=OD•tan30°=3×=,∴点P的坐标为:(﹣,0)∴,解得:,∴直线l的解析式为:y=x+3.【点评】此题考查了圆周角定理、全等三角形的判定与性质、直角三角形的性质、等边三角形的判定与性质以及待定系数法求一次函数的解析式.此题综合性较强,难度适中,注意准确作出辅助线,注意数形结合思想的应用.12.如图,△ABC内接于⊙O,AB=6,AC=4,D是AB边上一点,P是优弧BAC的中点,连接P A、PB、PC、PD.(1)当BD的长度为多少时,△P AD是以AD为底边的等腰三角形?并证明;(2)在(1)的条件下,若cos∠PCB=,求P A的长.【分析】(1)根据等弧对等弦以及全等三角形的判定和性质进行求解;(2)过点P作PE⊥AD于E.根据锐角三角函数的知识和垂径定理进行求解.【解答】解:(1)当BD=AC=4时,△P AD是以AD为底边的等腰三角形.∵P是优弧BAC的中点,∴=.∴PB=PC.又∵∠PBD=∠PCA(圆周角定理),∴当BD=AC=4,△PBD≌△PCA.∴P A=PD,即△P AD是以AD为底边的等腰三角形.(2)过点P作PE⊥AD于E,由(1)可知,当BD=4时,PD=P A,AD=AB﹣BD=6﹣4=2,则AE=AD=1.∵∠PCB=∠P AD(在同圆或等圆中,同弧所对的圆周角相等),∴cos∠P AD=cos∠PCB=,∴P A=.【点评】综合运用了等弧对等弦的性质、全等三角形的判定和性质、锐角三角函数的知识以及垂径定理.13.已知⊙O1与⊙O2相交于A、B两点,点O1在⊙O2上,C为⊙O2上一点(不与A,B,O1重合),直线CB与⊙O1交于另一点D.(1)如图(1),若AD是⊙O1的直径,AC是⊙O2的直径,求证:AC=CD;(2)如图(2),若C是⊙O1外一点,求证:O1C丄AD;(3)如图(3),若C是⊙O1内的一点,判断(2)中的结论是否成立?【分析】(1)连接C01,利用直径所对圆周角等于90度,以及垂直平分线的性质得出即可;(2)根据已知得出四边形AEDB内接于⊙O1,得出∠ABC=∠E,再利用=,得出∠E=∠AO1C,进而得出CO1∥ED即可求出;(3)根据已知得出∠B=∠EO1C,又∠E=∠B,即可得出∠EO1C=∠E,得出CO1∥ED,即可求出.【解答】(1)证明:连接C01∵AC为⊙O2直径∴∠AO1C=90°即CO1⊥AD,∵AO1=DO1∴DC=AC(垂直平分线的性质);(2)证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵四边形AEDB内接于⊙O1,∴∠E+∠ABD=180°,∵∠ABC+∠ABD=180°,∴∠ABC=∠E,又∵=,∴∠ABC=∠AO1C,∴∠E=∠AO1C,∴CO1∥ED,又AE为⊙O1的直径,∴ED⊥AD,∴O1C⊥AD,(3)(2)中的结论仍然成立.证明:连接AO1,连接AB,延长AO1交⊙O1于点E,连接ED,∵∠B+∠AO1C=180°,∠EO1C+∠AO1C═180°,∴∠B=∠EO1C,又∵∠E=∠B,∴∠EO1C=∠E,∴CO1∥ED,又ED⊥AD,∴CO1⊥AD.【点评】此题主要考查了圆周角定理以及相交两圆的性质和圆内接四边形的性质,根据圆内接四边形的性质得出对应角之间的关系是解决问题的关键.14.如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且=,弦AD的延长线交切线PC于点E,连接BC.(1)判断OB和BP的数量关系,并说明理由;(2)若⊙O的半径为2,求AE的长.【分析】(1)首先连接OC,由PC切⊙O于点C,可得∠OCP=90°,又由∠BAC=30°,即可求得∠COP=60°,∠P=30°,然后根据直角三角形中30°角所对的直角边等于斜边的一半,证得OB=BP;(2)由(1)可得OB=OP,即可求得AP的长,又由=,即可得∠CAD=∠BAC=30°,继而求得∠E=90°,继而在Rt△AEP中求得答案.【解答】解:(1)OB=BP.理由:连接OC,∵PC切⊙O于点C,∴∠OCP=90°,∵OA=OC,∠OAC=30°,∴∠OAC=∠OCA=30°,∴∠COP=60°,∴∠P=30°,在Rt△OCP中,OC=OP=OB=BP;(2)由(1)得OB=OP,∵⊙O的半径是2,∴AP=3OB=3×2=6,∵=,∴∠CAD=∠BAC=30°,∴∠BAD=60°,∵∠P=30°,∴∠E=90°,在Rt△AEP中,AE=AP=×6=3.【点评】此题考查了切线的性质、直角三角形的性质以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用,注意掌握辅助线的作法.15.如图,菱形、矩形与正方形的形状有差异,我们将菱形、矩形与正方形的接近程度称为“接近度”.在研究“接近度”时,应保证相似图形的“接近度”相等.(1)设菱形相邻两个内角的度数分别为m°和n°,将菱形的“接近度”定义为|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.①若菱形的一个内角为70°,则该菱形的“接近度”等于40;②当菱形的“接近度”等于0时,菱形是正方形.(2)设矩形相邻两条边长分别是a和b(a≤b),将矩形的“接近度”定义为|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.你认为这种说法是否合理?若不合理,给出矩形的“接近度”一个合理定义.【分析】(1)根据相似图形的定义知,相似图形的形状相同,但大小不一定相同,相似图形的“接近度”相等.所以若菱形的一个内角为70°,则该菱形的“接近度”等于|m﹣n|;当菱形的“接近度”等于0时,菱形是正方形;(2)不合理,举例进行说明.【解答】解:(1)①∵内角为70°,∴与它相邻内角的度数为110°.∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.②当菱形的“接近度”等于0时,菱形是正方形.(2)不合理.例如,对两个相似而不全等的矩形来说,它们接近正方形的程度是相同的,但|a﹣b|却不相等.合理定义方法不唯一.如定义为,越接近1,矩形越接近于正方形;越大,矩形与正方形的形状差异越大;当时,矩形就变成了正方形,即只有矩形的越接近1,矩形才越接近正方形.【点评】正确理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.这是解决问题的关键.16.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【分析】(1)将三角形的各顶点,向x轴作垂线并延长相同长度得到三点的对应点,顺次连接;(2)将三角形的各顶点,绕原点O按逆时针旋转90°得到三点的对应点.顺次连接各对应点得△A2B2C2;(3)从图中可发现成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,做它的垂直平分线;(4)成中心对称图形,画出两条对应点的连线,交点就是对称中心.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).【点评】本题综合考查了图形的变换,在图形的变换中,关键是找到图形的对应点.17.图(1)是一个10×10格点正方形组成的网格.△ABC是格点三角形(顶点在网格交点处),请你完成下面的两个问题:(1)在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2,且△A1B1C1与△ABC的相似比是2,△A2B2C2与△ABC的相似比是;(2)在图(2)中用与△ABC,△A1B1C1,△A2B2C2全等的格点三角形(每个三角形至少使用一次),拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.【分析】(1)△A1B1C1与△ABC的相似比是2,则让△ABC的各边都扩大2倍就可.△A2B2C2与△ABC的相似比是;△ABC的直角边是2,所以△A2B2C2与的直角边是即一个对角线的长度.斜边为2.依此画图即可;(2)拼图有审美意义即可,答案不唯一.【解答】解:【点评】本题主要考查了相似图形的画法,做这类题时根据的是相似图形的性质,即相似比相等.对应角相等.18.如图,矩形ABCD的边AD、AB分别与⊙O相切于点E、F,(1)求的长;(2)若,直线MN分别交射线DA、DC于点M、N,∠DMN=60°,将直线MN沿射线DA方向平移,设点D到直线的距离为d,当时1≤d≤4,请判断直线MN与⊙O的位置关系,并说明理由.【分析】(1)连接OE、OF,利用相切证明四边形AFOE是正方形,再根据弧长公式求弧长;(2)先求出直线M1N1与圆相切时d的值,结合1≤d≤4,划分d的范围,分类讨论.【解答】解:(1)连接OE、OF,∵矩形ABCD的边AD、AB分别与⊙O相切于点E、F,∴∠A=90°,∠OEA=∠OF A=90°∴四边形AFOE是正方形∴∠EOF=90°,OE=AE=∴的长==π.(2)如图,将直线MN沿射线DA方向平移,当其与⊙O相切时,记为M1N1,切点为R,交AD于M1,交BC于N1,连接OM1、OR,∵M1N1∥MN∴∠DM1N1=∠DMN=60°∴∠EM1N1=120°∵MA、M1N1切⊙O于点E、R∴∠EM1O=∠EM1N1=60°在Rt△EM1O中,EM1===1∴DM1=AD﹣AE﹣EM1=+5﹣﹣1=4.过点D作DK⊥M1N1于K在Rt△DM1K中DK=DM1×sin∠DM1K=4×sin∠60°=2即d=2,∴当d=2时,直线MN与⊙O相切,当1≤d<2时,直线MN与⊙O相离,当直线MN平移到过圆心O时,记为M2N2,点D到M2N2的距离d=DK+OR=2+=3>4,∴当2<d≤4时,MN直线与⊙O相交.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d 与圆半径大小关系完成判定.19.如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连接ED、BE.(1)试判断DE与BD是否相等,并说明理由;(2)如果BC=6,AB=5,求BE的长.【分析】(1)可通过连接AD,AD就是等腰三角形ABC底边上的高,根据等腰三角形三线合一的特点,可得出∠CAD=∠BAD,根据圆周角定理即可得出∠DEB=∠DBE,便可证得DE=DB.(2)本题中由于BE⊥AC,那么BE就是三角形ABC中AC边上的高,可用面积的不同表示方法得出AC•BE=CB•AD.进而求出BE的长.【解答】解:(1)DE=BD证明:连接AD,则AD⊥BC,在等腰三角形ABC中,AD⊥BC,∴∠CAD=∠BAD(等腰三角形三线合一),∴=,∴DE=BD;(2)∵AB=5,BD=BC=3,∴AD=4,∵AB=AC=5,∴S△ABC=•AC•BE=•CB•AD,∴BE=4.8.【点评】本题主要考查了等腰三角形的性质,圆周角定理等知识点的运用,用等腰三角形三线合一的特点得出圆周角相等是解题的关键.20.下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1,在温室内,沿前侧内墙保留3m的空地,其他三侧内墙各保留1m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288m2?解:设矩形蔬菜种植区域的宽为xm,则长为2xm,根据题意,得x•2x=288.解这个方程,得x1=﹣12(不合题意,舍去),x2=12所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28m,宽为14m时,矩形蔬菜种植区域的面积是288m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样…(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD:AB=2:1,设AB与A′B′、BC与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以应设矩形蔬菜种植区域的宽为xm,则长为2xm,然后由题意得,矩形蔬菜种植区域的长与宽之比为2:1,再利用小明的解法求解即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得,即,然后利用比例的性质,即可求得答案.【解答】解:(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由.在“设矩形蔬菜种植区域的宽为xm,则长为2xm.”前补充以下过程:设温室的宽为xm,则长为2xm.则矩形蔬菜种植区域的宽为(x﹣1﹣1)m,长为(2x﹣3﹣1)m.∵,∴矩形蔬菜种植区域的长与宽之比为2:1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要,即,即,即2AB﹣2(b+d)=2AB﹣(a+c),∴a+c=2(b+d),即.【点评】此题考查了相似多边形的性质.此题属于阅读性题目,注意理解题意,读懂题目是解此题的关键.21.二次函数y=ax2+bx+c图象的一部分如图所示,则a的取值范围是﹣1<a<0.。
23.已知关于x 的一元二次方程22(4)0x a x a +++=.(1) 求证:无论a 为任何实数,此方程总有两个不相等的实数根;(2) 抛物线21:2(4)C y x a x a =+++与x 轴的一个交点的横坐标为2a,其中0a ≠,将抛物线1C 向右平移14个单位,再向上平移18个单位,得到抛物线2C .求抛物 线2C 的解析式;(3) 点A (m ,n )和B (n ,m )都在(2)中抛物线C 2上,且A 、B 两点不重合,求代数式33222m mn n -+的值.24.在Rt △ABC 中,∠ACB =90°,∠ABC =α,点P 在△ABC 的内部.(1) 如图1,AB =2AC ,PB =3,点M 、N 分别在AB 、BC 边上,则cos α=_______, △PMN 周长的最小值为_______;(2) 如图2,若条件AB =2AC 不变,而P A =2,PB =10,PC =1,求△ABC 的面积; (3) 若P A =m ,PB =n ,PC =k ,且cos sin k m n αα==,直接写出∠APB 的度数.25.如图1,在平面直角坐标系xOy 中,直线l :34y x m =+与x 轴、y 轴分别交于点A 和点B (0,-1),抛物线212y x bx c =++经过点B ,且与直线l 的另一个交点为C (4,n ). (1) 求n 的值和抛物线的解析式;(2) 点D 在抛物线上,且点D 的横坐标为t (0< t <4).DE ∥y 轴交直线l 于点E ,点F 在直线l 上,且四边形DFEG 为矩形(如图2).若矩形DFEG 的周长为p ,求p 与t 的函数关系式以及p 的最大值;(3) M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1.若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横.坐标...图1图答案五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.(1)证明:∵22(4)4216a a a ∆=+-⨯=+, …………………………………1分 而20a ≥,∴2160a +>,即0∆>.∴无论a 为任何实数,此方程总有两个不相等的实数根. …………2分 (2)解:∵当2ax =时,0y =, ∴22()(4)022a aa a ⨯++⨯+=.∴230a a +=,即(3)0a a +=.∵0a ≠,∴3a =-. ………………………………………………………… 3分∴抛物线1C 的解析式为22125232()48y x x x =+-=+-. ∴抛物线1C 的顶点为125(,)48--. ∴抛物线2C 的顶点为(0,3)-.∴抛物线2C 的解析式为223y x =-. …………………………4分(3)解:∵点A (m ,n )和B (n ,m )都在抛物线2C 上,∴223n m =-,且223m n =-. ∴222()n m m n -=-. ∴2()()n m m n m n -=-+. ∴()[2()1]0m n m n -++=. ∵A 、B 两点不重合,即m n ≠,∴2()10m n ++=. ∴12m n +=-. ……………………………………………………… 5分 ∵223m n =+,223n m =+, ∴33222m mn n -+ 22222m m mn n n =⋅-+⋅ n m mn m n ⋅++-⋅+=)3(2)3().(3n m += ………………………………………………………………6分32=-. ………………………………………………………………7分24.解:(1)cos αPMN 周长的最小值为 3 ; ………………………2分 (2)分别将△P AB 、△PBC 、△P AC 沿直线AB 、BC 、AC 翻折,点P 的对称点分别是点D 、E 、F ,连接DE 、DF ,(如图6)则△P AB ≌△DAB ,△PCB ≌△ECB ,△P AC ≌△F AC . ∴AD =AP =AF , BD =BP =BE ,CE =CP =CF .∵由(1)知∠ABC =30°,∠BAC =60°,∠ACB =90°, ∴∠DBE =2∠ABC =60°,∠DAF =2∠BAC =120°, ∠FCE =2∠ACB =180°.∴△DBE 是等边三角形,点F 、C 、E 共线. ∴DE =BD =BP EF =CE +CF =2CP =2. ∵△ADF 中,AD =AF ,∠DAF =120°, ∴∠ADF =∠AFD =30°.∴DF .∴22210EF DF DE +==.∴∠DFE =90°. ………………………………………………………4分PBACDE F图6∵2ABC DBE DFE DAF BDAFE S S S S S ∆∆∆∆==++多边形,∴2112222ABC S ∆=++=∴ABC S ∆=. ……………………………………………5分 (3)∠APB =150°. ………………………………………………………… 7分 说明:作BM ⊥DE 于M ,AN ⊥DF 于N .(如图7) 由(2)知∠DBE =2α,∠DAF =1802α-o . ∵BD =BE=n ,AD =AF=m , ∴∠DBM =α,∠DAN =90α-o . ∴∠1=90α-o ,∠3=α. ∴DM =sin n α,DN =cos m α. ∴DE =DF =EF . ∴∠2=60°.∴∠APB =∠BDA =∠1+∠2+∠3=150°.25.解:(1)∵直线l :34y x m =+经过点B (0,1-),∴1m =-.∴直线l 的解析式为314y x =-. ∵直线l :314y x =-经过点C (4,n ), ∴34124n =⨯-=. ………………………………………………1分 ∵抛物线212y x bx c =++经过点C (4,2)和点B (0,1-),∴21244,21.b c c ⎧=⨯++⎪⎨⎪-=⎩ 解得5,41.b c ⎧=-⎪⎨⎪=-⎩ ∴抛物线的解析式为215124y x x =--. …………………………2分321NMP A CD EB图7(2)∵直线l :314y x =-与x 轴交于点A , ∴点A 的坐标为(43,0).∴OA=43.在Rt △OAB 中,OB=∴AB ∵DE ∥y 轴, ∴∠OBA =∠FED .∵矩形DFEG 中,∠DFE =90°, ∴∠DFE =∠AOB =90°.∴△OAB ∽△FDE .∴OA OB ABFD FE DE==. ∴45OA FD DE DE AB =⋅=,35OB FE DE DE AB =⋅=. …………………………………………4分∴p =2(FD+ FE )=43142()555DE DE ⨯+=.∵D (t ,215124t t --),E (t ,314t -),且04t <<,∴223151(1)(1)24242DE t t t t t =----=-+.∴22141728(2)5255p t t t t =⨯-+=-+. …………………………… 5分∵2728(2)55p t =--+,且705-<,∴当2t =时,p 有最大值285. …………………………………… 6分(3)点A 1的横坐标为34或712-. ……………………………………………8分 说明:两种情况参看图9和图10,其中O 1B 1与x 轴平行,O 1A 1与y 轴平行.。
一、如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,,解得,故抛物线为y=﹣x2+2x+3又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得,解得故直线AC为y=x+1;(2)作N点关于直线x=3的对称点N',则N'(6,3),由(1)得D(1,4),故直线DN'的函数关系式为y=﹣x+,当M(3,m)在直线DN'上时,MN+MD的值最小,则m=﹣×=;(3)由(1)、(2)得D(1,4),B(1,2)∵点E在直线AC上,设E(x,x+1),①当点E在线段AC上时,点F在点E上方,则F(x,x+3),∵F在抛物线上,∴x+3=﹣x2+2x+3,解得,x=0或x=1(舍去)∴E(0,1);②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)由F在抛物线上∴x﹣1=﹣x2+2x+3解得x=或x=∴E(,)或(,)综上,满足条件的点E为E(0,1)、(,)或(,);(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x轴于点G,如图1设Q(x,x+1),则P(x,-x2+2x+3)∴PQ=(-x2+2x+3)-(x﹣1)=-x2+x+2又∵S△APC=S△APQ+S△CPQ=PQ·AG=(-x2+x+2)×3=-(x﹣)2+∴面积的最大值为.二、已知:直角梯形OABC中,BC∥OA,∠AOC=90°,以AB为直径的圆M交OC于D、E,连结AD、BD、BE。
初三数学九上压轴题难题提高题培优题一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为,点C的坐标为(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.初三数学九上压轴题难题提高题培优题参考答案与试题解析一.解答题(共8小题)1.如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM 于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:由题意可知.解得.∴抛物线的表达式为y=﹣.(2)将x=0代入抛物线表达式,得y=1.∴点M的坐标为(0,1).设直线MA的表达式为y=kx+b,则.解得.∴直线MA的表达式为y=x+1.设点D的坐标为(),则点F的坐标为().DF==.当时,DF的最大值为.此时,即点D的坐标为().(3)存在点P,使得以点P、A、N为顶点的三角形与△MAO相似.设P(m,).在Rt△MAO中,AO=3MO,要使两个三角形相似,由题意可知,点P不可能在第一象限.①设点P在第二象限时,∵点P不可能在直线MN上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3(舍去)或m=﹣8.又﹣3<m<0,故此时满足条件的点不存在.②当点P在第三象限时,∵点P不可能在直线MA上,∴只能PN=3AN,∴,即m2+11m+24=0.解得m=﹣3或m=﹣8.此时点P的坐标为(﹣8,﹣15).③当点P在第四象限时,若AN=3PN时,则﹣3,即m2+m﹣6=0.解得m=﹣3(舍去)或m=2.当m=2时,.此时点P的坐标为(2,﹣).若PN=3NA,则﹣,即m2﹣7m﹣30=0.解得m=﹣3(舍去)或m=10,此时点P的坐标为(10,﹣39).综上所述,满足条件的点P的坐标为(﹣8,﹣15)、(2,﹣)、(10,﹣39).2.如图,在平面直角坐标系xOy中,顶点为M的抛物线y=ax2+bx(a>0)经过点A和x轴正半轴上的点B,AO=OB=4,∠AOB=120°.(1)求这条抛物线的表达式;(2)联结OM,求∠AOM的大小;(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.【解答】解:(1)如图,过点A作AD⊥y轴于点D,∵AO=OB=4,∴B(4,0).∵∠AOB=120°,∴∠AOD=30°,∴AD=OA=2,OD=OA=2.∴A(﹣2,2).将A(﹣2,2),B(4,0)代入y=ax2+bx,得:,解得:,∴这条抛物线的表达式为y=x2﹣x;(2)过点M作ME⊥x轴于点E,∵y=x2﹣x=(x﹣2)2﹣,∴M(2,﹣),即OE=2,EM=.∴tan∠EOM==.∴∠EOM=30°.∴∠AOM=∠AOB+∠EOM=150°.(3)过点A作AH⊥x轴于点H,∵AH=2,HB=HO+OB=6,∴tan∠ABH==.∴∠ABH=30°,∵∠AOM=150°,∴∠OAM<30°,∴∠OMA<30°,∴点C不可能在点B的左侧,只能在点B的右侧.∴∠ABC=180°﹣∠ABH=150°,∵∠AOM=150°,∴∠AOM=∠ABC.∴△ABC与△AOM相似,有如下两种可能:①△BAC与∽△OAM,②△BAC与∽△OMA∵OD=2,ME=,∴OM=,∵AH=2,BH=6,∴AB=4.①当△BAC与∽△OAM时,由=得,解得BC=4.∴C1(8,0).②当△BAC与∽△OMA时,由=得,解得BC=12.∴C2(16,0).综上所述,如果点C在x轴上,且△ABC与△AOM相似,则点C的坐标为(8,0)或(16,0).3.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c交x轴于A(2,0),B (6,0)两点,交y轴于点.(1)求此抛物线的解析式;(2)若此抛物线的对称轴与直线y=2x交于点D,作⊙D与x轴相切,⊙D交y 轴于点E、F两点,求劣弧EF的长;(3)P为此抛物线在第二象限图象上的一点,PG垂直于x轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1:2两部分?【解答】解:(1)∵抛物线y=ax2+bx+c经过点A(2,0),B(6,0),;∴,解得;∴抛物线的解析式为:;(2)易知抛物线的对称轴是x=4,把x=4代入y=2x,得y=8,∴点D的坐标为(4,8);∵⊙D与x轴相切,∴⊙D的半径为8;连接DE、DF,作DM⊥y轴,垂足为点M;在Rt△MFD中,FD=8,MD=4,∴cos∠MDF=;∴∠MDF=60°,∴∠EDF=120°;∴劣弧EF的长为:;(3)设直线AC的解析式为y=kx+b;∵直线AC经过点,∴,解得;∴直线AC的解析式为:;设点,PG交直线AC于N,则点N坐标为,∵S△PNA :S△GNA=PN:GN;∴①若PN:GN=1:2,则PG:GN=3:2,PG=GN;即=;解得:m1=﹣3,m2=2(舍去);当m=﹣3时,=;∴此时点P的坐标为;②若PN:GN=2:1,则PG:GN=3:1,PG=3GN;即=;解得:m1=﹣12,m2=2(舍去);当m=﹣12时,=;∴此时点P的坐标为;综上所述,当点P坐标为或时,△PGA的面积被直线AC分成1:2两部分.4.如图,在平面直角坐标系中,已知点A(﹣2,﹣4),OB=2,抛物线y=ax2+bx+c 经过点A、O、B三点.(1)求抛物线的函数表达式;(2)若点M是抛物线对称轴上一点,试求AM+OM的最小值;(3)在此抛物线上,是否存在点P,使得以点P与点O、A、B为顶点的四边形是梯形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)由OB=2,可知B(2,0),将A(﹣2,﹣4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,得解得:∴抛物线的函数表达式为.答:抛物线的函数表达式为.(2)由,可得,抛物线的对称轴为直线x=1,且对称轴x=1是线段OB的垂直平分线,连接AB交直线x=1于点M,M点即为所求.∴MO=MB,则MO+MA=MA+MB=AB作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=∴MO+MA的最小值为.答:MO+MA的最小值为.(3)①若OB∥AP,此时点A与点P关于直线x=1对称,由A(﹣2,﹣4),得P(4,﹣4),则得梯形OAPB.②若OA∥BP,设直线OA的表达式为y=kx,由A(﹣2,﹣4)得,y=2x.设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=﹣4,∴直线BP的表达式为y=2x﹣4由,解得x1=﹣4,x2=2(不合题意,舍去)当x=﹣4时,y=﹣12,∴点P(﹣4,﹣12),则得梯形OAPB.③若AB∥OP,设直线AB的表达式为y=kx+m,则,解得,∴AB的表达式为y=x﹣2.∵AB∥OP,∴直线OP的表达式为y=x.由,得x2=0,解得x=0,(不合题意,舍去),此时点P不存在.综上所述,存在两点P(4,﹣4)或P(﹣4,﹣12)使得以点P与点O、A、B为顶点的四边形是梯形.答:在此抛物线上,存在点P,使得以点P与点O、A、B为顶点的四边形是梯形,点P的坐标是(4,﹣4)或(﹣4,﹣12).5.已知抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3).(1)求抛物线的函数解析式;(2)求tan∠ABO的值;(3)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.【解答】解:(1)∵抛物线y=﹣x2+bx+c经过点A(0,1),B (4,3),∴,解得,所以,抛物线的函数解析式为y=﹣x2+x+1;(2)如图,过点B作BC⊥x轴于C,过点A作AD⊥OB于D,∵A(0,1),B (4,3),∴OA=1,OC=4,BC=3,根据勾股定理,OB===5,∵∠OAD+∠AOD=90°,∠AOD+∠BOC=90°,∴∠OAD=∠BOC,又∵∠ADO=∠OCB=90°,∴△AOD∽△OBC,∴==,即==,解得OD=,AD=,∴BD=OB﹣OD=5﹣=,∴tan∠ABO===;(3)设直线AB的解析式为y=kx+b(k≠0,k、b是常数),则,解得,所以,直线AB的解析式为y=x+1,设点M(a,﹣a2+a+1),N(a,a+1),则MN=﹣a2+a+1﹣a﹣1=﹣a2+4a,∵四边形MNCB为平行四边形,∴MN=BC,∴﹣a2+4a=3,整理得,a2﹣4a+3=0,解得a1=1,a2=3,∵MN在抛物线对称轴的左侧,抛物线的对称轴为直线x=﹣=,∴a=1,∴﹣12+×1+1=,∴点M的坐标为(1,).6.如图1,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.【解答】解:(1)将x=2,y=2代入抛物线的解析式得:﹣×4×(2﹣m)=2,解得:m=4,经检验:m=4是分式方程的解.∴m的值为4.(2)y=0得:0=﹣(x+2)(x﹣m),解得x=﹣2或x=m,∴B(﹣2,0),C(m,0).由(1)得:m=4,∴C(4,0).将x=0代入得:y=﹣×2×(﹣m)=2,∴E(0,2).∴BC=6,OE=2.∴S=BC•OE=×6×2=6.△BCE(3)如图1所示:连接EC交抛物线的对称轴于点H,连接BH,设对称轴与x 轴的交点为P.∵x=﹣,∴抛物线的对称轴是直线x=1.∴CP=3.∵点B与点C关于x=1对称,∴BH=CH.∴BH+EH=EH+HC.∴当H落在线段EC上时,BH+EH的值最小.∵HP∥OE,∴△PHC∽△EOC.∴,即.解得HP=.∴点H的坐标为(1,).(4)①如图2,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.∵BF∥EC,∴∠BCE=∠FBC.∴当,即BC2=CE•BF时,△BCE∽△FBC.设点F的坐标为(x,﹣(x+2)(x﹣m)),由,得.解得x=m+2.∴F′(m+2,0).∵∠BCE=∠FBC.∴,得,解得:.又∵BC2=CE•BF,∴,整理得:0=16.此方程无解.②如图3,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,∵OE=OB,∠EOB=90°,∴∠EBO=45°.∵∵∠CBF=45°,∴∠EBC=∠CBF,∴当,即BC2=BE•BF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得(x+2)(x﹣m)=x+2,解得x=2m.∴F′(2m,0).∴B F′=2m+2,∴BF=2m+2.由BC2=BE•BF,得(m+2)2=2×(2m+2).解得.∵m>0,∴m=2+2.综上所述,点m的值为2+2.7.如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.(1)点B的坐标为(b,0),点C的坐标为(0,)(用含b的代数式表示);(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.【解答】解:(1)令y=0,即y=x2﹣(b+1)x+=0,解得:x=1或b,∵b是实数且b>2,点A位于点B的左侧,∴点B的坐标为(b,0),令x=0,解得:y=,∴点C的坐标为(0,),故答案为:(b,0),(0,);(2)存在,假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.设点P的坐标为(x,y),连接OP.=S△PCO+S△POB=••x+•b•y=2b,则S四边形PCOB∴x+4y=16.过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,∴∠PEO=∠EOD=∠ODP=90°.∴四边形PEOD是矩形.∴∠EPD=90°.∴∠EPC=∠DPB.∴△PEC≌△PDB,∴PE=PD,即x=y.由解得由△PEC≌△PDB得EC=DB,即﹣=b﹣,解得b=>2符合题意.∴P的坐标为(,);(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.∵∠QAB=∠AOQ+∠AQO,∴∠QAB>∠AOQ,∠QAB>∠AQO.∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.∵b>2,∴AB>OA,∴∠Q0A>∠ABQ.∴只能∠AOQ=∠AQB.此时∠OQB=90°,由QA⊥x轴知QA∥y轴.∴∠COQ=∠OQA.∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.(I)当∠OCQ=90°时,△CQO≌△QOA.∴AQ=CO=.由AQ2=OA•AB得:()2=b﹣1.解得:b=8±4.∵b>2,∴b=8+4.∴点Q的坐标是(1,2+).(II)当∠OQC=90°时,△OCQ∽△QOA,∴=,即OQ2=OC•AQ.又OQ2=OA•OB,∴OC•AQ=OA•OB.即•AQ=1×b.解得:AQ=4,此时b=17>2符合题意,∴点Q的坐标是(1,4).∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB 中的任意两个三角形均相似.8.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0),C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动.同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位.运动时间为t秒.过点P作PE⊥AB交AC于点E.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.【解答】解:(1)A(1,4).由题意知,可设抛物线解析式为y=a(x﹣1)2+4∵抛物线过点C(3,0),∴0=a(3﹣1)2+4,解得,a=﹣1,∴抛物线的解析式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)∵A(1,4),C(3,0),∴可求直线AC的解析式为y=﹣2x+6.∵点P(1,4﹣t).∴将y=4﹣t代入y=﹣2x+6中,解得点E的横坐标为x=1+.∴点G的横坐标为1+,代入抛物线的解析式中,可求点G的纵坐标为4﹣.∴GE=(4﹣)﹣(4﹣t)=t﹣.又∵点A到GE的距离为,C到GE的距离为2﹣,即S=S△AEG+S△CEG=•EG•+•EG(2﹣)△ACG=•2(t﹣)=﹣(t﹣2)2+1.的最大值为1.当t=2时,S△ACG(3)第一种情况如图1所示,点H在AC的上方,由四边形CQEH是菱形知CQ=CE=t,根据△APE∽△ABC,知=,即=,解得t=20﹣8;第二种情况如图2所示,点H在AC的下方,由四边形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2﹣t,MQ=4﹣2t.则在直角三角形EMQ中,根据勾股定理知EM2+MQ2=EQ2,即(2﹣t)2+(4﹣2t)2=t2,解得,t1=,t2=4(不合题意,舍去).综上所述,t=20﹣8或t=.。
1.一个等腰三角形的底边长为10厘米,腰长为13厘米,求这个三角形的面积。
答案:底边上的高为12厘米,面积为60平方厘米。
2.解方程:2x^2 - 5x + 2 = 0。
答案:x1 = 1/2, x2 = 2。
3.一个圆的半径是7厘米,求这个圆的周长和面积。
答案:周长约为43.98厘米,面积约为153.94平方厘米。
4.一个长方体的长、宽、高分别是8厘米、6厘米和4厘米,求它的体积和表面积。
答案:体积为192立方厘米,表面积为192平方厘米。
5.一个数的2/3加上15等于这个数的1/2,求这个数。
答案:这个数是60。
6.一个班级有40名学生,其中女生占全班的5/8,求男生的人数。
答案:男生有15人。
7.一个三角形的两边长分别是8厘米和6厘米,夹角为90度,求这个三角形的面积。
答案:面积为24平方厘米。
8.一个圆柱的底面半径是5厘米,高是10厘米,求这个圆柱的体积。
答案:体积约为785.4立方厘米。
9.一个梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个梯形的面积。
答案:面积为32平方厘米。
10.一个数的1/4减去5等于这个数的1/8,求这个数。
答案:这个数是40。
11.一个班级有50名学生,其中2/5是女生,求男生的人数。
答案:男生有30人。
12.一个三角形的两边长分别是9厘米和12厘米,夹角为60度,求这个三角形的面积。
答案:面积约为27.71平方厘米。
13.一个圆锥的底面半径是3厘米,高是4厘米,求这个圆锥的体积。
答案:体积约为37.68立方厘米。
14.一个梯形的上底是5厘米,下底是7厘米,高是3厘米,求这个梯形的面积。
答案:面积为18平方厘米。
15.一个数的3/5加上10等于这个数的2/3,求这个数。
答案:这个数是75。
16.一个班级有60名学生,其中1/3是男生,求女生的人数。
答案:女生有40人。
17.一个三角形的两边长分别是7厘米和5厘米,夹角为30度,求这个三角形的面积。
答案:面积约为5.92平方厘米。
1、如果将点P 绕定点M 旋转180°后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心。
此时,M 是线段PQ 的中点。
如图,在平面直角坐标系中,△ABO 的顶点A ,B ,O 的坐标分别为(1,0),(0,1),(0,0)。
点列P 1,P 2,P 3,…中的相邻两点都关于△ABO 的一个顶点对称:点P 1与点P 2关于点A 对称,点P 2与点P 3关于点B 对称,点P 3与点P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5与点P 6关于点B 对称,点P 6与点P 7关于点O 对称…对称中心分别是A ,B ,O ,A ,B ,O ,…,且这些对称中心依次循环。
已知点P 1的坐标是(1,1),则点P 2017的坐标为 。
解:P 2的坐标是(1,-1),P 2017的坐标是(1,-1)。
理由:作P 1关于A 点的对称点,即可得到P 2(1,-1),P 3(-1,3),P 4(1,-3),P 5(1,3),P 6(-1,-1),又回到原来P 1的坐标,P 7(-1,-1);由此可知,每6个点为一个周期,作一次循环,2017÷6=336…1,循环了336次后又回到了原来P 1的坐标,故P 2017的坐标与P 1的坐标一样为(1,1)。
点评:此题主要考查了平面直角坐标系中中心对称的性质,以及找规律问题,根据已知得出点P 的坐标每6个一循环是解题关键.2、如图①,已知△ABC 是等边三角形,点E 在线段AB 上,点D 在直线BC 上,且DE=EC ,将△BCE 绕点C 顺时针旋转60°至△ACF ,连接EF 。
试证明:AB=DB+AF 。
【类比探究】(1)如图②,如果点E 在线段AB 的延长线上,其它条件不变,线段AB 、DB 、AF 之间又有怎样的数量关系?请说明理由。
(2)如果点E 在线段BA 的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB ,DB ,AF 之间数量关系,不必说明理由。
九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。
九年级下数学相似三角形经典习题例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CDF S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长. 解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆.例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2. 说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FCAB GF =,即2232x x -=. ∴33-=x ,∴3612)33(2-=-=AEGF S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.。
初三数学试题答案及解析1.将直径为60cm的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每个圆锥容器的底面半径为(▲ )A.10cm B.20cm C.30cm D.60cm【答案】A【解析】略2.如图2,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为A.2B.3C.4D.5【答案】 A【解析】略3..如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR分别交AC、CD于点P、Q.则图中相似三角形(相似比为1 除外)有()A 一对B 二对C 三对D 四对【答案】D【解析】略4.甲,乙两个盒子中装有质地、大小相同的小球.甲盒中有2个白球、l个黄球和l个蓝球;乙盘中有l个白球、2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.【1】求乙盒中蓝球的个数;【答案】设乙盒中蓝球的个数有x个有题意得 =解得x="3 " ∴乙盒中蓝球的个数有3个【2】从甲、乙两盒中分别任意摸取一球.求这两球均为蓝球的概率.【答案】画出树状图或列出表格得2分,∴可能的结果有24种,其中两个都是蓝球的有3种,∴从甲、乙两盒中分别任意摸取一球,这两球均为蓝球的概率为5.(11·西宁)(本小题满分10分)已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4.(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使BF=OB,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.【答案】【解析】略6.(2011•常州)计算:=;=;=;=.【答案】,,1,﹣2【解析】略7. .如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为 .【答案】3+【解析】略8.已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+bx+c=0的一个根【答案】D【解析】略9.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日销售利润最大,每件产品的销售价应定为多少元?此时,每日销售的利润是多少元?【答案】略【解析】解:一次函数的解析式为 y=kx+b则解的K="-1 " b=40即:一次函数解析式为y=-x+40(2)设每件产品的销售价应定为x元,所获销售利润为w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225产品的销售价应定为25元,此时每日获得的最大销售利润为225元10.(本题满分6分)在如图5所示的方格纸中,△ABC的顶点都在小正方形的顶点上,以小正方形互相垂直的两边所在直线建立平面直角坐标系(1)作出△ABC关于y轴对称的△A1B1C1,其中A,B,C分别和A1,B1 ,C1对应;(2)平移△ABC,使得A点在x轴上,B点在y轴上,平移后的三角形为△A2B2C2,作出平移后的△A2B2C2,其中A,B,C分别和A2,B2,C2对应;(3)填空:在(2)中,设原△ABC的外心为M1,△A2B2C2的外心为M2,M1与M2之间的距离为__【答案】(1)见下图;(2)见上图;(3)、【解析】略11.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系用图象表示大致为()A.B.C.D.【答案】C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.12.(8分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:②该产品90天内每天的销售价格与时间(第x天)的关系如下表:(1)求m关于x的一次函数表达式;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.【答案】(1)m=﹣2x+200;(2),第40天的销售利润最大,最大利润是7200元;(3)46.【解析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,;当50≤x≤90时,,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:(1)∵m与x成一次函数,∴设,将x=1,m=198,x=3,m=194代入,得:,解得:,所以m关于x的一次函数表达式为;(2)设销售该产品每天利润为y元,y关于x的函数表达式为:,当1≤x<50时,=,∵﹣2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,,∵﹣120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.【考点】1.二次函数的应用;2.最值问题;3.二次函数的最值;4.分段函数;5.综合题;6.压轴题.13.下列运算正确的是()A.(-2a2)3=8a6B.(3a+b)2=9a2+b2C.a2•a3=a5D.a2+a3=a5【答案】C.【解析】A、原式=-8a6,错误;B、原式=9a2+6ab+b2,错误;C、原式=a5,正确;D、原式不能合并,错误,故选C.【考点】1.完全平方公式;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.14. 2的倒数是()A.2B.-2C.D.-【答案】C.【解析】∵2×=1,∴2的倒数是.故选C.【考点】倒数.15.某村的人均收入前年为12 000元,今年的人均收入为14 520元.设这两年该村人均收入的年平均增长率为x,根据题意,所列方程为.【答案】12000(1+x)2=14520【解析】设这两年的平均增长率为x,则由题意可知前年的人均收入×(1+平均增长率)2=今年人均收入,把相关数值代入可得12000(1+x)2=14520.【考点】由实际问题抽象出一元二次方程16.下列运算正确的是().A.B.2a•3b=5ab C.3a2÷a2=3D.【答案】C.【解析】逐项分析,A、,本选项错误;B、2a•3b=6ab,本选项错误;C、3a2÷a2=3,本选项正确;D、,本选项错误.故选:C.【考点】整式的除法;算术平方根;单项式乘单项式;负整数指数幂.17.解方程:(1)3x2﹣10x+6=0(2)5x(x﹣1)=2﹣2x.【答案】(1)x=或x=;(2)x=1或x=﹣.【解析】(1)直接利用求根公式计算结果即可;(2)移项后提取公因式即可得到结果.试题解析:(1)3x2﹣10x+6=0∵a="3" b=﹣10 c=6∴b2﹣4ac=(﹣10)2﹣4×3×6=100﹣72=28>0,∴x=∴x=或x=(2)5x(x﹣1)=2﹣2x移项得:5x(x﹣1)+2x﹣2=0整理得5x(x﹣1)+2(x﹣1)=0提取公因式得:(x﹣1)(5x+2)=0解得:x=1或x=﹣.【考点】1.解一元二次方程-因式分解法;2.解一元二次方程-公式法.18.已知实数a,b分别满足,,且a≠b则的值是()A.7B.-7C.11D.-11【答案】A.【解析】已知实数a,b分别满足,,可得a、b为方程得两个根,根据一元二次方程根与系数的关系可得a+b=6,ab=4,所以,故答案选A.【考点】一元二次方程根与系数的关系.19.下列几何体各自的三视图中,只有两个视图相同的是()A.①③B.②③C.③④D.②④【答案】D.【解析】试题解析:①正方形的主、左和俯视图都是正方形;②圆锥的主、左视图是三角形,俯视图是圆;③球体的主、左和俯视图都是圆形;④圆柱的主、左视图是长方形,俯视图是圆;只有两个视图相同的几何体是圆锥和圆柱.故选D.【考点】简单几何体的三视图.20.已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3【答案】B.【解析】关于x的一元二次方程x2-3x+m=0的两实数根就是二次函数y=x2-3x+m(m为常数)的图象与x轴的两个交点的横坐标.∵二次函数的解析式是y=x2-3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2-3x+m=0的两实数根分别是:x1=1,x2=2.故选B.【考点】抛物线与x轴的交点.21.若,则=()A.B.C.D.【答案】A【解析】本题考查了比例的性质.已知=,可得a=b再代入解答即可.∵=,∴a=b,∴=.故选A.【考点】比例的性质.22.(2014•巴中)在Rt△ABC中,∠C=90°,sinA=,则tanB的值为()A.B.C.D.【答案】D【解析】根据题意作出直角△ABC,然后根据sinA=,设一条直角边BC为5x,斜边AB为13x,根据勾股定理求出另一条直角边AC的长度,然后根据三角函数的定义可求出tan∠B.解:∵sinA=,∴设BC=5x,AB=13x,则AC==12x,故tan∠B==.故选:D.【考点】互余两角三角函数的关系.23.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于400件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)见解析;(2)玩具销售单价为50元或80元时,可获得10000元销售利润.(3)商场销售该品牌玩具获得的最大利润为12000元.【解析】(1)利用已知结合销售单价每涨2元,就会少售出20件玩具,表示出涨价后的销量即可,进而得出w与x的函数关系;(2)利用(1)中所求,得出关于x的等式方程求出即可;(3)利用“玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于400件的销售任务”进而得出不等式组求出x的取值范围,再利用二次函数性质求出最值即可即可.解:(1)由题意可得:y=600﹣×20=1000﹣10x,w=y(x﹣30)=﹣10x2+1300x﹣30000,(2)根据题意得出:﹣10x2+1300x﹣30000=10000,解得:x1=50,x2=80,答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得:解得:44≤x≤60,w=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,∵a=﹣10<0,对称轴是直线x=65,∴当44≤x≤60时,w随x增大而增大.∴当x=60时,w最大值=12000(元).答:商场销售该品牌玩具获得的最大利润为12000元.【考点】二次函数的应用;一元二次方程的应用.24.工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600℃.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是32℃.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480℃时,须停止操作.那么锻造的操作时间有多长?【答案】(1)材料加热时,与的函数关系式为,停止加热进行锻造时与的函数关系式为:;(2)锻造的操作时间有4分钟.【解析】(1)根据题意,材料煅烧时,温度与时间成一次函数关系,煅烧结束时,温度与时间成反比例函数关系,将题中数据代入,用待定系数法可得两个函数的关系式;(2)把代入中,求解得出答案即可.试题解析:(1)停止加热时,设,由题意得,解得,当时,解得,点B的坐标为(6,800);材料加热时,设,由题意得,解得.材料加热时,与的函数关系式为,停止加热进行锻造时与的函数关系式为:.(2)把代入中,得分钟.故锻造的操作时间为4分钟.【考点】反比例函数的应用.25.一船在A处测得北偏东45°方向有一灯塔B,船向正东方向以每小时20海里的速度航行1.5小时到达C处时,又观测到灯塔B在北偏东15°方向上,求此时航船与灯塔相距多少海里?【答案】30海里.【解析】过C作CD⊥AB,垂足为D,在直角△ACD中,根据三角函数求得CD的长,再在直角△BCD中运用三角函数即可求解.解:过C作CD⊥AB,垂足为D,过C作CE⊥AC,交AB于E.Rt△ACD中,∠DAC=45°,AC=20×1.5=30∴CD=ACsin45°=30×=15(6分)Rt△BCD中,∠BCD=∠BCE+∠ECD=45°+15°=60°∴BC==30(海里)(11分)答:此时航船与灯塔相距30海里.(12分)【考点】解直角三角形的应用-方向角问题.26.某信息兴趣小组利用电脑成功设计了一个运算程序,这个程序可用如图所示的框图表示.小明同学任取一个自然数x输入求值.(1)试写出与输出的数有关的一个必然事件;(2)若输入的数是2至9这八个连续正整数中的一个,求输出的数是3的倍数的概率.【答案】(1)输出的数是整数是一个必然事件;(2).【解析】(1)首先由题意可得图示的计算过程为:y==x(x﹣1),即可得输出的数是整数是一个必然事件;(2)由当输入的数是2至9这八个连续正整数中的一个时,可能的结果有:1,3,6,10,15,21,28,36,直接利用概率公式求解即可求得答案.解:(1)∵图示的计算过程为:y==x(x﹣1),∵x为自然数,∴x(x﹣1)是整数,∴输出的数是整数是一个必然事件;(2)∵当输入的数是2至9这八个连续正整数中的一个时,可能的结果有:1,3,6,10,15,21,28,36,∴输出的数是3的倍数的概率为:.【考点】概率公式;随机事件.27.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=2,∠BCD=30°,则⊙O的半径为.【答案】【解析】连接OB,根据垂径定理求出BE,由圆周角定理求出∠BOE=60°,解直角三角形求出OB即可.解:连接OB,如图所示:∵∠BCD=30°,∴∠BOE=2∠BCD=60°,∵直径CD⊥弦AB,AB=2,∴BE=AB=1,∠OEB=90°,∴OB===,即⊙O的半径为.故答案为:.【考点】垂径定理;勾股定理.28.如图,在平面直角坐标系xOy中,直线AB经过点A(-4,0)、B(0,4),⊙O的半径为1(O为坐标原点),点P在直线AB 上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为().A.B.C.2D.3【答案】B.【解析】如图,过点O作OP1⊥AB,过点P1作⊙O的切线交⊙O于点Q1,连接OQ,OQ1.当PQ⊥AB时,易得四边形P1 PQO是矩形,即PQ=P1O.∵P1Q1是⊙O的切线,∴∠OQ1P1 =90 0 .∴在Rt△OP1Q1中,P1Q1<P1O,∴P1Q1即是切线长PQ的最小值.∵A(-4,0),B(0,4),∴OA=OB=4.∴△OAB是等腰直角三角形. ∴△AOP1是等腰直角三角形.根据勾股定理,得OP1 =2 .∵⊙O的半径为1,∴OQ1=1.根据勾股定理,得P1Q1=.故选B.【考点】1.等腰直角三角形与圆的综合知识;2.求最短距离问题.29.抛物线y=x2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为A. y =x2+ 2x + 1B.y =x2 + 2x - 2C. y =x2 - 2x - 1D. y =x2 - 2x + 1【答案】A【解析】根据抛物线的平移规律:左加右减,上加下减,可知:抛物线y=x2的图象向左平移2个单位,在向下平移1个单位,得到的函数表达式为y=(x+2)2-1=" y" =x2+ 2x + 1,故选:A.【考点】抛物线的平移30.如图,直线l∥m,将含有45°角的三角板ABC的直角顶点C放在直线m上,若∠2=25°,则∠1的度数为()A.20°B.25°C.30°D.35°【答案】A.【解析】试题解析:如图:∵∠2=25°,∴∠3=∠2=25°.∵∠A=45°,∴∠4=180°-45°-25°=110°.∵直线l∥m,∴∠ACD=110°,∴∠1=110°-90°=20°.故选A.【考点】平行线的性质.31.计算:()﹣2﹣|﹣1|﹣()0+2cos60°.【答案】3【解析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.试题解析:()﹣2﹣|﹣1|﹣()0+2cos60°=4﹣1﹣1+1=3.【考点】实数的运算32.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40°B.45°C.50°D.60°【答案】A.【解析】∵∠A=50°,OA=OB,∴∠OBA=∠OAB=50°,∴∠AOB=180°﹣50°﹣50°=80°,∵点C是的中点,OC过O,∴OA=OB,∴∠BOC=∠AOB=40°,故选A.【考点】圆心角、弧、弦的关系.33.图中∠1、∠2、∠3均是平行线a、b被直线c所截得到的角,其中相等的两个角有几对()A.1B.2C.3D.4【答案】C.【解析】∵a∥b,∴∠1=∠3,2=∠3,∵∠1=∠2,∴相等的两个角有3对,故选C.【考点】平行线的性质;对顶角、邻补角.34.如图,AB、CD分别表示甲、乙两建筑物的高,从A点测得D点的仰角为30°,从B点测得D点的仰角为60°,已知两楼之间的距离为27米.求甲、乙两建筑物的高AB、CD.(结果精确到个位)(参考数据:≈1.4,≈1.7)【答案】甲、乙两建筑物的高AB、CD分别为31米和46米.【解析】先作AE⊥CD于点E,得出AE=BC-27,AB=CE,根据tan∠DBC=,求出CD的长,再根据tan∠DAE=,求出DE的长,最后根据CE=CD-DE,即可得出答案.试题解析:作AE⊥CD于点E,则四边形ABCE为矩形,则AE=BC-27,AB=CE,在Rt△BCD中,∵tan∠DBC=,∴CD=×27=27≈46(米),在Rt△AED中,∵tan∠DAE=,∴DE=×27=9,∴CE=CD-DE=27-9=18,∴AB=CE=18≈31(米);答:甲、乙两建筑物的高AB、CD分别为31米和46米.【考点】解直角三角形的应用-仰角俯角问题.35.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段PD B.线段PC C.线段PE D.线段DE【答案】C.【解析】试题解析:设边长AC=a,则0<x<a,根据题意和等边三角形的性质可知,当x=a时,线段PE有最小值;当x=a时,线段PC有最小值;当x=a时,线段PD有最小值;线段DE的长为定值.故选C.【考点】动点问题的函数图象.36.为增强学生的身体素质,某校规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对该校九年级部分学生参加户外活动的时间进行调查,并将调查结果绘制作成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题:(1)这次调查的学生共人,表示户外活动时间为1小时的扇形圆心角度数是度;(2)请补全条形统计图;(3)若该校九年级有学生800人,请估计该校九年级学生参加户外活动的时间不少于1小时的有多少人?【答案】(1)50,144;(2)见解析(3)640人【解析】(1)用0.5小时的人数除以其所占百分比可得调查的总人数,再用户外活动时间为1小时的人数占总人数的比例乘以360°;(2)用总人数乘以1.5小时所占百分比;(3)用九年级总人数乘以户外活动的时间不少于1小时的百分比即可.解:(1)调查的总人数是:10÷20%=50(人),表示户外活动时间为1小时的扇形圆心角度数是×360°=144°,故答案为:50,144;(2)户外活动时间为1.5小时的人数为50×24%=12(人),补全条形图如下:(3)800×(1﹣20%)=640(人),答:估计该校九年级学生参加户外活动的时间不少于1小时的有640人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.37.关于直线l:y=kx+k(k≠0),下列说法不正确的是()A.点(0,k)在l上B.l经过定点(﹣1,0)C.当k>0时,y随x的增大而增大D.l经过第一、二、三象限【答案】D【解析】A、当x=0时,y=k,即点(0,k)在l上,故此选项正确;B、当x=﹣1时,y=﹣k+k=0,此选项正确;C、当k>0时,y随x的增大而增大,此选项正确;D、不能确定l经过第一、二、三象限,此选项错误.【考点】一次函数的性质38.校生物小组有一块长32m,宽20m的矩形实验田,为了管理方便,准备沿平行于两边的方向纵、横个开辟一条等宽的小道,要使种植面积为540m2,小道的宽应是多少米?【答案】2m【解析】首先设道路的宽为xm,然后根据种植面积列出方程,从而求出x的值.试题解析:设道路的宽为xm,依题意有(32-x)(20-x)=540,整理,得-52x+100=0,∴(x-50)(x-2)=0,∴=2,=50(不合题意,舍去),答:小道的宽应是2m.【考点】一元二次方程的应用39.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°【答案】D【解析】如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.故选:D.【考点】平行线的性质;三角形内角和定理.40.甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?【答案】(1)P(两个球上的数字之和为6)=;(2)不公平,理由见解析.【解析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.试题解析:(1)解法一:树状图(3分)∴P(两个球上的数字之和为6)=.(2分)解法二:列表234∴P(两个球上的数字之和为6)=.(2)不公平.=,P(小刚胜)=.≠P(小刚胜).∴这个游戏不公平.(2分)【考点】游戏公平性的判断;概率,.41.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定【答案】C【解析】因为R不动,所以AR不变.根据中位线定理,EF不变.连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.【考点】三角形中位线定理.42. .二次函数y=a+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0B.-4ac<0C.当-1<x<3时,y>0D.-=1【答案】D【解析】图象的开口向上,则a>0;图象与x轴有两个交点,则-4ac>0;根据图象可得当-1<x<3时,y<0;根据图象可得函数的对称轴为直线x=1,即-=1.【考点】二次函数的性质.43.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D.【解析】A、是轴对称图形,不是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.【考点】中心对称图形;轴对称图形.44.正三角形的高、外接圆半径、边心距之比为()A.3:2:1B.4:3:2C.4:2:1D.6:4:3【答案】A.【解析】如图,△ABC是等边三角形,AD是高.点O是其外接圆的圆心,由等边三角形的三线合一得点O在AD上,并且点O还是它的内切圆的圆心.∵AD⊥BC,∠1=∠4=30°,∴BO=2OD,而OA=OB,∴AD=3OD,∴AD:OA:OD=3:2:1,故选A.【考点】正多边形和圆.45.因式分解:a2﹣3a= .【答案】a(a﹣3)【解析】直接把公因式a提出来即可.【解答】解:a2﹣3a=a(a﹣3).故答案为:a(a﹣3).【考点】因式分解-提公因式法.46.先化简,再求值:,其中x=3,y=4.【答案】【解析】利用平方差公式和完全平方公式展开,再合并.试题解析:=2x﹣y﹣(2x﹣2+y)=2x﹣y﹣2x+2﹣y=2﹣2y当x=3,y=4时,原式==.【考点】二次根式的化简求值47.若反比例函数在第一,三象限,则k的取值范围是.【答案】k>1.【解析】根据题意,得k﹣1>0,解得k>1.故答案为:k>1.【考点】反比例函数的性质.48.已知抛物线y=x2﹣4x+3,如果点P(0,5)与点Q关于该抛物线的对称轴对称,那么点Q的坐标是.【答案】(4,5).【解析】∵y=x2﹣4x+3的对称轴为x=2,∴点P(0,5)关于该抛物线的对称轴对称点Q的坐标为(4,5),故答案为:(4,5).【考点】二次函数图象与几何变换.49.如图,是一个用若干个相同的小立方块搭成的几何体的三视图,则组成这个几何体的小立方块的个数是()A.2B.3C.4D.5【答案】C【解析】试题解析:由俯视图易得最底层有3个立方体,第二层有1个立方体,那么搭成这个几何体所用的小立方体个数是4.故选C.【点睛】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.50.下列运算正确的是()A.2a3•a4=2a7B.a3+a4=a7C.(2a4)3=8a7D.a3÷a4=a【答案】A【解析】选项A,2a3•a4=2a7,本选项正确;选项B,a3和a4不是同类项不能合并,本选项错误;选项C,(2a4)3=8a12,本选项错误;选项D,a3÷a4=a-1,本选项错误;故选A.点睛:本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.51.下列四个数中,其相反数是正整数的是()A.3B.C.D.【答案】B【解析】相反数是正整数的数本身必须是负整数,符合条件的只有选项B,故选B.52.某学校为了解本校2400名学生对某次足球赛的关注程度,以利于做好教育和引导工作,随机抽取了本校内的六、七、八、九四个年级部分学生进行调查,按“各年级被抽取人数”与“关注程度”,分别绘制了条形统计图(图①)、扇形统计图(图②)和折线统计图(图③).(1)本次共随机抽查了________名学生,根据信息补全图①中条形统计图,图②中八年级所对应扇形的圆心角的度数为________;(2)如果把“特别关注”“一般关注”“偶尔关注”都看成关注,那么全校关注足球赛的学生大约有多少名?(3)①根据上面的统计结果,谈谈你对该校学生对足球关注的现状的看法及建议;②如果要了解中小学生对校园足球的关注情况,你认为应该如何进行抽样?【答案】(1)200;补全如图;144°;(2)1320人;(3)答案见解析.【解析】(1)200;补全如图;144°(每空1分)(2)根据题意得:关注的学生所占的百分比为×100%=55%,所以全校关注足球赛的学生大约有2400×55%=1320(人).(3)①根据以上结果可得出:只有55%的学生关注足球赛,有45%的学生不关注,可以看出仍有部分学生忽略了对足球赛的关注,希望学校做好教育与引导工作,加大对足球进校园的宣传力度,让校园足球得到更多的关注和支持,推动校园足球的发展.②考虑到样本具有的随机性、代表性、广泛性,如果要了解中小学生对校园足球的关注的情况,抽样时应针对不同的年级、不同性别、不同年龄段的学生进行随机抽样.53.在矩形ABCD中,AB=6,BC=8,AC,BD相交于O,P是边BC上一点,AP与BD交于点M,DP与AC交于点N.①若点P为BC的中点,则AM:PM=2:1;②若点P为BC的中点,则四边形OMPN的面积是8;③若点P为BC的中点,则图中阴影部分的总面积为28;④若点P在BC的运动,则图中阴影部分的总面积不变.其中正确的是_____________.(填序号即可)【答案】①③【解析】当点P为BC的中点时,连接OP,过点M作HF∥BP交AB于点H,交OP于点F,根据矩形的性质可得:OP=AB=3,根据题意可知:△OMP∽BMA,则,则①正确;根据△AMH和△APB相似可得HM=,则MF=,则△OMP的面积为3×÷2=2,即四边形OMPN的面积为4,则②错误;根据矩形的性质可知:△AOD的面积为12,△ABM的面积为8,则阴影部分的面积为:12+8×2=28,即③正确;当点P在BC上运动时,阴影部分的面积随着P的运动而改变.点睛:本题主要考查的就是矩形的性质、三角形相似的应用以及三角形面积的计算,属于中等题目.解决本题的关键就是通过矩形的性质构造三角形相似,然后根据三角形相似得出线段的长度,最后根据三角形的面积计算法则求出三角形的面积.在动点问题的时候,我们可以选择几个特殊点来求出面积,从而得出面积是否发生改变.54.某初中为了提高学生综合素质,决定开设以下校本课程:A软笔书法;B经典诵读;C钢笔画;D花样跳绳;为了了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行了调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有多少人?(2)请将条形统计图(2)补充完整;(3)在平时的花样跳绳的课堂学习中,甲、乙、丙三人表现优秀,现决定从这三名同学中任选两名参加全区综合素质展示,求恰好同时选中甲、乙两位同学的概率(用树状图法或表格法解答)。
初三数学测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. 0.33333...答案:B2. 一个数的相反数是它自己的数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个方程是一元二次方程?A. 2x + 3 = 0B. x^2 - 4x + 4 = 0C. 3x - 2y = 5D. x^3 - 2x^2 + x - 2 = 0答案:B4. 一个等腰三角形的两边长分别为3和5,那么它的周长是:A. 11B. 13C. 16D. 无法确定答案:B5. 函数y = 2x + 3的图象经过第几象限?A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限答案:A6. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 以下哪个是正比例函数?A. y = 2xB. y = 2x + 3C. y = 2/xD. y = x^2答案:A8. 一个圆的半径是2,那么它的面积是:A. 4πB. 8πC. 16πD. 32π答案:B9. 以下哪个是锐角三角形?A. 一个角为90°的三角形B. 一个角为120°的三角形C. 三个角都小于90°的三角形D. 三个角都大于90°的三角形答案:C10. 以下哪个是相似三角形?A. 两个三角形的对应角相等B. 两个三角形的对应边成比例C. 两个三角形的对应边成比例且对应角相等D. 两个三角形的面积相等答案:C二、填空题(每题3分,共30分)11. 一个数的平方根是2,那么这个数是_________。
答案:412. 一个三角形的内角和是_________度。
答案:18013. 一个数的立方是-8,那么这个数是_________。
答案:-214. 一个等腰三角形的底角是45°,那么顶角是_________度。
1.矩形纸片ABCD中,AB=5,AD=4.(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出的一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).2.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为 2 ,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N 的“相关矩形”为正方形,求m的取值范围.3.问题背景:如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD 之间的数量关系.小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C 分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= 2 CD,从而得出结论:AC+BC= 2 C D.简单应用:(1)在图①中,若AC= 2 ,BC=2 2 ,则CD=___________.(2)如图③,AB是⊙O的直径,点C、D在⊙上,⌒AD=⌒BD,若AB=13,BC=12,求CD的长.拓展规律:(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=13AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是_______________________.4.爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AM⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC =b,AB=c.【特例探究】(1)如图1,当tan∠P AB=1,c=4 2 时,a=_________,b=_________;如图2,当∠P AB=30°,c=2时,a=_________,b=_________;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,□ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3 5 ,AB=3,求AF的长.1.如图,抛物线y=x2-2x-3交x轴于A(-1,0)、B(3,0),交y轴于C(0,-3),M是抛物线的顶点,现将抛物线沿平行于y轴的方向向上平移三个单位,则曲线CMB在平移过程中扫过的面积为___________(面积单位).2.如图,点A为函数y=9x(x>0)图象上一点,连结OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为_____________.3.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_____________.4.已知抛物线y=ax2-4ax+c经过点A(0,2),顶点B的纵坐标为3.将直线AB向下平移,与x轴、y轴分别交于点C、D,与抛物线的一个交点为P,若D是线段CP的中点,则点P的坐标为_________________.5.在平面直角坐标系中,点O 为坐标原点,A 、B 、C 三点的坐标为( 3 ,0)、(3 3 ,0)、(0,5),点D 在第一象限,且∠ADB =60°,则线段CD 的长的最小值为____________.6.若直线y =m (m 为常数)与函数y = ⎩⎨⎧x 22(x ≤2)4x (x >2) 的图象恒有三个不同的交点,则常数m 的取值范围是_____________.7.如图,在正方形ABCD 外侧作直线DE ,点C 关于直线DE 的对称点为M ,连接CM ,AM .其中AM 交直线DE 于点N .若45°<∠CDE <90°,则当MN =4,AN =3时,正方形ABCD 的边长为_____________.8.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴.直线y =-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2所示,那么AD 的长为 ______________.9.如图,已知A 、C 是半径为2的⊙O 上的两动点,以AC 为直角边在⊙O 内作等腰Rt △ABC ,∠C =90°,连接OB ,则OB 的最小值为__________.10.如图,在Rt △ABC 中,∠B =60°,BC =3,D 为BC 边上的三等分点,BD =2CD ,E 为AB 边上一动点,将△DBE 沿DE 折叠到△DB ′E 的位置,连接AB ′,则线段AB ′的最小值为:_________.11.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是_________.12.如图,矩形ABCD 中,点E ,F ,G ,H 分别在边AB ,BC ,CD ,DA 上,点P 在矩形ABCD 内.若AB =4cm ,BC =6cm ,AE =CG =3cm ,BF =DH =4cm ,四边形AEPH 的面积为5cm 2,则四边形PFCG 的面积为___________________.OCBA14.在面积为15的平行四边形ABCD 中,过点A 作AE 垂直于直线BC 于点E ,作AF 垂直于直线CD 于点F ,若AB =5,BC =6,则CE +CF 的值为_____________.15.已知:直线y =- n n +1x + 2n +1 (n 为整数)与两坐标轴围成的三角形面积为s n ,则s 1+s 2+s 3+…s n =___________________.16.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD ,则AP 的长为___________.18.如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1 、S2、S 3 、…、S n ,则S n 的值为________.(用含n 的代数式表示,n 为正整数)AB CD19.如图,E 是正方形ABCD 内一点,E 到点A 、D 、B 的距离EA 、ED 、EB 分别为1、3 2 、2 5 ,延长AE 交CD 于点F ,则四边形BCFE 的面积为________________.20.如图,矩形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(7,3),点E 在边AB 上,且AE =1,已知点P 为y 轴上一动点,连接EP ,过点O 作直线EP 的垂线段,垂足为点H ,在点P 从点F (0,254)运动到原点O 的过程中,点H 的运动路径长为____________.21.如图,在等腰直角三角形ABC 中,∠ABC =90°,AB =BC =2,P 是△ABC 所在平面内一点,且满足P A ⊥PB ,则PC 的取值范围为 .22.已知一次函数y =-43x +4与x 轴、y 轴分别交于点A 、B ,现有点M (m ,-m ),N (m +3,-m -4)则当四边形MNAB 周长最小时,m =____________.23.如图,四边形ABCD 的顶点都在坐标轴上,若AD ∥BC ,△ACD 与△BCD 的面积分别为10和20,若双曲线y =k x恰好经过边AB 的四等分点E (BE <AE ),则k 的值为____________.1.(1)16 设AM=x,则MD=4-x,得S=2(x-2)2+8,故当x=0或4时面积最大。