KNO3溶解热的测定
- 格式:doc
- 大小:86.00 KB
- 文档页数:3
硝酸钾溶解热的测定贾毅(湖南理工学院化学化工学院制药09-1BF湖南省岳阳市413000)【摘要】本实验采用绝热式测温量热计测定KNO3在溶解过程中所引起的热力学温度变化来测定其溶解热。
【关键词】溶解热溶解吸热硝酸钾温度变化热效应【前言】溶解热指的是在一定温度以及压力下,一摩尔的溶质溶解在大体积的溶剂时所发出或吸收的热量。
盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。
溶解热是这两种热效应的总和。
本实验为KNO3在定压、不做非体积功的近似绝热体系中进行,体系的总的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。
【实验部分】1、实验原理1.1 本实验测定KNO3溶解在水中的积分溶解热。
本实验采用绝热是测温量热计,它是一个包括量热器、搅拌器、电加热器和温度计等的量热系统,采用的量热计时为一杜瓦瓶,并加以盖以减少辐射、传导、对流、蒸发等热交换。
亦为本实验所用装置。
电加热器为镍铬丝加热丝,装有盛有油介质的硬质玻璃管中。
为使得均匀有效的搅拌,采用电磁搅拌。
用数学温度计测量温度的变化。
1.2 本实验测定KNO3在水中的溶解是一个吸热过程,可用电热补偿法,即先测定体系的起始温度T,溶解过程中体系温度随吸热反应进行而降低,再用电热补偿法使体系温度升高的过程。
根据所消耗的电能求出热效应Q。
1.3 相关公式: Q = I2Rt = UIt式中:Q为热效应(J)I为通过电阻R的电流强度(A);U为所加电压值(V);T为通电时间(s).2、实验仪器与试剂2.1实验仪器杜瓦瓶数字温度计2.2实验试剂硝酸钾(AR)水3、实验步骤3.1 开启数字温度温差仪预热15min;3.2 将所称取的一定量的硝酸钾固体放在杜瓦瓶的加料管中;3.3 用量筒量取500ml蒸馏水装入杜瓦瓶中,接好数字温度显示仪,放入磁石,并启动磁力搅拌器,保持60-90转/分钟的搅拌速度,加热使温度上升0.5℃,停止加热;3.4 待温度基本稳定后,开始记录温度,调节时间为每分钟一次,共计量8次温度;3.5 打开杜瓦瓶盖,将一定量的硝酸钾固体迅速加入量热计中,盖上盖,继续搅拌,改变时间为每半分钟一次,继续记录温度。
物化实验报告溶解热的测定_KCl、KNO3实验报告:溶解热的测定——KCl、KNO3一、实验目的1.学习和掌握溶解热测定的原理和方法。
2.通过实验测定KCl和KNO3在水中溶解的热效应。
3.比较相同浓度下KCl和KNO3的溶解热效应差异。
二、实验原理溶解热是指物质在溶解过程中所伴随的热量变化。
当物质溶解时,其分子或离子会从固态或晶体状态分散到溶剂中,这一过程通常会吸收或释放热量。
溶解热的测定有助于了解物质溶解过程中的热力学性质。
溶解热的测定通常采用量热计进行。
量热计可以准确地测量溶液温度的变化,并以此来计算溶解热。
根据Arrhenius公式,溶解热与温度有关,因此,通过测量不同温度下的溶解热,可以评估温度对物质溶解热效应的影响。
三、实验步骤1.准备实验器材:500ml烧杯、电子天平、量筒、水浴锅、保温杯、恒温水浴、热量计等。
2.配制KCl和KNO3的饱和溶液:分别称取适量KCl和KNO3固体,加入烧杯中,再加入适量去离子水,搅拌至固体完全溶解,得到饱和溶液。
3.测量溶解热:将保温杯中的去离子水倒入量热计中,插入电子天平,记录初始温度T1。
分别将KCl和KNO3的饱和溶液倒入量热计中,记录溶解后的温度T2。
根据温度差和水的质量,计算溶解热。
4.重复测量:为了确保实验结果的准确性,可以重复以上步骤几次,每次测量不同的浓度。
5.数据处理和分析:整理实验数据,根据溶解热的计算公式,比较相同浓度下KCl和KNO3的溶解热效应差异。
四、实验结果与讨论1.实验数据:以下是实验测定的KCl和KNO3在水中溶解的热效应数据。
2.结果分析:从上表可以看出,相同浓度下,KCl的溶解热效应比KNO3高。
随着浓度的增加,两种物质的溶解热效应都逐渐增大。
这表明在溶解过程中,KCl分子或离子从固体分散到水中的吸热过程比KNO3更为显著。
此外,KCl和KNO3的溶解热效应与Arrhenius公式中的常数相关联,这意味着溶解热的温度依赖性较强。
实验十七 积分溶解热的测定实验目的用量热法测定KNO 的积分溶解热,掌握量热法的基本测量方法。
3实验原理物质溶解时常伴随有热效应发生,此热效应称为该物质的溶解热。
物质的溶解通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。
其中,晶格的破坏常为吸热过程,溶剂化常为放热过程。
溶解热即为这两个过程的热量的总和,而最终是吸热或放热由这两个热量的相对大小所决定。
温度、压力以及溶质和溶剂的性质、用量,是影响溶解热的显著因素。
根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热。
变浓溶解热又称积分溶解热,为等温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸收或放出的热量。
定浓溶解热又称微分溶解热,为等温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。
两者的单位都是J·mol -1。
但在溶解过程中,前者的溶液浓度持续变化,而后者只有微小的变化或视为不变。
积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得。
方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质物质的量为横坐标绘成曲线,曲线上任一点的斜率即为该浓度时的微分溶解热。
量热法测定积分溶解热,通常在被认为是绝热的量热计中进行。
首先标定该量热体系的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系温度的变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
1. 量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔT 标,则量热系统的热容为:标标标标T M H W C Δ⋅Δ⋅=(17-1)式中:W 标、M 标分别为标准物质的质量(克)和摩尔质量;ΔH 标为标准物质在某溶液温度及浓度下的积分溶解热,此值可从手册上查得;C 为量热系统包括量热计装置和溶液的总热容。
2. 积分溶解热的测定将(17-1)式用于待测物质即得:WTCM H Δ=Δ溶解 (17-2)式中:W 、M 分别为待测物质的质量(克)和摩尔质量;ΔT 为待测物质溶解前后量热系统的温度变化值;C 为已标定的量热系统的热容,这里假设了各种水溶液的热容都相同。
KNO 3溶解热的测定一、实验目的1.用电热补偿法测定KNO 3在不同浓度水溶液中的积分溶解热。
2.用作图法求KNO 3在水中的微分冲淡热、积分冲淡热和微分溶解热。
二、预习要求1.复习溶解过程热效应的几个基本概念。
2.掌握电热补偿法测定热效应的基本原理。
3.了解如何从实验所得数据求KNO 3的积分溶解热及其它三种热效应。
4.了解影响本实验结果的因素有那些。
三、实验原理1.在热化学中,关于溶解过程的热效应,引进下列几个基本概念。
溶解热: 在恒温恒压下,n 2摩尔溶质溶于n 1摩尔溶剂(或溶于某浓度的溶液)中产生的热效应,用Q 表示,溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。
积分溶解热:在恒温恒压下,一摩尔溶质溶于n 0摩尔溶剂中产生的热效应,用s Q 表示。
微分溶解热:在恒温恒压下,一摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以1,,2n p t n Q ⎪⎪⎭⎫⎝⎛∂∂表示,简写为12n n Q ⎪⎪⎭⎫⎝⎛∂∂。
冲淡热:在恒温恒压下,一摩尔溶剂加到某浓度的溶液中使之冲淡所产生的热效应。
冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
积分冲淡热:在恒温恒压下,把原含一摩尔溶质及n 01摩尔溶剂的溶液冲淡到含溶剂为n 02时的热效应,亦即为某两浓度溶液的积分溶解热之差,以d Q 表示。
微分冲淡热:在恒温恒压下,一摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应,以2,,1n p t n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示,简写为21n n Q ⎪⎪⎭⎫ ⎝⎛∂∂。
2.积分溶解热(s Q )可由实验直接测定,其它三种热效应则通过s Q —n 0曲线求得。
设纯溶剂和纯溶质的摩尔焓分别为)1(m H 和)2(m H ,当溶质溶解于溶剂变成溶液后,在溶液中溶剂和溶质的偏摩尔焓分别为m H ,1和m H ,2,对于由1n 摩尔溶剂和2n 摩尔溶质组成的体系,在溶解前体系总焓为H 。
华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目 实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。
2. 复习和掌握常用的量热技术与温度测定与校正方法。
3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH1为KCl(s)、H2O(l)及量热计从T1等压变温至T2过程的焓变,ΔH2则为在T2温度下,物质的量为n1 mol的KCl(s)溶于n2 mol H2O(l)中,形成终态溶液的焓变。
因为ΔH=ΔH1 +ΔH2=0ΔH2 =-ΔH1所以ΔH1=[ n1 C p,m(KCl,s)+ n2C p,m(H2O,l)+K]×(T2-T1)ΔH2=n1Δsol H mK=-[n1 C p,m(KCl,s)+ n2C p,m(H2O,l)]+ n1Δsol H m/( T2-T1)=-[m1 C p (KCl,s)+ m2 C p (H2O,l)]+ m1Δsol H m/M1ΔT (1)式中,m1、m2分别为溶解过程加入的KCl(s)和H2O(l)的质量;C p,m为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg·K),C p (H2O,l)=4.184 kJ/(kg·K);M1为KCl的摩尔质量;ΔT= T2-T1,即为溶解前后系统温度的差值;Δsol H m为1mol KCl溶解于200mL H2O的积分溶解热,其不同温度下的积分溶解热值见附录。
实验七: 溶解热的测定一、实验目的1.掌握电热补偿法测定热效应的基本原理;2、通过用电热补偿法测定KNO3在水中的积分溶解热, 并用作图法求KNO3在水中的微分冲淡热、积分冲淡热和微分溶解热;3.掌握电热补偿法的仪器使用。
二、实验原理1.溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 溶解热可分为积分(或称变浓)溶解热和微分(或称定浓)溶解热。
积分溶解热在恒温恒压下, 1摩尔溶质溶于n0摩尔溶剂中产生的热效应, 用Qs表示,(浓度改变)。
微分溶解热在恒温恒压下, 1摩尔溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以表示。
冲淡热把溶剂加到溶液中使之稀释所产生的热效应。
冲淡热也可分为积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
积分稀释热在恒温恒压下, 把原含1摩尔溶质及n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应, 即为某两浓度溶液的积分溶解热之差, 以Qd表示。
微分稀释热在恒温恒压下, 1摩尔溶剂加入某一确定浓度的无限量的溶液中产生的热效应, 以表示。
2.积分溶解热(QS)可由实验直接测定, 其它三种热效应由QS—n0曲线求得。
设纯溶剂、纯溶质的摩尔焓分别为和 , 溶液中溶剂和溶质的偏摩尔焓分别为和, 对于n1摩尔溶剂和n2摩尔溶质所组成的体系而言, 在溶剂和溶质未混合前(4.1)当混合成溶液后(4.2)因此溶解过程的热效应为(4.3)式中△H1为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差。
即为微分溶解热。
根据积分溶解热的定义:(4.4)所以在Qs~n01图上, 不同Qs点的切线斜率为对应于该浓度溶液的微分冲淡热,即, 该切线在纵坐标的截距OC,即为相应于该浓度溶液的微分溶解热.而在含有1摩尔溶质的溶液中加入溶剂使溶剂量由n02摩尔增至n01摩尔过程的积分冲淡热Q d=(Q s)n01一(Q s)n02= BG—EG。
图一Q s~n0图图 2 量热器及其电路图、本实验是采用绝热式测温量热计, 它是一个包括量热器、搅拌器、电加热器和温度计等的量热系统, 装置及电路图如图2所示, 因本实验测定KNO3在水中的溶解热是一个吸热过程, 可用电热补偿法, 即先测定体系的起始温度T, 溶解过程中体系温度随吸热反应进行而降低, 再用电加热法使体系升温至起始温度, 根据所消耗电能求出热效应Q。
华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。
2. 复习和掌握常用的量热技术与温度测定与校正方法。
3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH 1为KCl(s)、H 2O(l)及量热计从T 1等压变温至T 2过程的焓变,ΔH 2则为在T 2温度下,物质的量为n 1 mol 的KCl(s)溶于n 2 mol H 2O(l)中,形成终态溶液的焓变。
因为 ΔH=ΔH 1 +ΔH 2=0 ΔH 2 = -ΔH 1所以 ΔH 1=[ n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)+K]×(T 2-T 1) ΔH 2=n 1Δsol H mK=-[n 1 C p,m (KCl,s)+ n 2C p,m ( H 2O,l)]+ n 1Δsol H m /( T 2-T 1)=-[m 1 C p (KCl,s)+ m 2 C p ( H 2O,l)]+ m 1Δsol H m /M 1ΔT (1) 式中,m 1、m 2分别为溶解过程加入的KCl(s)和H 2O(l)的质量;C p,m 为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg ·K),C p ( H 2O,l)=4.184 kJ/(kg ·K);M 1为KCl 的摩尔质量;ΔT= T 2-T 1,即为溶解前后系统温度的差值;Δsol H m 为1mol KCl 溶解于200mL H 2O 的积分溶解热,其不同温度下的积分溶解热值见附录。
溶解热测定姓名 学号 班级 实验日期1 实验目的(1)了解电热补偿法测定热效应的基本原理。
(2)用电热补偿法测定硝酸钾在水中的积分溶解热,通过计算或作图求出硝酸钾在水中的微分溶解热、积分溶解热和微分冲淡热。
(3)掌握用微机采集数据、处理数据的实验方法和实验技术。
2 实验原理溶解热:恒温恒压下,物质的量为2n 的溶质溶于物质的量为1n 的溶剂(或溶于某浓度溶液)中产生的热效应,用Q 表示。
积分溶解热:恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用s Q 表示。
微分溶解热:恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以12nn Q ⎪⎪⎭⎫⎝⎛∂∂表示。
冲淡热:恒温恒压下,一定量的溶剂A 加到某浓度的溶液使之稀释所产生的热效应。
积分冲淡热:恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液的过程中产生的热效应,以d Q 表示。
微分冲淡热:恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以21n n Q ⎪⎪⎭⎫⎝⎛∂∂或20n s n Q ⎪⎪⎭⎫ ⎝⎛∂∂表示。
它们之间关系可表示为:s Q n Q =2 令021n n n= 21002n s n s n Q n n Q Q ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= ()()0201n s n s d Q Q Q -=积分溶解热s Q 可由实验测得,其他三种热效应则可通过0n Q s -曲线求得,曲线某点的切线的斜率为该浓度下的摩尔微分稀释热,切线与纵坐标的截距,为该浓度下的摩尔微分溶解热(即OC )。
显然,图中A 点的摩尔溶解热与B 点的摩尔溶解热之差为该过程的摩尔积分稀释热(即BE )。
欲求溶解过程的各种热效应,应测定各种浓度下的摩尔积分溶解热。
实验中采用累加的方法,先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据先后加入溶质总量可求出,各次热效应总和即为该浓度下的溶解热。
物化实验报告:溶解热的测定-KCl、KNO3华南师范大学实验报告课程名称 物理化学实验 实验项目 溶解热的测定【实验目的】1.用量热计简单测定硝酸钾在水中的溶解热。
2.掌握贝克曼温度计的调节和使用。
【实验原理】盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。
溶解热是这两种热效应的总和。
最终是吸热还是放热,则由这两种热效应的相对大小来决定。
本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。
T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg ·mo1–1;21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;温度3C 为量热计的热容(指除溶液外,使体系升高1℃所需要的热量) ,单位:kJ 。
图3.1溶解热测定装配图实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H 。
【仪器与药品 】溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)【实验步骤】1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。
为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。
溶解热的测定Determination of Heat of Solution一.实验目的1.用量热法测定KNO的积分熔解热32.掌握量热法的基本测量方法3.了解测定溶解热的基本原理二.实验原理物质溶解时常伴随有热效应发生,此热效应称为该物质的溶解热。
积分溶解热又称定浓溶解热,为等温等压下一摩尔物质溶于一定量的溶剂中形成某浓度的溶液时,吸收或放出的热量。
积分溶解热可用量热法直接测定,通常看作是在绝热量热计中进行。
首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系温度的变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
ΔH标×W标/M标=C×ΔT标求出CΔH待测物=CMΔT待测物/W待测物三. 实验准备1. 仪器:500mL杜瓦瓶(或广口热水瓶),贝克曼温度计,0-50 ºС1/10刻度,秒表,磁力搅拌器,放大镜(放大6-9倍),短颈小玻璃漏斗(外径约2cm),电子天平,干燥器,蜡光纸,500mL量筒。
2. 药品:粉末(事先用称量瓶存放并置于干燥器中)。
AR干燥KCl和KNO3四. 仪器使用1-溶解热测定装置的安装方法2-磁力搅拌器的使用方法3-电子天平的使用方法五.操作要点(各实验步骤中的操作关键点)1、装置仪器。
2、调节贝克曼温度计,使水银柱面处于刻度的上半部。
3、准确称取预先于105 ºС烘干并磨细的标准物KCl 7.5±0.01克和待测物KNO3 5.06克于蜡光纸上,包裹好置于干燥器中备用。
4、测定量热系统的热容。
5、测定KNO3的积分溶解热。
6、实验结束,洗净,晾干量热装置。
六.数据处理1、根据加样前后量热计温度的变化,绘制温度-时间图,利用雷诺校正图,求出ΔT KCl与ΔT KNO3。
2、由ΔT标和ΔH标(KJmol-1)求量热系统的热容3、由量热计的热容、WKNO3和ΔTKNO3计算硝酸钾的积分溶解热。
硝酸钾溶解热的测定硝酸钾是一种常用的无机化学物质,广泛应用于工业和科学领域。
它的化学式为KNO3,常温常压下为白色晶体,具有较好的溶解性。
其中,硝酸钾的溶解热是一个重要的物理化学参数。
了解硝酸钾的溶解热有助于更好地了解该化学物质的物性和化学性质。
本文将介绍硝酸钾溶解热的测定方法及步骤,供读者参考。
一、实验原理当一个化学物质溶于水中时,会释放出一定的热量。
这个过程被称为溶解热。
硝酸钾的溶解过程可以表示为:KNO3 (s) → K+ (aq) + NO3- (aq) + Q其中,Q为溶解过程所释放的热量。
由于溶解过程不同于反应过程,不受温度和压力变化的影响,因此该热量可以视为定值。
因此,通过测定硝酸钾在水中溶解的热量,就可以计算出它的溶解热。
二、实验步骤1.实验器材准备(1)计量热量计:保证内部密封状态良好,并根据使用说明将热量计预先加热或冷却至所需温度。
(2)电子天平:用于准确测定硝酸钾的质量。
(3)恒温水浴:用于保持实验环境温度不变。
(4)溶剂:纯净的蒸馏水。
(1)将计量热量计的夹层室内注入一定量的蒸馏水,并将热量计组件调整至恒定温度(通常为25℃)。
(2)将硝酸钾样品称量,计算其质量,并精确记录。
(3)将药品加入烧瓶中,并加入一定量的蒸馏水,使其完全溶解。
(4)将溶液倒入计量热量计的夹层室内,随即迅速将整个热量计夹层密封好。
注意,由于硝酸钾的热量释放极快,实验操作需要迅速、准确。
(5)等待数分钟,让体系温度达到恒定温度,并进行稳态计量。
获得化学反应的热值Q。
(6)根据实验数据计算硝酸钾溶解热的值。
其计算公式如下:ΔH=Q/n其中,ΔH为硝酸钾溶解热,Q为实验数据获得的热量,n为硝酸钾的摩尔数。
根据硝酸钾质量与其相对分子质量的比值即可计算得到硝酸钾的摩尔数。
根据ΔH的值可以计算得到硝酸钾的摩尔溶解热。
三、实验精度硝酸钾的溶解热可以通过测定实验数据来计算得到,因此实验结果的准确性和精度主要取决于热量计的精度和实验流程中各步骤的控制。
KNO3的溶解焓及食用油发热量的测定刘海云石俊玲庄耀华陈卫麟(中山大学化学学院98级,广州,510275)摘要:用简单的量热器具测定了KNO3的溶解焓,并将其与文献值作了比较;用静态式氧弹卡计测量了两种食用油的发热量,研究了测量中低挥发性油类的点火方法,对比了两个样品发热量的差别。
关键词:溶解焓,发热量,氧弹卡计,雷诺校正。
1.引言许多化学变化过程都伴随着可测的热效应,即有热量的释放或吸收。
这些现象符合热力学第一定律并且与物质的状态、所参与反应的量有关,但是与反应所经历的途径却是无关的。
在一个定容反应系统中,热效应的变化可以用内能U的变化来衡量,而在一个定压反应系统中则可以用焓H的变化来衡量。
定义:H=U+p V,ΔH=ΔU+pΔV,其中ΔV是反应的体积变化,对于固体和液体来说是可以忽略的;对于气体反应ΔV=Δn RT。
由此,我们可以测量U 和H 的相对变化。
可使用各种类型的量热计来记录反应系统的温度变化,进而可以确定系统的内能变化ΔU,从而知道ΔH,以及各种过程的热效应。
本文工作测定了KNO3在291 K下的溶解焓及两种食用油的发热量,对实验结果作了分析,加深了对焓与内能的理解。
2.食用油发热量的测定用静态式氧弹卡计测量了两种食用油的发热量,其结果如下:2.1 实验部分2.1.1 实验原材料从市场上购得两种食用油,其一为纯正花生油,另一种为食用调和油。
2.1.2 实验方法(1)仪器热容的测定使用苯甲酸为标定物质来测定仪器的热容,并且使用计算机程序对测量过程中不可避免的热交换作出校正。
(2)发热量的测定称量定量的样品,于氧弹内充入足量的氧气以确保试样完全燃烧。
每个样品平行测定两至三次。
体系与环境热交换的校正:使用雷诺校正法校正热交换。
点火方法:由于食用油为流质,在仅使用铁丝点火时不易点燃,采用加入少量的棉花缠绕在铁丝上作引燃,效果很好。
但是由棉花所带入的额外热量必须扣除,故在整个测量过程中均严格控制加入棉花的质量,尽量保持实验的一致性,使棉花的燃烧热值可以整合进入氧弹热容里,从而避免繁琐的计算。
实验3溶解热的测定1 引言1.1 实验目的1.1.1 测量硝酸钾在不同浓度水溶液的溶解热,求硝酸钾在水中溶解过程的各种热效应。
1.1.2 掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
1.1.3 复习和掌握常用的测温技术。
1.2 实验原理1.1.1基本概念溶解热在恒温恒压下,溶质B 溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用sol H ∆表示。
摩尔积分溶解热在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用sol m H ∆表示。
sol sol m BHH n ∆∆=(1) 式中,B n 为溶解于溶剂A 中的溶质B 的物质的量。
摩尔微分溶解热在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以,,()A sol T P n B H n ∂∆∂表示,简写为()A sol n BHn ∂∆∂。
稀释热在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以dil m H ∆表示。
21dil m sol m sol m H H H ∆=∆-∆(2)式中,2sol m H ∆、1sol m H ∆为两种浓度的摩尔积分溶解热。
摩尔微分稀释热在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以,,()B sol T P n A H n ∂∆∂表示,简写为()B sol n AHn ∂∆∂。
1.1.2计算原理在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的大小取决于A 和B 的物质的量,即(,)sol A B H n n ∆=⎰(3)由(3)式可推导得:,,,,()()B A sol sol sol A T P n B T P n A B H HH n n n n ∂∆∂∆∆=+∂∂(4) 或,,,,()()B A sol sol A sol m T P n T P n B A BH H n H n n n ∂∆∂∆∆=+∂∂(5) 令0/A B n n n =,(5)改写为:0,,,,()()B A sol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂(6) (6)式中的sol m H ∆可由实验测定,0n 由实验中所用的溶质和溶剂的物质的量计算得到。
溶解热的测定一、实验目的1、用量热法测定KNO 3在水中的溶解热。
2、掌握测温量热的基本原理和测量方法。
3、了解量热法测定积分溶解热的基本原理。
二、实验原理物质溶解时常伴有热效应,此热效应称为该物质的溶解热。
物质的溶解热通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。
其中,晶格的破坏常为吸热过程,溶剂化作用常为放热过程,溶解热即为这两个过程的热量的总和。
而最终是吸热或放热则由这两个热量的相对大小所决定。
温度、压力以及溶质和溶剂的性质、用量、是影响溶解热的显著因素,根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热,变浓溶解热又称积分溶解热,为定温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸入或放出的热量,定浓溶解热又称微分溶解热,为定温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。
积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得。
方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质摩尔数为横坐标绘成曲线,曲线上的任何一点的斜率即为该浓度时的微分溶解热。
量热法测定积分溶解热,通常在被认为是绝热的量热计中进行,首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系的温度变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
1.量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔT S ,则量热系统的热容C 可以根据下式计算:式中m S 和M S 分别为标准物质的质量和摩尔质量,ΔH S 为标准物质在某溶液温度及浓度下的积分溶解热,此值可由手册上查得,C 为量热系统的热容。
2.积分溶解热的测定 将上式用于待测物质即得:SS S S T M H m C ∆⋅∆⋅=mTM C H ∆⋅⋅=∆式中m和M分别为待测物质的质量和摩尔质量,ΔT为待测物质溶解前后量热系统的温度变化值;C为已标定的量热系统的热容。
华南师范大学实验报告学生姓名 学 号____ 专 业 化学(师范) 年级、班级___ 课程名称 物理化学实验 实验项目 实验类型 □验证 □设计 □综合 实验时间 年 月 日 实验指导老师 实验评分 【实验目的】1. 设计简单量热装置测定某物质在水中的积分溶解热。
2. 复习和掌握常用的量热技术与温度测定与校正方法。
3. 由作图法求出该物质在水中的摩尔稀释焓、微分溶解焓、微分稀释焓。
【实验原理】溶解热,即为一定量的物质溶解于一定量的溶剂中所产生的热效应。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度及压力有关。
溶解热分为积分溶解热和微分溶解热。
积分溶解热是指在等温等压下把1mol 溶质溶解在一定量的溶剂中时所产生的热效应。
它是溶液组成的函数,若形成溶液的浓度趋近于零,积分溶解热也趋近于一定值,称为无限稀释积分溶解热。
积分溶解热是溶解时所产生的热量的总和,可由实验直接测定。
微分溶解热是等温等压下,在大量给定浓度的溶液里加入1mol 溶质时所产生的热效应,它可以表示为0,,)(np T sol n H∂∆∂,因溶液的量很大,所以尽管加入1mol 溶质,浓度仍可视为不变。
微分热难以直接测量,但可通过实验,用间接的方法求得。
溶解热的测量可通过绝热测温式量热计进行,它是在绝热恒压而且不做非体积功的条件下,通过测定量热系统的温度变化,而推算出该系统在等温等压下的热效应。
本实验采用标准物质法进行量热计能当量的标定。
利用1molKCl 溶于200mL 水中的积分溶解热数据进行量热计的标定。
当上述溶解过程在恒压绝热式量热计中进行时,可设计如下途径:在上述途径中,ΔH1为KCl(s)、H2O(l)及量热计从T1等压变温至T2过程的焓变,ΔH2则为在T2温度下,物质的量为n1 mol的KCl(s)溶于n2 mol H2O(l)中,形成终态溶液的焓变。
因为ΔH=ΔH1 +ΔH2=0ΔH2 =-ΔH1所以ΔH1=[ n1 C p,m(KCl,s)+ n2C p,m(H2O,l)+K]×(T2-T1)ΔH2=n1Δsol H mK=-[n1 C p,m(KCl,s)+ n2C p,m(H2O,l)]+ n1Δsol H m/( T2-T1)=-[m1 C p (KCl,s)+ m2 C p (H2O,l)]+ m1Δsol H m/M1ΔT (1)式中,m1、m2分别为溶解过程加入的KCl(s)和H2O(l)的质量;C p,m为物质的恒压比热容;C p (KCl,s)=0.699kJ/(kg·K),C p (H2O,l)=4.184 kJ/(kg·K);M1为KCl的摩尔质量;ΔT= T2-T1,即为溶解前后系统温度的差值;Δsol H m为1mol KCl溶解于200mL H2O的积分溶解热,其不同温度下的积分溶解热值见附录。
湖 南 工 业 大 学包装工程 专业实验报告实验者:林剑忠 年级:大二 同实验者:及晨曦 江璐琳实验一 计算机联用测定无机盐溶解热一 实验目的1. 用量热计测定KNO 3的积分溶解热。
2. 掌握量热实验中温差校正方法以及与计算机联用测量溶解过程动态曲线的方法。
二 实验原理盐类的溶解过程通常包含着两个同时进行的过程:晶格的破坏和离子的溶剂化。
前者为吸热过程,后者为放热过程。
溶解热是这两种热效应的总和。
因此,盐溶解过程最终是吸热或放热,是由这两个热效应的相对大小所决定的。
常用的积分溶解热是指等温等压下,将1摩尔溶质溶解于一定量溶剂中形成一定浓度溶液的热效应。
溶解热的测定可以在具有良好绝热层的量热计中进行的。
在恒压条件下,由于量热计为绝热系统,溶解过程所吸收的热或放出的热全部由系统温度的变化反映出来。
为求KNO 3溶解过程的热效应,进而求得积分溶解热(即焓变ΔH ),可以根据盖斯(Γecc )定律将实际溶解过程设计成两步进行,如图2-1,图2-1 KCl溶解过程的图解由图2-1可知,恒压下焓变ΔH为两个过程焓变ΔH1和ΔH2之和,即:△H = △H1 + △H2 (2-1) 因为量热计为绝热系统,Q P=ΔH1所以在t1温度下溶解的恒压热效应ΔH为:ΔH=ΔH2=K(t1+t2)=K(t2-t1) (2-2)式中K是量热计与KNO3水溶液所组成的系统的总热容量,(t2-t1)为KNO3溶解过程系统的温度变化值Δt溶解。
设将质量为m的KNO3溶解于一定体积的水中,KNO3的摩尔质量为M,则在此浓度下KNO3的积分溶解热为:(2-3)K值可由电热法求取。
即在同一实验中用电加热提供一定的热量Q,测得温升为,则。
若电热丝电阻为R,电流强度为I,通电时间为, 则:(2-4)所以,(2-5)由于实验中搅拌操作提供了一定热量,而且系统也并不是严格绝热的,因此在盐溶解的过程或电加热过程中都会引入微小的额外温差。
为了消除这些影响,真实的Δt溶解与Δt加热应用图2-2所示的外推法求取。
3. KNO3溶解热的测定
数据记录与处理
室温:℃;大气压:kPa;
表1
表2
1、绘制温度-时间曲线,求真实温差ΔT。
作温度-时间曲线如图3-2所示,A点想当于热效应开始点,B点相当于热效应终点,AB称为主期,PA为前期,BQ为后期。
取AB时间段的中点D作垂线交PA 与BQ的延长线于E、F两点,则FE近似地等于真实温差Δt。
Δt = t末 - t始= tF -tE
图3-2
2、计算量热计热容K。
KCl(s)及KNO3(s)在20℃附近的热容分别为0.669J〃g-1〃K-1。
KCl的溶解热可查附表 1。
3、代W1、W2、ΔT及量热计的热容K,到
计算硝酸钾在此溶液温度下的溶解热。
将上述结果列于下表:
表 3
数据处理举例
数据处理软件。