山西省中考数学试卷.doc
- 格式:doc
- 大小:924.00 KB
- 文档页数:30
2022年山西省中考数学一、选择题(本大题共10个小题,每小题3分,共30分)1. ―6的相反数为( ) A.6 B.16 C.―16 D.―62. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度。
下列航天图标,其文字上方的图案是中心对称图形的是 ( )A B C D3. 粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68 285万吨。
该数据可用科学记数法表示为( )A .6.828 5×104吨B .68 285×104吨C .6.828 5×107吨D .6.828 5×108吨4. 神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618。
这体现了数学中的 ( )A .平移B .旋转C .轴对称D .黄金分割5. 不等式组{2x +1≥3,4x −1<7的解集是 ( )A .x ≥1B .x <2C .1≤x <2D .x <126. 如图,Rt △ABC 是一块直角三角板,其中∠C =90°,∠BAC =30°。
直尺的一边DE 经过顶点A ,若DE ∥CB ,则∠DAB 的度数为 ( )A .100°B .120°C .135°D .150° 7. 化简1a−3―6a 2−9的结果是 ( )A.1a+3B.a ―3C.a +3D.1a−3 8. 如图,△ABC 内接于☉O ,AD 是☉O 的直径,若∠B =20°,则∠CAD 的度数是 ( )A.60°B.65°C.70°D.75°9. “二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”。
小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是( )A .23B .12C .16D .18 10. 如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在AB 上的点C 处,图中阴影部分的面积为 ( )A.3π―3√3B.3π―9√32C.2π―3√3D.6π―9√32二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:√18×√12的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25 m2时,该物体承受的压强p的值为Pa.13.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol·m―2·s―1),结果统计如下:则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”). 14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15. 如图,在正方形ABCD 中,点E 是边BC 上的一点,点F 在边CD 的延长线上,且BE =DF ,连接EF 交边AD 于点G.过点A 作AN ⊥EF ,垂足为点M ,交边CD 于点N 。
山西省2020年中考数学试卷一、单选题(共10题;共20分))的结果是()1.计算(−6)÷(−13A. −18B. 2C. 18D. −2【答案】C【考点】有理数的除法)=(-6)×(-3)=18.【解析】【解答】解:(-6)÷(- 13故答案为:C.【分析】根据有理数的除法法则计算即可,除以应该数,等于乘以这个数的倒数.2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A. B. C. D.【答案】 D【考点】轴对称图形【解析】【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故答案为:D.【分析】根据轴对称图形的概念判断即可.3.下列运算正确的是()A. 3a+2a=5a2B. −8a2÷4a=2aC. (−2a2)3=−8a6D. 4a3⋅3a2=12a6【答案】C【考点】单项式乘单项式,单项式除以单项式,合并同类项法则及应用,积的乘方【解析】【解答】解:A. 3a+2a=5a,故A选项不符合题意;B. −8a2÷4a=−2a,故B选项不符合题意;C. (−2a2)3=−8a6,故C选项符合题意;D. 4a3⋅3a2=12a5,故D选项不符合题意.故答案为C.【分析】利用合并同类项、单项式除法、幂的乘方、单项式乘法的运算法则逐项判定即可.4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A. B. C. D.【答案】B【考点】简单几何体的三视图【解析】【解答】A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故答案为:B.【分析】分别画出四个选项中简单组合体的三视图即可.5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。
山西省2019年中考数学试题含答案解析(Word版)2019年山西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分。
在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑。
)1.(2019·山西)下列选项中,哪个是1的相反数?A。
6/11B。
-6C。
6D。
-662.(2019·山西)以下不等式组的解集是?2x < 6.x ≥ 5}A。
x。
5B。
x < 3C。
-5 < x < 3D。
x < 53.(2019·山西)以下问题不适合进行全面调查的是?A。
调查某班学生每周课前预的时间。
B。
调查某中学在职教师的身体健康状况。
C。
调查全国中小学生课外阅读情况。
D。
调查某篮球队员的身高。
4.(2019·山西)如图所示,由几个大小相同的小正方体搭成的几何体的俯视图如下,小正方体中的数字表示该位置小正方体的个数。
则该几何体的左视图是?因为无法插入图片,请参考原文)5.(2019·山西)我国计划在2020年左右发射火星探测卫星。
据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学计数法可表示为?A。
5.5×10^6B。
5.5×10^7C。
55×10^6D。
0.55×10^86.(2019·山西)下列运算正确的是?A。
(-3/2)^2 = 9/4B。
91 ÷ 3(3a^2) = 9a^6C。
5 - 3 ÷ 5 - 5 = -2/5D。
8 - 50 = -427.(2019·山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等。
求甲、乙两人每小时分别搬运多少kg货物。
设甲每小时搬运xkg货物,则可列方程为?5000 ÷ x = (8000 ÷ (x + 600))A。
2020年山西省中考数学试卷(word 版含答案)第一卷选择题〔共20分〕一、选择题〔本大题10个小题,每题2分,共20分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑〕1.-3的绝对值是〔〕BA .-3B .3C .-13D .132.如图,直线a ∥b ,直线c 分不与a 、b 相交于点A 、B 。
∠1=35º, 那么∠2的度数为〔〕CA .165ºB .155ºC .145ºD .135º3.山西是我国古代文明发祥地之一,其总面积约为16万平方千米,那个数据用科学记数法表示为〔〕DA .0.16×106平方千米B .16×104平方千米C .1.6×104平方千米D .1.6×105平方千米4.以下运算正确的选项是〔〕BA .(a -b )2=a 2-b 2B .(-a 2)3=-a 6C .x 2+x 2=x 4D .3a 3·2a 2=6a 65.在R t △ABC 中,∠C =90º,假设将各边长度都扩大为原先的2倍,那么∠A 的正弦值〔〕DA .扩大2倍B .缩小2倍C .扩大4倍D .不变6.估算31-2的值〔〕CA .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在一个不透亮的袋中,装有假设干个除颜色不同外其余都相同的球,假如袋中有3个红球且摸到红球的概率为 14,那么袋中球的总个数为〔〕B A .15个 B .12个 C .9个 D .3个8.以下图是由7个完全相同的小立方块搭成的几何体,那么那个几何体的左视图是〔〕A9.现有四根木棒,长度分不为4cm ,6cm ,8cm ,10cm .从中任取一根木棒,能组成三角形的个数为〔〕CA .1个B .2个C .3个D .4个〔第5题〕 A B2 1a b c〔第2题〕10.如图,直线y =k x +b 交坐标轴于A (-3,0)、B(0,5)两点,那么不等式-k x -b <0的解集为〔〕AA .x >-3B .x <-3C .x >3D .x <3第二卷选择题〔共100分〕二、填空题〔本大题共8个小题,每题3分,共24分.把答案写在题中横线上〕11.运算:9x 3÷(—3x 2) =______________.—3x12.在R t △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4cm ,那么AB =________ cm .813.随意地抛一粒豆子,恰好落在图中的方格中〔每个方格除颜外完全一样〕,那么这粒豆子停在黑色方格中的概率是______________.1314.方程2x +1 - 1x -2=0的解为______________.x =5 15.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,那么那个反比例函数的解析式为______________.y =4 x16.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分不标有数字1、2、3.将标有数字的一面朝 下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,运算抽得的两个数字之和,假如和为奇数,那么弟弟胜;和为偶数,那么哥哥胜该游戏对双方______________〔填〝公平〞或〝不公平〞〕.不公平17.图1是以AB 为直径的半圆形纸片,AB =6cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB方向平移至扇形O ’A ’C ’ .如图2,其中O ’是OB 的中点.O ’C ’交BC⌒ 于点F ,那么BF ⌒ BF 的长为_______cm .π〔第17题〕 A BOC 图1 图2〔第13题〕〔第15题〕 〔第10题〕 +b18.如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,那么DE的长是______________.6013三、解答题〔本大题共8个小题,共76分.解承诺写出文字讲明、证明过程或演算步骤〕19.〔每题5分,共10分〕〔1〕运算:9 +(-12)-1-2sin45º+(3-2)0〔2〕先化简,再求值:(3x x -1 -x x +1)·x 2-12x ,其中x =-320.〔此题6分〕山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为差不多图案通过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.〔1〕依照图2将图3补充完整;〔2〕在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1) 将图3补充完整得3分〔画出虚线不扣分〕(2) 图略,答案不唯独,只要符合题目要求均得3分21.〔此题10分〕某课题小组为了解某品牌电动自行车的销售情形,对某专卖店第一季度该品牌A 、B 、C 、D 四种型号的销量做了统计,绘制成如下两幅统计图〔均不完整〕.〔1〕该店第一季度售出这种品牌的电动自行车共多少辆?〔2〕把两幅统计图补充完整;〔3〕假设该专卖店打算订购这四款型号电动自行车1800辆,求C 型电动自行车应订购多少辆?ABDE 〔第18题〕22.〔此题8分〕如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 通过点D ,E 是⊙O 上一点,且∠AED =45º.〔1〕试判定CD 与⊙O 的关系,并讲明理由.〔2〕假设⊙O 的半径为3cm ,AE =5 cm .求∠ADE 的正弦值.23.〔此题10分〕二次函数y =x 2-2x -3的图象与x 轴交于A 、B 两点〔A 在B 的左侧〕,与y 轴交于点C ,顶点为D .〔1〕求点A 、B 、C 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图象;〔2〕讲出抛物线y =x 2-2x -3可由抛物线y =x 2如何平移得到?〔3〕求四边形OCDB 的面积.24.〔此题8分〕某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店打算用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.〔1〕该店订购这两款运动服,共有哪几种方案?〔2〕假设该店以甲款每套400无,乙款每套300元的价格全部出售,哪种方案获利最大?60〔第21题 图1〕 60 150 210 120180240辆数B 35% AC 30%D 〔第21题 图2〕 A BC E〔第22题〕 O25.〔此题10分〕如图1,正方形ABCD 的边CD 在正方形DEFG 的边D E 上,连接AE 、GC . 〔1〕试猜想AE 与GC 有如何样的位置关系,并证明你的结论.〔2〕将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG 。
2024年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃B.﹣100℃C.+50℃D.﹣50℃2.1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所B.东北地理与农业生态研究所C.西安光学精密机械研究所D.生态环境研究中心3.下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2D.m2•m3=m54.斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A.B.C.D.5.一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为A.155°B.125°C.115°D.65°第5题第7题第1 2题第13题6.已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y27.如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD=80°,则∠C的度数为()A.30°B.40°C.45°D.50°8.一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A.B.C.D.9.生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5B.y=7.5x﹣0.5C.y=15x D.y=15x+45.510.在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等二、填空题(本大题共5个小题,每小题3分,共15分)11.比较大小:2(填“>”、“<”或“=”).12.黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为cm(结果保留根号).13.机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m (kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=m/s.14.如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).测量得到扇形AOB的圆心角为90°,OA=1m,C,D分别为OA,OB中点,花窗面积为m2.15.如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)];(2)化简(+)÷.17.为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?18.为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a7 4.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=,b=,c=;(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).19.当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.20.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN 方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米;……数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).21.阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=F A,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠F AD的数量关系,并说明理由;(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF(要求:尺规作图,保留作图痕迹,不写作法).22.综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.23.综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD 的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.。
中考数学试题与答案第Ⅰ卷选择题(共20分)一、选择题(本大题10个小题,每题2分,共20分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.-3的绝对值是()BA .-3B .3C .-13D .132.如图,直线a ∥b ,直线c 分别与a 、b 相交于点A 、B 。
已知∠1=35º, 则∠2的度数为()CA .165ºB .155ºC .145ºD .135º3.山西是我国古代文明发祥地之一,其总面积约为16万平方千米,这个数据用科学记数法表示为()D A .0.16×106平方千米 B .16×104平方千米 C .1.6×104平方千米 D .1.6×105平方千米 4.下列运算正确的是()BA .(a -b )2=a 2-b 2B .(-a 2)3=-a 6C .x 2+x 2=x 4D .3a 3·2a 2=6a 6 5.在R t △ABC 中,∠C =90º,若将各边长度都扩大为原来的2倍,则∠A 的正弦值()DA .扩大2倍B .缩小2倍C .扩大4倍D .不变6.估算31-2的值()CA .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间7.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为 14 ,那么袋中球的总个数为()BA .15个B .12个C .9个D .3个8.下图是由7个完全相同的小立方块搭成的几何体,那么这个几何体的左视图是()A9.现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm .从中任取一根木棒,能组成三角形的个数为()CA .1个B .2个C .3个D .4个10.如图,直线y =k x +b 交坐标轴于A (-3,0)、B(0,5)两点,则不等式-k x -b <0的解集为()AA .x >-3B .x <-3C .x >3D .x <3AB2 1 ab c (第2题)A BC (第5题)A B C D第Ⅱ卷选择题(共100分)二、填空题(本大题共8个小题,每小题3分,共24分.把答案写在题中横线上) 11.计算:9x 3÷(—3x 2) =______________.—3x12.在R t △ABC 中,∠ACB =90°,D 是AB 的中点,CD =4cm ,则AB =________ cm .813.随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜外完全一样),那么这粒豆子停在黑色方格中的概率是______________.1314.方程2x +1 - 1x -2=0的解为______________.x =515.如图,A 是反比例函数图象上一点,过点A 作AB ⊥y 轴于点B ,点P 在x 轴上,△ABP 的面积为2,则这个反比例函数的解析式为______________.y = 4x16.哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1、2、3.将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜该游戏对双方______________(填“公平”或“不公平”).不公平17.图1是以AB 为直径的半圆形纸片,AB =6cm ,沿着垂直于AB 的半径OC 剪开,将扇形OAC 沿AB 方向平移至扇形O ’A ’C ’ .如图2,其中O ’是OB 的中点.O ’C ’交BC ⌒ 于点F ,则BF ⌒ BF 的长为_______cm .π18.如图,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是______________.6013A B(第10题)O xyy =k x +b(第13题) (第15题)AB P xy O(第17题)AB OCC B A O O ’ C ’ 图1图2F三、解答题(本大题共8个小题,共76分.解答应写出文字说明、证明过程或演算步骤) 19.(每小题5分,共10分)(1)计算:9 +(-12 )-1-2sin45º+(3-2)0(2)先化简,再求值:(3x x -1 -xx +1)·x 2-12x ,其中x =-320.(本题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的.图3是图2放大后的部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.(1) 将图3补充完整得3分(画出虚线不扣分) (2) 图略,答案不唯一,只要符合题目要求均得3分21.(本题10分)某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A 、B 、C 、D 四种型号的销量做了统计,绘制成如下两幅统计图(均不完整). (1)该店第一季度售出这种品牌的电动自行车共多少辆? (2)把两幅统计图补充完整;(3)若该专卖店计划订购这四款型号电动自行车1800辆,求C 型电动自行车应订购多少辆?22.(本题8分)如图,四边形ABCD 是平行四边形,以AB 为直径的⊙O 经过点D ,E 是⊙O 上一点,且A BCD E (第18题) ABCD 60 (第21题 图1)60 150210120180 240 辆数 型号B 35%A C 30% D(第21题 图2)∠AED =45º.(1)试判断CD 与⊙O 的关系,并说明理由.(2)若⊙O 的半径为3cm ,AE =5 cm .求∠ADE 的正弦值.23.(本题10分)已知二次函数y =x 2-2x -3的图象与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A 、B 、C 、D 的坐标,并在下面直角坐标系中画出该二次函数的大致图象; (2)说出抛物线y =x 2-2x -3可由抛物线y =x 2如何平移得到? (3)求四边形OCDB 的面积.24.(本题8分)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服. (1)该店订购这两款运动服,共有哪几种方案?(2)若该店以甲款每套400无,乙款每套300元的价格全部出售,哪种方案获利最大?25.(本题10分)如图1,已知正方形ABCD 的边CD 在正方形DEFG 的边D E 上,连接AE 、GC . (1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图2,连接AE 和CG 。
2022年中考往年真题练习: 山西省中考数学试卷一.挑选题(共12小题)1.(2021山西) 计算: ﹣2﹣5的结果是()A.﹣7 B.﹣3 C. 3 D. 7考点分析: 有理数的加法。
解答: 解: ﹣2﹣5=﹣(2+5) =﹣7.故选A.2.(2021山西) 如图, 直线AB∥CD, AF交CD于点E, ∠CEF=140°, 则∠A等于()A. 35°B. 40°C. 45°D. 50°考点分析: 平行线的性质。
解答: 解: ∵∠CEF=140°,∴∠FED=180°﹣∠CEF=180°﹣140°=40°,∵直线AB∥CD,∴∠A∠FED=40°.故选B.3.(2021山西) 下列运算正确的是()A.B.C. a2a4=a8D.(﹣a3) 2=a6考点分析: 幂的乘方与积的乘方;实数的运算;同底数幂的乘法。
解答: 解: A.=2, 故本选项错误;B.2+不能合并, 故本选项错误;C.a2a4=a6, 故本选项错误;D.(﹣a3) 2=a6, 故本选项正确.故选D.4.(2021山西) 为了实现街巷硬化工程高质量“全覆盖”, 我省今年1﹣4月公路建设累计投资92. 7亿元, 该数据用科学记数法可表示为()A. 0. 927×1010B. 92. 7×109C. 9. 27×1011D. 9. 27×109考点分析: 科学记数法—表示较大的数。
解答: 解: 将92. 7亿=9270000000用科学记数法表示为: 9. 27×109.故选: D.5.(2021山西) 如图, 一次函数y=(m﹣1) x﹣3的图象分别与x轴、y轴的负半轴相交于A.B, 则m的取值范围是()A. m>1 B. m<1 C. m<0 D. m>0考点分析: 一次函数图象与系数的关系。
山西省2022年高中阶段教育学校招生统一考试数 学注意事项:1. 本试卷分第Ⅰ卷和第Ⅱ卷两部分,全卷共6页,满分120分,考试时间120分钟。
2. 答卷前,考试务必将自己的姓名、准考证号填写在本试卷相应的位置。
3. 答案全部答在答题卡上,答在本试卷上无效。
4. 考试结束后将本试卷和答题卡一并交回。
第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.6-的相反数为A .6B .16C .16-D .6-2. 2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中 心对称图形的是A .B .C .D .3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为 A .46.828510⨯吨 B .46828510⨯吨 C .76.828510⨯吨D .86.828510⨯吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的 A .平移 B .旋转 C .轴对称D .黄金分割5.不等式组213417x x +⎧⎨-<⎩的解集是A .1xB .2x <C .12x <D .12x <6.如图,Rt ABC ∆是一块直角三角板,其中90C ∠=︒,30BAC ∠=︒.直尺的一边DE 经过顶点A ,若//DE CB ,则DAB ∠的度数为 A .100︒ B .120︒ C .135︒D .150︒7.化简21639a a ---的结果是 A .13a + B .3a - C .3a + D .13a - 8.如图,ABC ∆内接于O ,AD 是O 的直径,若20B ∠=︒,则CAD ∠的度数是 A .60︒B .65︒C .70︒D .75︒9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四 张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同), 让小乐从中随机抽取一张(不放回),再从中随机抽 取一张,则小乐抽到的两张邮票恰好是“立春”和 “立夏”的概率是 A .23B .12C .16D .1810.如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在AB 上的点C 处,图中阴影部分的面积为 A .333π- B .9332π-C .233π-D .9362π-第Ⅱ卷 选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:1182⨯的结果为 . 12.根据物理学知识,在压力不变的情况下,某物体承受的压强()p Pa是它的受力面积2()S m 的反比例函数,其函数图象如图所示.当20.25S m =时,该物体承受的压强p 的值为 Pa .13.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同 等实验条件下,测量它们的光合作用速率(单位:21)mol m s μ--⋅⋅,结果统计如下:品种 第一株 第二株 第三株 第四株 第五株 平均数 甲 32 30 25 18 20 25 乙282526242225则两个大豆品种中光合作用速率更稳定的是 (填“甲”或“乙” ). 14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯 最多可降价 元.15.如图,在正方形ABCD 中,点E 是边BC 上的一点,点F 在边CD 的延长线上,且BE DF =,连接EF 交边AD 于点G .过点A 作AN EF ⊥,垂足 为点M ,交边CD 于点N .若5BE =,8CN =,则线段AN 的长为 .三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(本题共2小题,每小题5分,共10分)(1)计算:21(3)3(52)|2|--⨯+-++-; (2)解方程组:236x y x y -=⎧⎨+=⎩①②.17.(本题8分)如图,在矩形ABCD 中,AC 是对角线.(1)实践与操作:利用尺规作线段AC 的垂直平分线,垂足为点O ,交边AD 于点E ,交边BC 于点F (要求:尺规作图并保留作图痕迹,不写作法,标明字母). (2)猜想与证明:试猜想线段AE 与CF 的数量关系,并加以证明.18.(本题7分)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(本题8分)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代 奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当0a>时①②的分析过程,写出③中当0<时,一元二a>,△0次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(本题8分)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70︒,楼CD上点E处的俯角为30︒,沿水平方向由点O飞行24m到达点F,测得点E处俯角为60︒,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94≈.︒≈,3 1.73)︒≈,cos700.34︒≈,tan70 2.75问题情境:在Rt ABC ∆中,90BAC ∠=︒,6AB =,8AC =.直角三角板EDF 中90EDF ∠=︒,将三角板的直角顶点D 放在Rt ABC ∆斜边BC 的中点处,并将三角板绕点D 旋转,三角板的两边DE ,DF 分别与边AB ,AC 交于点M ,N .猜想证明:(1)如图①,在三角板旋转过程中,当点M 为边AB 的中点时,试判断四边形AMDN 的形状,并说明理由; 问题解决:(2)如图②,在三角板旋转过程中,当B MDB ∠=∠时,求线段CN 的长; (3)如图③,在三角板旋转过程中,当AM AN =时,直接写出线段AN 的长.第22题图23.(本题13分)综合与探究如图,二次函数213442y x x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .点P 是第一象限内二次函数图象上的一个动点,设点P 的横坐标为m .过点P 作直线PD x ⊥轴于点D ,作直线BC 交PD 于点E .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的函数表达式;(2)当CEP ∆是以PE 为底边的等腰三角形时,求点P 的坐标;(3)连接AC ,过点P 作直线//l AC ,交y 轴于点F ,连接DF .试探究:在点P 运动的过程中,是否存在点P ,使得CE FD =,若存在,请直接写出m 的值;若不存在,请说明理由.山西省2022年高中阶段教育学校招生统一考试数学试题参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.A 2.B 3.D 4.D 5.C 6.B7.A8.C9.C10.B二、填空题(本大题共5个小题,每小题3分,共15分)11.312. 400.13.乙.14.32.15.434.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.解:(1)原式19(3)23=⨯+-+3(3)2=+-+2=;(2)①+②得:39x =,3x ∴=,将3x =代入②得:36y +=,3y ∴=,∴原方程组的解为33x y =⎧⎨=⎩.17.解: (1)如图,(2)AE CF =,证明如下:四边形ABCD 是矩形,//AD BC ∴,EAO FCO ∴∠=∠,AEO CFO ∠=∠,EF 是AC 的垂直平分线,AO CO ∴=,在AOE ∆和COF ∆中,AEO CFO EAO FCO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AOE COF AAS ∴∆≅∆, AE CF ∴=.18.解:设这款电动汽车平均每公里的充电费用为x 元, 根据题意,得20020040.6x x =⨯+, 解得0.2x =,经检验,0.2x =是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元. 19.解:(1)平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:3311%300÷=(人),从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:30062%186⨯=(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,360032%1152∴⨯=(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如: 由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少, 由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.20.解:(1)上面小论文中的分析过程,主要运用的数学思想是AC ;故答案为:AC ; (2)0a >时,抛物线开口向上,当△240b ac =-<时,有240ac b ->.0a >,∴顶点纵坐标2404ac b a->∴顶点在x 轴的上方,抛物线与x 轴无交点,如图, ∴一元二次方程20(0)ax bx c a ++=≠无实数根;(3)可用函数观点认识二元一次方程组的解;故答案为:可用函数观点认识二元一次方程组的解(答案不唯一). 21.解:延长AB ,CD 分别与直线OF 交于点G 和点H , 则60AG m =,GH AC =,90AGO EHO ∠=∠=︒, 在Rt AGO ∆中,70AOG ∠=︒,6021.8()tan70 2.75AG OG m ∴=≈≈︒, HFE ∠是OFE ∆的一个外角,30OEF HFE FOE ∴∠=∠-∠=︒, 30FOE OEF ∴∠=∠=︒, 24OF EF m ∴==,在Rt EFH ∆中,60HFE ∠=︒,1cos602412()2FH EF m ∴=⋅︒=⨯=, 21.8241258()AC GH OG OF FH m ∴==++=++≈,∴楼AB 与CD 之间的距离AC 的长约为58m .22.解:(1)四边形AMDN 是矩形,理由如下: 点D 是BC 的中点,点M 是AB 的中点,//MD AC ∴, 180A AMD ∴∠+∠=︒, 90BAC ∠=︒,90AMD ∴∠=︒,90A AMD MDN ∠=∠=∠=︒,∴四边形AMDN 是矩形;(2)如图2,过点N 作NG CD ⊥于G ,6AB =,8AC =,90BAC ∠=︒,2210BC AB AC ∴=+=,点D 是BC 的中点,5BD CD ∴==, 90MDN A ∠=︒=∠,90B C ∴∠+∠=︒,190BDM ∠+∠=︒, 1C ∴∠=∠, DN CN ∴=,又NG CD ⊥,52DG CG ∴==, cos CG ACC CN BC==, ∴58210CN =, 258CN ∴=; (3)如图③,连接MN ,AD ,过点N 作HN AD ⊥于H ,AM AN =,90MAN ∠=︒, 45AMN ANM ∴∠=∠=︒, 90BAC EDF ∠+∠=︒,∴点A ,点M ,点D ,点N 四点共圆,45ADN AMN ∴∠=∠=︒, NH AD ⊥,45ADN DNH ∴∠=∠=︒, DH HN ∴=,5BD CD ==,90BAC ∠=︒, 5AD CD ∴==,C DAC ∴∠=∠, 3tan tan 4HN AB C DAC AH AC ∴=∠===, 43AH HN ∴=, 5AH HD AD +==,157DH HN ∴==,207AH =, 222254002549497AN AH HN ∴=+=+=. 23.解:(1)在213442y x x =-++中,令0x =得4y =,令0y =得8x =或2x =-, (2,0)A ∴-,(8,0)B ,(0,4)C , 设直线BC 解析式为4y kx =+,将(8,0)B 代入得: 840k +=,解得12k =-,∴直线BC 解析式为142y x =-+; (2)过C 作CG PD ⊥于G ,如图:设213(,4)42P m m m -++,213442PD m m ∴=-++, 90COD PDO CGD ∠=∠=∠=︒,∴四边形CODG 是矩形,4DG OC ∴==,CG OD m ==,221313444242PG PD DG m m m m ∴=-=-++-=-+, CP CE =,CG PD ⊥,21342GE PG m m ∴==-+, GCE OBC ∠=∠,90CGE BOC ∠=︒=∠, CGE BOC ∴∆∆∽,∴CG GE OB OC =,即2134284m m m -+=, 解得0m =(舍去)或4m =,(4,6)P ∴;(3)存在点P ,使得CE FD =,理由如下: 过C 作CH PD ⊥于H ,如图:设213(,4)42P m m m -++,由(2,0)A -,(0,4)C 可得直线AC 解析式为24y x =+,根据//PF AC ,设直线PF 解析式为2y x b =+,将213(,4)42P m m m -++代入得: 2134242m m m b -++=+, 211442b m m ∴=--+, ∴直线PF 解析式为2112442y x m m =--+, 令0x =得211442y m m =--+,211(0,4)42F m m ∴--+, 211|4|42OF m m ∴=--+, 同(2)可得四边形CODH 是矩形, CH OD ∴=,CE FD =,Rt CHE Rt DOF(HL)∴∆≅∆,HCE FDO ∴∠=∠,HCE CBO ∠=∠,FDO CBO ∴∠=∠,tan tan FDO CBO ∴∠=∠,∴OF OC OD OB=,即211|4|4428m m m --+=, 21114422m m m ∴--+=或21114422m m m --+=-,解得2m =-或2m =-或4m =或4m =-, P 在第一象限,2m ∴=或4m =.。
2022年山西省中考数学试卷和答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)﹣6的相反数为()A.6B.C.D.﹣6 2.(3分)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.中国探火B.中国火箭C.中国行星探测D.航天神舟3.(3分)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.(3分)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.(3分)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.(3分)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB 的度数为()A.100°B.120°C.135°D.150°7.(3分)化简﹣的结果是()A.B.a﹣3C.a+3D.8.(3分)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.(3分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.(3分)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:×的结果为.12.(3分)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.13.(3分)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.(3分)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.(3分)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN =8,则线段AN的长为.三、答案题(本大题共8个小题,共75分.答案应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.(8分)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.(7分)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(8分)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,答案下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.(8分)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(8分)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O 飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.(13分)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt △ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.(13分)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x 轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.【知识点】相反数.【答案】解:﹣6的相反数是:6,故选:A.2.【知识点】中心对称图形.【答案】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.3.【知识点】科学记数法—表示较大的数.【答案】解:68285万吨=6.8285×104×104=6.8285×108(吨),故选:D.4.【知识点】黄金分割.【答案】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,又黄金分割比为≈0.618,∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,故选:D.5.【知识点】解一元一次不等式组.【答案】解:解不等式2x+1≥3,得:x≥1,解不等式4x﹣1<7,得:x<2,则不等式组的解集为1≤x<2,故选:C.6.【知识点】平行线的性质.【答案】解:∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°,∵∠BAC=30°,∴∠DAB=∠DAC+∠BAC=120°,故答案为:B.7.【知识点】分式的加减法.【答案】解:﹣=﹣===,故选:A.8.【知识点】圆周角定理.【答案】解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ABC=20°,∴∠CBD=∠ABD﹣∠ABC=70°,∴∠CAD=∠CBD=70°,故选:C.9.【知识点】列表法与树状图法.【答案】解:设立春用A表示,立夏用B表示,秋分用C表示,大寒用D表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性2种,∴小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是=,故选:C.10.【知识点】扇形面积的计算.【答案】解:沿AB折叠扇形纸片,点O恰好落在上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=AC=,∴AB=2AD=3,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=﹣3×3=3π﹣,故选:B.二、填空题(本大题共5个小题,每小题3分,共15分)11.【知识点】二次根式的乘除法.【答案】解:原式==3.故答案为:3.12.【知识点】反比例函数的应用.【答案】解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.13.【知识点】方差.【答案】解:甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.14.【知识点】一元一次不等式的应用.【答案】解:设该护眼灯可降价x元,根据题意,得,解得x≤32,故答案为:32.15.【知识点】勾股定理;正方形的性质;全等三角形的判定与性质.【答案】解:如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠FAM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴DN=12,AD=BC=BE+CE=5+x+3=20,∴AN===4,故答案为:4.三、答案题(本大题共8个小题,共75分.答案应写出文字说明,证明过程或演算步骤)16.【知识点】解二元一次方程组;绝对值;有理数的乘方;实数的运算;负整数指数幂.【答案】解:(1)原式=9×+(﹣3)+2=3+(﹣3)+2=2;(2)①+②得:3x=9,∴x=3,将x=3代入②得:3+y=6,∴y=3,∴原方程组的解为.17.【知识点】矩形的性质;作图—基本作图;全等三角形的判定与性质;线段垂直平分线的性质.【答案】解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.18.【知识点】分式方程的应用.【答案】解:设这款电动汽车平均每公里的充电费用为x元,根据题意,得,解得x=0.2,经检验,x=0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.19.【知识点】条形统计图;用样本估计总体;扇形统计图.【答案】解:(1)∵平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:33÷11%=300(人),∵从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:300×62%=186(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)∵平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,∴3600×32%=1152(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如:由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.20.【知识点】根的判别式.【答案】解:(1)上面小论文中的分析过程,主要运用的数学思想是AC;故答案为:AC;(2)a>0时,抛物线开口向上,当Δ=b2﹣4ac<0时,有4ac﹣b2>0.∵a>0,∴顶点纵坐标>0∴顶点在x轴的上方,抛物线与x轴无交点,如图,∴一元二次方程ax2+bx+c=0(a≠0)无实数根;(3)可用函数观点认识二元一次方程组的解;故答案为:可用函数观点认识二元一次方程组的解(答案不唯一).21.【知识点】解直角三角形的应用﹣仰角俯角问题;等腰三角形的判定.【答案】解:延长AB,CD分别与直线OF交于点G和点H,则AG=60m,GH=AC,∠AGO=∠EHO=90°,在Rt△AGO中,∠AOG=70°,∴OG=≈≈21.8(m),∵∠HFE是△OFE的一个外角,∴∠OEF=∠HFE﹣∠FOE=30°,∴∠FOE=∠OEF=30°,∴OF=EF=24m,在Rt△EFH中,∠HFE=60°,∴FH=EF•cos60°=24×=12(m),∴AC=GH=OG+OF+FH=21.8+24+12≈58(m),∴楼AB与CD之间的距离AC的长约为58m.22.【知识点】三角形综合题.【答案】解:(1)四边形AMDN是矩形,理由如下:∵点D是BC的中点,点M是AB的中点,∴MD∥AC,∴∠A+∠AMD=180°,∵∠BAC=90°,∴∠AMD=90°,∵∠A=∠AMD=∠MDN=90°,∴四边形AMDN是矩形;(2)如图2,过点N作NG⊥CD于G,∵AB=6,AC=8,∠BAC=90°,∴BC==10,∵点D是BC的中点,∴BD=CD=5,∵∠MDN=90°=∠A,∴∠B+∠C=90°,∠BDM+∠1=90°,∴∠1=∠C,∴DN=CN,又∵NG⊥CD,∴DG=CG=,∵cosC=,∴,∴CN=;(3)如图③,连接MN,AD,过点N作HN⊥AD于H,∵AM=AN,∠MAN=90°,∴∠AMN=∠ANM=45°,∵∠BAC=∠EDF=90°,∴点A,点M,点D,点N四点共圆,∴∠ADN=∠AMN=45°,∵NH⊥AD,∴∠ADN=∠DNH=45°,∴DH=HN,∵BD=CD=5,∠BAC=90°,∴AD=CD=5,∴∠C=∠DAC,∴tanC=tan∠DAC==,∴AH=HN,∵AH+HD=AD=5,∴DH=HN=,AH=,∴AN===.解法二:如图,延长MD到T,使得MD=DT,连接NT,CT.设AM=AN=a.证明CT=BM=6﹣a,NM=NT=a,∠NCT =90°,由NT2=CN2+CT2,可得(a)2=(8﹣a)2+(6﹣a)2,解得a=.解法三:也可以通过D向AC和AB分别作垂线DQ和DP,通过△DPM∽△DQN相似来算.23.【知识点】二次函数综合题.【答案】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.。
2018 年 省中考数学 试 卷(解析版)第 I 卷 选 择 题 ( 共 30 分)一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑) 1.下 面 有 理 数 比 较 大 小 , 正 确 的 是 ( )A. 0< -2B. -5< 3C. -2< -3D. 1< -4 【答案】 B 【考点】 有 理 数 比 较 大 小 2. “算经十书”是指 汉唐一千多年间的 十 部著名数学著作,它 们曾经是隋唐时期 国 子监算学科 的 教 科 书 , 这 些 流 传 下 来 的 古 算 书 中 凝 聚 着 历 代 数 学 家 的 劳 动 成 果 .下 列 四 部 著 作 中 , 不 属 于 我 国古代数学著作的 是 ()A.《九章算术》B. 《几何原本》C. 《 海 岛 算 经 》D. 《 周 髀 算 经 》【答案】 B 【考点】 数学文化 【解析 】《 几 何 原 本 》 的 作 者 是 欧 几 里 得 3. 下 列 运 算 正 确 的 是 ( )A. (- a 3 )2= -a 6 B. 2a 2 + 3a 2 = 6a 2 C. 2a 2 ⋅ a 3 = 2a 6 D. 2633()2b b a a-=-【 答案】 D【考点】 整式运算【解析】 A . (- a 3)2= a 6 B 2a 2 + 3a 2 = 5a 2 C. 2a 2 ⋅ a 3 = 2a 54. 下列一元二次方程 中 ,没有实数根的是 ( )A. x 2 - 2x = 0B. x 2 + 4x -1 = 0C. 2x 2 - 4x + 3 = 0D. 3x 2 = 5x - 2【答案】 C 【考点】 一 元 二 次 方 程 根 的 判 别 式 【解析 】△> 0,有 两 个 不 相 等 的 实 数 根 ,△ =0,有 两 个 相 等 的 实 数 根 ,△ < 0,没 有 实 数 根 .A.△ =4B.△ =20C. △ =-8D. △ =15. 近年来快递业发展 迅 速 ,下表是 2018 年 1-3 月份我省部分地市 邮 政快递业务量的统 计 结 果( 单 位:万件)A.319.79 万件B. 332.68 万件C. 338.87 万件D. 416.01 万件 【答案】 C 【考点】 数 据 的 分 析 【解析】 将 表格中 七 个 数 据 从 小 到 大 排 列 , 第 四 个 数 据 为 中 位 数 , 即 338.87 万件 . 6. 黄河是中华民族的 象 征,被誉为母亲河, 黄河壶口瀑布位于 我 省吉县城西 45 千 米 处 ,是 黄 河 上最具气势的自然 景 观,其落差约 30 米 , 年 平 均 流 量 1010 立方米 /秒 . 若 以 小 时 作 时 间 单 位 , 则其年平均流量可 用 科学计数法表示为 A. 6.06 ⨯104 立方米 /时 B. 3.136 ⨯106 立方米 /时 C. 3.636 ⨯106 立方米 /时 D. 36.36 ⨯105 立方米 /时【答案】 C 【考点】 科 学 计 数 法 【解析】 一秒为 1010 立方米,则一小时 为 1010×60×60=3636000 立方米, 3636000 用 科学 计数法表示为 3.636×106.7. 在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个 球,记下颜色后放 回 袋子中,充分摇匀 后 ,再随机摸出一个 球,两次都摸到黄球 的 概率是() A.49 B. 13 C. 29 D.19【答案】 A【考点】 树 状 图 或 列 表 法 求 概 率 【解析】由表格可知,共有 9 种等可能结果,其 中 两次都摸到黄球的 结 果有 4 种,∴ P ( 两 次 都 摸 到 黄 球 ) =498. 如 图 ,在 Rt △ ABC 中,∠ ACB=90°,∠A=60°,AC=6,将 △ ABC 绕 点 C 按 逆 时 针 方 向 旋 转 得 到 △ A ’ B ’ C , 此 时 点 A ’ 恰好在 AB 边 上 , 则 点 B ’ 与点 B 之 间 的 距 离 是 ( ) A. 12 B. 6 D.【考点】旋转,等边三角形性质【解析】连接 BB’,由旋转可知 AC=A’C,BC=B’C,∵∠A=60°,∴△ACA’为等边三角形,∴∠ACA’=60°,∴∠BCB’=60°∴△BCB’为等边三角形,∴BB’=BC= 6 3 .9. 用配方法将二次函数y=x2 -8x-9化为y=a(x-h)2 +k的形式为()A. y =(x -4)2 +7B. y =(x -4)2 -25C. y =(x +4)2 +7D. y =(x +4)2 -25【答案】B【考点】二次函数的顶点式【解析】y =x2 -8x -9 =x2 -8x +16 -16 -9 =(x -4)2 -2510. 如图,正方形 ABCD 接于⊙O,⊙O 的半径为 2,以点 A 为圆心,以 AC 为半径画弧交 AB 的延长线于点 E,交 AD 的延长线于点 F,则图中阴影部分的面积是()A.4π-4B. 4π-8C. 8π-4D. 8π-8【答案】A【考点】扇形面积,正方形性质【解析】∵四边形 ABCD 为正方形,∴∠BAD=90°,可知圆和正方形是中心对称图形,第I卷非选择题(共90分)二、填空题(本大题共 5 个小题,每小题 3 分,共 15 分)11.计算:-1) = .【答案】17【考点】平方差公式【解析】∵(a +b)(a -b) =a2 -b2 ∴+-1) =2-1 =18-1=1712. 图 1 是我国古代建筑中的一种窗格.其中冰裂纹图案象征着坚冰出现裂纹并开始清溶,形状无一定规则,代表一种自然和谐美.图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2 +∠3 +∠4 +∠5 = 度.【考点】多边形外角和【解析】∵任意 n 边形的外角和为360°,图中五条线段组成五边形∴∠1+∠2 +∠3 +∠4 +∠5 = 360︒.13.2018 年国航空公司规定:旅客乘机时,免费携带行箱的长、宽、高之和不超过 115cm. 某厂家生产符合该规定的行箱,已知行箱的宽为 20cm,长与高的比为 8:11,则符合此规定的行箱的高的最大值为_____cm.【答案】55【考点】一元一次不等式的实际应用【解析】解:设行箱的长为 8xcm,宽为 11xcm20 +8x +11x ≤115解得x ≤5∴高的最大值为11⨯ 5 = 55 cm14.如图,直线 MN∥P Q,直线 AB 分别与 MN,PQ 相交于点 A,B.小宇同学利用尺规按以下步骤作图:①以点 A 为圆心,以任意长为半径作弧交 AN 于点 C,交 AB 于点 D;②分别以 C,D为圆心,以大于12CD 长为半径作弧,两弧在∠NAB 交于点E;③作射线AE 交PQ 于点F.若AB=2,∠ABP=600 ,则线段 AF 为______.【答案】【考点】角平分线尺规作图,平行线性质,等腰三角形三线合一【解析】过点 B 作 BG⊥AF 交 AF 于点 G由尺规作图可知,A F 平分∠NAB∴∠NAF=∠BAF∵MN∥PQ∴∠NAF=∠BFA∴∠BAF=∠BFA∴BA=BF=2∵BG⊥AF∴AG=FG∵∠ABP=600∴∠BAF=∠BFA=300Rt△BFG 中,FG =BF ⋅ c o s∠BFA = 2⨯2=∴AF = 2FG =15.如图,在 Rt△ABC 中,∠ACB=900 ,A C=6,B C=8,点 D 是 AB 的中点,以 CD 为直径作⊙O,⊙O 分别与 AC,B C 交于点 E,F,过点 F 作⊙O 的切线 FG,交 AB 于点 G,则 FG 的长为_____.【答案】12 5【考点】直角三角形斜中线,切线性质,平行线分线段成比例,三角函数【解析】连接 OF∵FG 为⊙0 的切线∴OF⊥FG∵Rt△ABC 中,D为 AB 中点∴ CD=BD ∴ ∠ DCB=∠ B ∵ OC=OF ∴ ∠ OCF=∠ OFC ∴ ∠ CFO=∠ B ∴ OF ∥ BD ∵ O 为 CD 中点 ∴ F 为 BC 中点∴ CF = BF =12BC = 4Rt △ ABC 中, s i n ∠B =35Rt △ BGF 中, FG = BF sin ∠B = 4 ⨯35 =125三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)计 算 :( 1)210(22)4362---+⨯+ 【考点】 实 数 的 计 算【解析】 解:原式 =8-4+2+1=7( 2)222111442x x x x x x --⋅---+- 【考点】 分式化简【解析】 解:原式 =222111442x x x x x x --⋅---+-=+1122x x x ---=2x x -17.(本题 8 分 )如 图 ,一 次 函 数 y 1 = k 1 x + b (k 1 ≠ 0) 的 图 象 分 别 与 x 轴,y 轴 相 交 于 点 A ,B ,与 反 比例函数 y 2= (k ≠ 0) 的 图 象 相 交 于 点 C ( -4, -2), D ( 2, 4) . ( 1) 求 一 次 函 数 和 反 比 例 函 数 的 表 达 式 ; ( 2)当 x 为 何 值 时 ,y 1 > 0 ;( 3)当 x 为 何 值 时 ,y 1 < y 2 ,请直接写出 x的 取 值 围 .【考点】 反 比 例 函 数 与 一 次 函 数【解析】( 1)解: 一次函数 y 1 = k 1 x + b 的 图 象 经 过 点 C ( -4, -2), D ( 2, 4),( 3)解: x < -4 或 0 < x < 2.18.(本题 9 分 ) 在 “ 优 秀 传 统 文 化 进 校 园 ” 活 动 中 , 学 校 计 划 每 周 二 下 午 第 三 节 课 时 间 开 展 此 项 活 动 ,拟 开 展 活 动 项 目 为 :剪 纸 ,武 术 ,书 法 ,器 乐 ,要 求 七 年 级 学 生 人 人 参 加 ,并 且 每 人 只 能参加其中一项活 动 .教务处在该校七年 级 学生中随机抽取了 100 名学生进行调查,并 对此进行 统计,绘制了如图 所 示的条形统计图和 扇 形统计图(均不完 整 ) .请解答下列问题 : ( 1) 请 补 全 条 形 统 计 图 和 扇 形 统 计 图 ;( 2) 在 参 加 “ 剪 纸 ” 活 动 项 目 的 学 生 中 , 男 生 所 占 的 百 分 比 是 多 少 ? ( 3) 若 该 校 七 年 级 学 生 共 有 500 人 , 请 估 计 其 中 参 加 “ 书 法 ” 项 目 活 动 的 有 多 少 人 ? ( 4)学 校 教 务 处 要 从 这 些 被 调 查 的 女 生 中 ,随 机 抽 取 一 人 了 解 具 体 情 况 ,那 么 正 好 抽 到 参 加“ 器 乐”活动项目的女 生 的概率是多少? 【考点】 条 形 统 计 图 , 扇 形 统 计 图 【解析 】( 1)解:( 2)解:1010+15⨯100% = 40%. 答:男生所占的百 分 比为 40%. ( 3)解: 500 ⨯ 21%=105(人) .答:估计其中参加 “ 书法”项目活动的 有 105 人 .(4)解:15155== 15+10+8+1548165答:正好抽到参加“器乐”活动项目的女生的概率为516.19.(本题 8 分)祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设 13 对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目容课题测量斜拉索顶端到桥面的距离测量示意图说明:两侧最长斜拉索AC,B C 相交于点C,分别与桥面交于 A,B两点,且点 A,B,C在同一竖直平面.测量数据∠A 的度数∠B 的度数AB 的长度38°28°234 米... ...(1 )请帮助该小组根据上表中的测量求斜拉索tan 38︒≈ 0.8 ,s in 28︒≈ 0.5 ,c os 28︒≈ 0.9 ,t an 28︒≈ 0.5 );(2) 该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).【考点】三角函数的应用【解析】(1)解:过点 C 作 CD ⊥AB 于点 D.设 CD= x 米,在 Rt ∆ADC 中,∠ADC=90°,∠A=38°.AD +BD =AB = 234 . ∴54x + 2x = 234.解得x = 72 .答:斜拉索顶端点 C 到 AB 的距离为 72 米.(2)解:答案不唯一,还需要补充的项目可为:测量工具,计算过程,人员分工,指导教师,活动感受等.20.(本题 7 分)2018 年 1 月 20 日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号” 列车 时 速 更快 , 安全性 更好.已车多行驶 40 千 米 , 其 行 驶 时 间 是 该 列 “ 和 谐 号 ” 列 车 行 驶 时 间的45(两列车中途停留时间 均 除外) .经 查 询 ,“ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 , 中 途 只 有 石 家 庄 一站,停留 10 分钟 .求乘坐“复兴号” G92 次列车从南到 北 京西需要多长时间 . 【考点】 分 式 方 程 应 用 【解析】解: 设 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要 x 小时, 由题意,得500500=+40151()646x x -- 解得 x =83 经检验, x =83是原方程的根 . 答 : 乘 坐 “ 复 兴 号 ” G92 次 列 车 从 太 原 南 到 北 京 西 需 要83小时 .21. (本题 8分 ) 请 阅 读 下 列 材 料 , 并 完 成 相 应 的 任 务 : 在 数 学 中 ,利 用 图 形 在 变 化 过 程 中 的 不 变 性 质 ,常 常 可 以 找 到 解 决 问 题 的 办 法 .著 名 美 籍 匈 牙 利数学家波利亚在 他 所著的《数学的发现 》一书中有这样一个 例子:试问如何在一 个三角形 ABC 的 AC 和 BC两 边 上 分 别 取 一 点 X 和 Y ,使得 AX=BY=XY.( 如 图 ) 解 决 这 个 问 题 的 操 作 步 骤 如 下 : 第 一 步 ,在 CA 上 作 出 一 点 D ,使 得 CD=CB ,连 接 BD.第 二 步 ,在 CB 上 取 一 点 Y ’ ,作 Y ’ Z ’ //CA,交 BD 于点 Z ’ ,并在 AB 上取一点 A ’ ,使 Z ’ A ’ =Y ’ Z ’ .第 三 步 , 过 点 A 作 AZ//A ’ Z ’ ,交 BD 于点 Z.第四 步 , 过 点 Z 作 ZY//AC ,交 BC 于点 Y ,再过 Y 作 YX//ZA ,交 AC 于点 X. 则有 AX=BY=XY.下面是该结论的部 分 证明: 证明: A Z / / A ' Z ∴∠BA ' Z ' = ∠BAZ 又 ∠A'BZ'=∠ABZ. ∴△BA ' Z △BAZ∴ Z ' A ' = BZ ' .ZABZ同 理 可 得 Y ' Z ' = BZ ' . ∴ Z ' A ' = Y ' Z ' .YZ BZ ZA YZZ ' A ' = Y ' Z ' , ∴ZA = YZ . ...任务:( 1) 请 根 据 上 面 的 操 作 步 骤 及 部 分 证 明 过 程 , 判 断 四 边 形 AXYZ 的形状,并加以证 明 ; ( 2)请 再 仔 细 阅读上面., 在 ( 1)的基础上完成 AX=BY=XY 的证明过程; ( 3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确 定了点 Z , Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 . A.平移 B.旋转 C.轴对称 D.位似 【考点】菱形的性 质 与 判 定 ,图形的位似 【解析】(1) 答 :四边形 AXYZ 是菱形 . 证明:Z Y / / A C , Y X / / Z ∴A , 四边形 AXYZ 是 平 行 四 边 形 . ZA = YZ , ∴ AXYZ 是菱形(2) 答 :证明: C D = C B , ∴∠1 = ∠2 ZY / / AC , ∴∠1 = ∠3 . ∴∠2=∠3 . ∴YB = YZ . 四边形 AXYZ 是 菱 形 , ∴AX=XY=YZ. ∴AX=BY=XY.(3)上 述 解 决 问 题 的 过 程 中 ,通 过 作 平 行 线 把 四 边 形 BA ’ Z ’ Y ’ 放大得到四边形 BAZY ,从 而 确定了点 Z ,Y 的 位 置 , 这 里 运 用 了 下 面 一 种 图 形 的 变 化 是 D ( 或 位 似 ) .A.平移B.旋转C.轴对称D.位似22. (本题 12 分 )综 合 与 实 践 问 题 情 境 : 在 数 学 活 动 课 上 , 老 师 出 示 了 这 样 一 个 问 题 : 如 图 1, 在 矩 形 ABCD 中, A D=2AB , E 是 AB 延 长 线 上 一 点 ,且 BE=AB ,连 接 DE ,交 BC 于点 M ,以 DE 为 一 边 在 DE 的 左 下 方 作 正 方 形 DEFG , 连接 AM . 试 判 断 线 段 AM 与 DE 的 位 置 关 系 . 探 究 展 示 : 勤 奋 小 组 发 现 , A M 垂直平分 DE ,并展示了如下的 证 明方法: 证明: B E = A B , ∴ AE = 2 A B AD = 2 A B , ∴ AD = AE四边形 ABCD 是 矩 形 , ∴ AD / / B C .∴EM EBDM AB=( 依 据 1 ) BE = AB , ∴ 1EMDM=∴ E M = DM .即 AM 是△ ADE 的 DE 边上的中线,又 AD = AE , ∴ AM ⊥ DE . (依据 2)∴AM 垂直平分 DE .反 思 交 流 : (1)① 上 述 证 明 过 程 中 的 “ 依 据 1”“ 依 据 2”分别是指什么?② 试 判 断 图 1 中 的 点 A 是否在线段 GF 的 垂 直 平 分 上 , 请 直 接 回 答 , 不 必 证 明 ;(2)创 新 小 组 受 到 勤 奋 小 组 的 启 发 , 继 续 进 行 探 究 , 如 图 2, 连 接 CE ,以 CE 为 一 边 在 CE 的左下 方作正方形 CEFG , 发 现 点 G 在线段 BC 的 垂 直 平 分 线 上 , 请 你 给 出 证 明 ; 探 索 发 现 :(3)如图 3,连接 CE ,以 CE 为一边在 CE 的右上方作正方形 CEFG ,可以发现点 C ,点 B 都在线段 AE 的垂直平分线上, 除此之外,请观察 矩 形 ABCD 和正方形 CEFG 的顶点与边,你还能 发现哪个 顶点在哪条边的垂 直 平分线上,请写出 一 个你发现的结论, 并 加以证明 .【考点】 平 行 线 分 线 段 成 比 例 , 三 线 合 一 , 正 方 形 、 矩 形 性 质 , 全 等 【解析】 (1) 答 :① 依据 1:两 条 直 线 被 一 组 平 行 线 所 截 ,所 得 的 对 应 线 段 成 比 例( 或 平 行 线 分 线 段 成比例) .依据 2: 等 腰 三 角 形 顶 角 的 平 分 线 , 底 边 上 的 中 线 及 底 边 上 的 高 互 相 重 合 ( 或 等 腰 三 角 形的“三线合一 ”) . ② 答:点 A 在 线 段 GF 的垂直平分线上 . (2) 证明 :过点 G 作 GH ⊥ BC 于点 H ,四 边形 ABCD 是 矩 形 , 点 E 在 AB 的 延 长 线 上 ,∴∠CBE = ∠ABC = ∠GHC = 90︒. ∴∠1+∠2=90︒.四边形 CEFG 为 正 方 形 ,∴CG = CE , ∠GCE = 90︒.∠1+ ∠3 = 90︒. ∴∠2=∠3. ∴△GHC ≌ △CBE . ∴ H C = BE . 四边形 ABCD 是 矩 形 , ∴ AD = BC .AD = 2 A B , BE = AB , ∴ B C = 2BE = 2HC . ∴ H C = BH .∴GH 垂直平分 BC.∴点 G 在 BC 的 垂 直 平 分 线 上(3)答:点 F 在 BC 边的垂直平分线上(或点 F 在 AD 边的垂直平分线上).证法一:过点 F 作 FM ⊥BC 于点 M,过点 E 作 EN ⊥FM 于点 N.∴∠BMN =∠ENM =∠ENF =90︒.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE =∠ABC = 90︒.∴四边形BENM 为矩形.∴B M =EN,∠BEN = 90︒. ∴∠1+∠2 =90︒.四边形 CEFG 为正方形,∴EF =EC, ∠CEF = 90︒. ∴∠2 +∠3 =90︒.∴∠1=∠3. ∠CBE =∠ENF =90︒,∴△ENF≌△EBC.∴N E =BE. ∴B M =BE.四边形 ABCD 是矩形,∴AD =BC.AD =2A B, AB =BE. ∴B C = 2BM . ∴B M =MC.∴FM 垂直平分 BC,∴点 F 在 BC 边的垂直平分线上.证法二:过 F 作 FN ⊥BE 交 BE 的延长线于点 N,连接 FB,F C.四边形 ABCD 是矩形,点 E 在 AB 的延长线上,∴∠CBE=∠ABC=∠N=90°. ∴∠1+∠3=90°.四边形 CEFG 为正方形,∴EC=EF,∠CEF=90°.∴∠1+∠2=90°. ∴∠2=∠3.∴△ENF ≅△CBE.∴NF=BE,NE=BC.四边形 ABCD 是矩形,∴AD=BC.AD=2AB,B E=AB. ∴设 BE=a,则 BC=EN=2a,NF=a.∴BF=CF. ∴点 F 在 BC 边的垂直平分线上.1 2 23. (本题 13 分 )综 合 与 探 究如图,抛物线211433y x x =--与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接 AC , BC .点 P 是 第 四 象 限 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM ⊥ x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE ∥ AC 交 x 轴于点 E ,交 BC 于点 F .( 1) 求 A , B , C 三点的坐标;( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是 等腰三角形.若存 在 ,.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由; (3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 . 【考点】 几 何 与 二 次 函 数 综 合 【解析】 ( 1) 解: 由 y = 0 ,得2114=033x x -- 解得 x 1 = -3 , x 2 = 4 . ∴ 点 A , B 的坐标分别为 A(-3,0), B ( 4, 0)由 x = 0 ,得 y = -4 .∴ 点 C 的 坐 标 为 C ( 0, -4) .( 2) 答: Q ( 5 2 , 5 2 2 - 4) , Q (1,-3) . 2 ( 3) 过点 F 作 FG ⊥ PQ 于点 G . 则 FG ∥x 轴 . 由 B ( 4, 0), C ( 0, -4),得 △O B C 为 等 腰 直 角 三 角 形 .∴ ∠OBC = ∠QFG = 45︒ . ∴ GQ = FG=2FQ . PE ∥ AC , ∴ ∠1 = ∠2 . FG ∥x 轴,∴ ∠2 = ∠3 . ∴ ∠1 = ∠3 .∠FGP = ∠AOC = 90︒ , ∴ △FGP ∽△AOC .。
2022年山西省中考数学试卷和答案解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)﹣6的相反数为()A.6B.C.D.﹣6 2.(3分)2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度.下列航天图标,其文字上方的图案是中心对称图形的是()A.中国探火B.中国火箭C.中国行星探测D.航天神舟3.(3分)粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.(3分)神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.(3分)不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.(3分)如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°.直尺的一边DE经过顶点A,若DE∥CB,则∠DAB 的度数为()A.100°B.120°C.135°D.150°7.(3分)化简﹣的结果是()A.B.a﹣3C.a+3D.8.(3分)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.(3分)“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界誉为“中国第五大发明”.小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大寒”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.(3分)如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)计算:×的结果为.12.(3分)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.13.(3分)生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多.为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.(3分)某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.(3分)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN =8,则线段AN的长为.三、参考答案题(本大题共8个小题,共75分.参考答案应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.(8分)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.(7分)2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势.经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.(8分)首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代•奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,参考答案下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.(8分)阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况.下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识.例如:可用函数观点来认识一元一次方程的解.请你再举出一例为.21.(8分)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O 飞行24m到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.(13分)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt △ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.(13分)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x 轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.参考答案与解析一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.【参考答案】解:﹣6的相反数是:6,故选:A.【解析】此题主要考查了相反数的定义,同学们要熟练掌握相反数的定义.2.【参考答案】解:选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:B.【解析】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.3.【参考答案】解:68285万吨=6.8285×104×104=6.8285×108(吨),故选:D.【解析】本题考查了科学记数法﹣表示较大的数,掌握a m•a n=a m+n 是解题的关键.4.【参考答案】解:∵每圈螺纹的直径与相邻螺纹直径的比约为0.618,又黄金分割比为≈0.618,∴其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的黄金分割,故选:D.【解析】本题主要考查了数学与自然界与数学知识的联系,熟悉线段的黄金分割是解题的关键.5.【参考答案】解:解不等式2x+1≥3,得:x≥1,解不等式4x﹣1<7,得:x<2,则不等式组的解集为1≤x<2,故选:C.【解析】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是参考答案此题的关键.6.【参考答案】解:∵DE∥CB,∠C=90°,∴∠DAC=∠C=90°,∵∠BAC=30°,∴∠DAB=∠DAC+∠BAC=120°,故答案为:B.【解析】本题主要考查了平行线的性质以及三角形角和差计算,关键是利用平行线的性质求得∠DAC.7.【参考答案】解:﹣=﹣===,故选:A.【解析】本题考查了分式的加减法,熟练掌握异分母分式的加减法法则是解题的关键.8.【参考答案】解:连接BD,∵AD是⊙O的直径,∴∠ABD=90°,∵∠ABC=20°,∴∠CBD=∠ABD﹣∠ABC=70°,∴∠CAD=∠CBD=70°,故选:C.【解析】本题考查了圆周角定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.9.【参考答案】解:设立春用A表示,立夏用B表示,秋分用C表示,大寒用D表示,树状图如下,由上可得,一共有12种可能性,其中小乐抽到的两张邮票恰好是“立春”和“立夏”的可能性2种,∴小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是=,故选:C.【解析】本题考查列表法与树状图法,参考答案本题的关键是明确题意,画出相应的树状图.10.【参考答案】解:沿AB折叠扇形纸片,点O恰好落在上的点C处,∴AC=AO,BC=BO,∵AO=BO,∴四边形AOBC是菱形,连接OC交AB于D,∵OC=OA,∴△AOC是等边三角形,∴∠CAO=∠AOC=60°,∴∠AOB=120°,∵AC=3,∴OC=3,AD=AC=,∴AB=2AD=3,∴图中阴影部分的面积=S扇形AOB﹣S菱形AOBC=﹣3×3=3π﹣,故选:B.【解析】本题考查了扇形面积的计算,菱形的判定和性质,等边三角形的判定和性质,正确地作出辅助线是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.【参考答案】解:原式==3.故答案为:3.【解析】本题主要考查了二次根式的乘法运算.二次根式的运算法则:乘法法则=.12.【参考答案】解:设p=,∵函数图象经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.【解析】本题考查反比例函数的应用,待定系数法等知识,解题的关键是灵活应用待定系数法解决问题,属于中考常考题型.13.【参考答案】解:甲的方差为:=[(32﹣25)2+(30﹣25)2+(25﹣25)2+(18﹣25)2+(20﹣25)2]=29.6;乙的方差为:=[(28﹣25)2+(25﹣25)2+(26﹣25)2+(24﹣25)2+(22﹣25)2]=4.∵29.6>4,∴两个大豆品种中光合作用速率更稳定的是乙.故答案为:乙.【解析】此题考查了方差、平均数,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.【参考答案】解:设该护眼灯可降价x元,根据题意,得,解得x≤32,故答案为:32.【解析】本题考查了一元一次不等式的应用,理解题意并根据题意建立一元一次不等式是解题的关键.15.【参考答案】解:如图,连接AE,AF,EN,∵四边形ABCD为正方形,∴AB=AD,BC=CD,∠ABE=∠BCD=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF,AE=AF,∴∠EAF=90°,∴△EAF为等腰直角三角形,∵AN⊥EF,∴EM=FM,∠EAM=∠FAM=45°,∴△AEM≌△AFM(SAS),△EMN≌△FMN(SAS),∴EN=FN,设DN=x,∵BE=DF=5,CN=8,∴CD=CN+DN=x+8,∴EN=FN=DN+DF=x+5,CE=BC﹣BE=CD﹣BE=x+8﹣5=x+3,在Rt△ECN中,由勾股定理可得:CN2+CE2=EN2,即82+(x+3)2=(x+5)2,解得:x=12,∴DN=12,AD=BC=BE+CE=5+x+3=20,∴AN===4,故答案为:4.【解析】本题考查正方形的性质,勾股定理,等腰三角形的性质,全等三角形的判定与性质等知识点,解题的关键是正确作出辅助线,构建全等三角形解决问题.三、参考答案题(本大题共8个小题,共75分.参考答案应写出文字说明,证明过程或演算步骤)16.【参考答案】解:(1)原式=9×+(﹣3)+2=3+(﹣3)+2=2;(2)①+②得:3x=9,∴x=3,将x=3代入②得:3+y=6,∴y=3,∴原方程组的解为.【解析】本题考查了实数的运算,有理数的乘方,负整数指数幂,绝对值,解二元一次方程组,解二元一次方程组的基本思路是消元,将二元方程转化为一元方程是解题的关键.17.【参考答案】解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.【解析】本题考查了基本作图,矩形的性质,全等三角形的判定与性质,熟练掌握线段垂直平分线的作法,矩形的性质,全等三角形的判定方法是解决问题的关键.18.【参考答案】解:设这款电动汽车平均每公里的充电费用为x元,根据题意,得,解得x=0.2,经检验,x=0.2是原方程的根,答:这款电动汽车平均每公里的充电费用为0.2元.【解析】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中等量关系,设出未知数,列出方程,注意不要忘记检验.19.【参考答案】解:(1)∵平均每周阅读课外书的时间大约是0~4小时的人数为33人,占抽样学生人数的11%,∴参与本次抽样调查的学生人数为:33÷11%=300(人),∵从图书馆借阅的人数占总数人的62%,∴选择“从图书馆借阅”的人数为:300×62%=186(人),答:参与本次抽样调查的学生人数为300人,选择“从图书馆借阅”的人数为186人;(2)∵平均每周阅读课外书时间在“8小时及以上”的人数占比为32%,∴3600×32%=1152(人),答:该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数为1152人;(3)答案不唯一,如:由第一项可知:阅读时间为“4~6小时”的人数最多,“0~4小时”的人数最少,由第二项可知:阅读的课外书的主要来源中“从图书馆借阅”的人数最多,“向他人借阅”的人数最少.【解析】本题考查条形统计图,扇形统计图,用样本估计总体等知识点,解题的关键是掌握利用统计图提取所需信息.20.【参考答案】解:(1)上面小论文中的分析过程,主要运用的数学思想是AC;故答案为:AC;(2)a>0时,抛物线开口向上,当Δ=b2﹣4ac<0时,有4ac﹣b2>0.∵a>0,∴顶点纵坐标>0∴顶点在x轴的上方,抛物线与x轴无交点,如图,∴一元二次方程ax2+bx+c=0(a≠0)无实数根;(3)可用函数观点认识二元一次方程组的解;故答案为:可用函数观点认识二元一次方程组的解(答案不唯一).【解析】本题考查了根的判别式,用函数观点认识方程、方程组以及不等式的关系,体现了数形结合数学的思想.21.【参考答案】解:延长AB,CD分别与直线OF交于点G和点H,则AG=60m,GH=AC,∠AGO=∠EHO=90°,在Rt△AGO中,∠AOG=70°,∴OG=≈≈21.8(m),∵∠HFE是△OFE的一个外角,∴∠OEF=∠HFE﹣∠FOE=30°,∴∠FOE=∠OEF=30°,∴OF=EF=24m,在Rt△EFH中,∠HFE=60°,∴FH=EF•cos60°=24×=12(m),∴AC=GH=OG+OF+FH=21.8+24+12≈58(m),∴楼AB与CD之间的距离AC的长约为58m.【解析】本题考查了解直角三角形的应用﹣仰角俯角问题,等腰三角形的判定,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【参考答案】解:(1)四边形AMDN是矩形,理由如下:∵点D是BC的中点,点M是AB的中点,∴MD∥AC,∴∠A+∠AMD=180°,∵∠BAC=90°,∴∠AMD=90°,∵∠A=∠AMD=∠MDN=90°,∴四边形AMDN是矩形;(2)如图2,过点N作NG⊥CD于G,∵AB=6,AC=8,∠BAC=90°,∴BC==10,∵点D是BC的中点,∴BD=CD=5,∵∠MDN=90°=∠A,∴∠B+∠C=90°,∠BDM+∠1=90°,∴∠1=∠C,∴DN=CN,又∵NG⊥CD,∴DG=CG=,∵cosC=,∴,∴CN=;(3)如图③,连接MN,AD,过点N作HN⊥AD于H,∵AM=AN,∠MAN=90°,∴∠AMN=∠ANM=45°,∵∠BAC=∠EDF=90°,∴点A,点M,点D,点N四点共圆,∴∠ADN=∠AMN=45°,∵NH⊥AD,∴∠ADN=∠DNH=45°,∴DH=HN,∵BD=CD=5,∠BAC=90°,∴AD=CD=5,∴∠C=∠DAC,∴tanC=tan∠DAC==,∴AH=HN,∵AH+HD=AD=5,∴DH=HN=,AH=,∴AN===.解法二:如图,延长MD到T,使得MD=DT,连接NT,CT.设AM=AN=a.证明CT=BM=6﹣a,NM=NT=a,∠NCT =90°,由NT2=CN2+CT2,可得(a)2=(8﹣a)2+(6﹣a)2,解得a=.解法三:也可以通过D向AC和AB分别作垂线DQ和DP,通过△DPM∽△DQN相似来算.【解析】本题是三角形综合题,考查了矩形的判定,直角三角形的性质,勾股定理,锐角三角函数,圆的有关知识,灵活运用这些性质解决问题是解题的关键.23.【参考答案】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.【解析】本题考查二次函数综合应用,涉及待定系数法,等腰三角形性质,矩形判定及性质,相似三角形判定及性质等知识,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.。
2023年山西省中考数学真题试卷及答案第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 计算的结果为( ).A. 3B.C.D.【答案】A 【解析】根据有理数乘法运算法则计算即可.解:.故选A .【点拨】本题主要考查了有理数乘法,掌握“同号得正、异号得负”的规律是解答本题的关键.2. 全民阅读有助于提升一个国家、一个民族的精神力量.图书馆是开展全民阅读的重要场所.以下是我省四个地市的图书馆标志,其文字上方的图案是轴对称图形的是( )A. B. C. D.【答案】C 【解析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据这个概念判断即可.解:根据轴对称图形的概念知,C 选项中文字上方的图案是轴对称图形,故选:C .【点拨】本题考查了轴对称图形,理解此概念是关键.3. 下列计算正确的是( )A. B.C.D.【答案】D 【解析】根据同底数幂乘除法法则、积的乘方及幂的乘方法则逐一计算即可得答案.A.,故该选项计算错误,不符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算正确,符合题意,故选:D.【点拨】本题考查同底数幂乘除法、积的乘方及幂的乘方,熟练掌握运算法则是解题关键.4. 山西是全国电力外送基地,2022年山西省全年外送电量达到1464亿千瓦时,同比增长.数据1464亿千瓦时用科学记数法表示为()A. 千瓦时B. 千瓦时C. 千瓦时D. 千瓦时【答案】C【解析】根据科学记数法表示规则写出即可.1464亿,故选:C.【点拨】此题考查了科学记数法,解题的关键是熟悉科学记数法规则().5. 如图,四边形内接于为对角线,经过圆心.若,则的度数为()A. B. C. D.【答案】B【解析】由同弧所对圆周角相等及直角三角形的性质即可求解.解:∵,∴,∵为圆的直径,∴,∴;故选:B.【点拨】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.6. 一种弹簧秤最大能称不超过的物体,不挂物体时弹簧的长为,每挂重物体,弹簧伸长.在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为()A. B. C. D.【答案】B【解析】挂重后弹簧长度等于不挂重时的长度加上挂重后弹簧伸长的长度,据此即可求得函数关系式.解:由题意知:;故选:B.【点拨】本题考查了求函数关系式,正确理解题意是关键.7. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为()A. B. C. D.【答案】C【解析】利用平行线的性质及三角形外角的性质即可求解.解:∵,∴,∴,∵,∴;故选:C.【点拨】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.8. 已知都在反比例函数的图象上,则A.B.c的关系是()A. B. C. D.【答案】B【解析】先根据反比例函数中判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解:∵反比例函数中,∴函数图象两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小.∵∴位于第三象限,∴∵∴∵∴点位于第一象限,∴∴故选:B.【点拨】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9. 中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为,曲线终点为,过点的两条切线相交于点,列车在从到行驶的过程中转角为.若圆曲线的半径,则这段圆曲线的长为().A. B. C. D.【答案】B由转角为可得,由切线的性质可得,根据四边形的内角和定理可得,然后根据弧长公式计算即可.解:如图:∵,∴,∵过点的两条切线相交于点,∴,∴,∴.故选B.【点拨】本题主要考查了圆的切线的性质、弧长公式等知识点,根据题意求得是解答本题的关键.10. 蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点均为正六边形的顶点.若点的坐标分别为,则点的坐标为()A. B. C. D.【答案】A连接,设正六边形的边长为a,由正六边形的性质及点P的坐标可求得a的值,即可求得点M的坐标.解:连接,如图,设正六边形的边长为a,∵,∴,∵,∴,∴,∴,,∵点P的坐标为,∴,即;∴,,∴点M的坐标为.故选:A.【点拨】本题考查了坐标与图形,正六边形的性质,勾股定理,含30度角直角三角形的性质等知识,掌握这些知识是解题的关键.第Ⅱ卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 计算(+)(﹣)的结果为__________.【答案】﹣1【解析】此题用平方差公式计算即可.12. 如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n 个图案中有__________个白色圆片(用含n的代数式表示)【答案】【解析】由于第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,,可得第个图案中有白色圆片的总数为.解:第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,,∴第个图案中有个白色圆片.故答案为:.【点拨】此题考查图形的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.解题关键是总结归纳出图形的变化规律.13. 如图,在中,.以点为圆心,以的长为半径作弧交边于点,连接.分别以点为圆心,以大于的长为半径作弧,两弧交于点,作射线交于点,交边于点,则的值为__________.【答案】【解析】证明,,,再利用正切函数的定义求解即可.解:∵在中,,∴,,由作图知平分,,∴是等边三角形,,∴,,∵,∴,∴,∴,∵,∴,∴,故答案为:.【点拨】本题考查了平行四边形的性质,角平分线的定义,尺规作图—作角平分线,等边三角形的判定和性质,正切函数的定义,求得是解题的关键.14. 中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是__________.【答案】【解析】用树状图把所有情况列出来,即可求出.总共有12种组合,《论语》和《大学》的概率,故答案为:.【点拨】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.15. 如图,在四边形中,,对角线相交于点.若,则的长为__________.【答案】##【解析】过点A作于点H,延长,交于点E,根据等腰三角形性质得出,根据勾股定理求出,证明,得出,根据等腰三角形性质得出,证明,得出,求出,根据勾股定理求出,根据,得出,即,求出结果即可.解:过点A作于点H,延长,交于点E,如图所示:则,∵,∴,∴,∵,,∴,∴,∵,∴,∴,∴,∵,,∴,∴,∴,即,解得:,∴,∵,∴,即,解得:.故答案为:.【点拨】本题主要考查了三角形外角的性质,等腰三角形的判定和性质,勾股定理,平行线分线段成比例,相似三角形的判定与性质,平行线的判定,解题的关键是作出辅助线,熟练掌握平行线分线段成比例定理及相似三角形的判定与性质.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16. (1)计算:;(2)计算:.【答案】(1)1;(2)【解析】(1)分别计算绝对值、乘方、加法及负整数指数幂,再计算有理数的乘法与减法即可;(2)分别利用单项式乘多项式、完全平方公式展开后,再合并同类项即可.(1)解:原式.(2)解:原式.【点拨】本题考查了实数的混合运算,整式的混合运算,涉及负整数指数幂、绝对值、多项式的乘法、完全平方公式等知识,掌握运算顺序、多项式的乘法法则是解题的关键.17. 解方程:.【答案】【解析】去分母化为整式方程,求出方程的根并检验即可得出答案.解:原方程可化为.方程两边同乘,得.解得.检验:当时,.∴原方程的解是.【点拨】本题考查了分式方程的解法,熟练掌握解分式方程的方法是解题关键.18. 为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图测试成绩/分选手总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【解析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项的测试成绩按的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.(1)从小到大排序,67,68,69,69,71,72,74,∴中位数是69,众数是69,平均数:69,69,70(2)解:(分).答:小涵的总评成绩为82分.(3)结论:小涵能入选,小悦不一定能入选理由:由频数直方图可得,总评成绩不低于80分的学生有10名,总评成绩不低于70分且小宁80分的学生有6名.小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【点拨】此题考查了中位数、众数、平均数,解题的关键是熟悉相关概念.19. 风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?【答案】(1)一个部件的质量为1.2吨,一个部件的质量为0.8吨(2)6套【解析】(1)设一个A部件的质量为吨,一个部件的质量为吨.然后根据等量关系“1个A部件和2个B部件的总质量为2.8吨”和“2个A部件和3个B部件的质量相等”列二元一次方程组求解即可;(2)设该卡车一次可运输套这种设备通过此大桥.根据“载重后总质量超过30吨的车辆禁止通行”列不等式再结合为整数求解即可.(1)解:设一个A部件的质量为吨,一个部件的质量为吨.根据题意,得,解得.答:一个A 部件的质量为1.2吨,一个部件的质量为0.8吨.(2)解:设该卡车一次可运输套这种设备通过此大桥.根据题意,得.解得.因为为整数,取最大值,所以.答:该卡车一次最多可运输6套这种设备通过此大桥.【点拨】本题主要考查了二元一次方程组的应用、一元一次不等式的应用等知识点,正确列出二元一次方程组和不等式是解答本题的关键.20. 2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑各种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算和的长度(结果精确到.参考数据:,).课题母亲河驳岸的调研与计算调查方式资料查阅、水利部门走访、实地查看了解功能驳岸是用来保护河岸,阻止河岸崩塌或冲刷的构筑物驳岸剖面图相关数据及说明,图中,点A ,B ,C ,D ,E 在同一竖直平面内,与均与地面平行,岸墙于点A ,,,,,计算结果交流展示【答案】的长约为的长约为.【解析】过点作于点,延长交于点,首先根据的三角函数值求出,,然后得到四边形是矩形,进而得到,然后在中利用的三角函数值求出,进而求解即可.解:过点作于点,延长交于点,∴.由题意得,在中,.∴.∴.由题意得,,四边形是矩形.∴.∵,∴.∴在中,.∵.∴.∴,∴.答:的长约为的长约为.【点拨】本题是解直角三角形的应用,考查了矩形的判定与性质,解直角三角形,关键是理解坡度的含义,构造适当的辅助线便于在直角三角形中求得相关线段.21. 阅读与思考:下面是一位同学的数学学习笔记,请仔细阅读并完成相应任务.瓦里尼翁平行四边形我们知道,如图1,在四边形中,点分别是边,的中点,顺次连接,得到的四边形是平行四边形.我查阅了许多资料,得知这个平行四边形被称为瓦里尼翁平行四边形.瓦里尼翁是法国数学家、力学家.瓦里尼翁平行四边形与原四边形关系密切.①当原四边形的对角线满足一定关系时,瓦里尼翁平行四边形可能是菱形、矩形或正方形.②瓦里尼翁平行四边形的周长与原四边形对角线的长度也有一定关系.③瓦里尼翁平行四边形的面积等于原四边形面积的一半.此结论可借助图1证明如下:证明:如图2,连接,分别交于点,过点作于点,交于点.∵分别为的中点,∴.(依据1)∴.∵,∴.∵四边形是瓦里尼翁平行四边形,∴,即.∵,即,∴四边形是平行四边形.(依据2)∴.∵,∴.同理,…任务:(1)填空:材料中的依据1是指:_____________.依据2是指:_____________.(2)请用刻度尺、三角板等工具,画一个四边形及它的瓦里尼翁平行四边形,使得四边形为矩形;(要求同时画出四边形的对角线)(3)在图1中,分别连接得到图3,请猜想瓦里尼翁平行四边形的周长与对角线长度的关系,并证明你的结论.【答案】(1)三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半);平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)(2)答案不唯一,见解析(3)平行四边形的周长等于对角线与长度的和,见解析【解析】(1)根据三角形中位线定理和平行四边形的定义解答即可;(2)作对角线互相垂直的四边形,再顺次连接这个四边形各边中点即可;(3)根据三角形中位线定理得瓦里尼翁平行四边形一组对边和等于四边形的一条对角线,即可得妯结论.(1)解:三角形中位线定理(或三角形的中位线平行于第三边,且等于第三边的一半)平行四边形的定义(或两组对边分别平行的四边形叫做平行四边形)(2)解:答案不唯一,只要是对角线互相垂直的四边形,它的瓦里尼翁平行四边形即为矩形均可.例如:如图即为所求【小问3详解】瓦里尼翁平行四边形的周长等于四边形的两条对角线与长度的和,证明如下:∵点分别是边的中点,∴.∴.同理.∴四边形的周长.即瓦里尼翁平行四边形的周长等于对角线与长度的和.【点拨】本题考查平行四边形的判定,矩形的判定,三角形中位线.熟练掌握三角形中位线定理是解题的关键.22. 问题情境:“综合与实践”课上,老师提出如下问题:将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为和,其中.将和按图2所示方式摆放,其中点与点重合(标记为点).当时,延长交于点.试判断四边形的形状,并说明理由.(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的绕点逆时针方向旋转,使点落在内部,并让同学们提出新的问题.①“善思小组”提出问题:如图3,当时,过点作交的延长线于点与交于点.试猜想线段和的数量关系,并加以证明.请你解答此问题;②“智慧小组”提出问题:如图4,当时,过点作于点,若,求的长.请你思考此问题,直接写出结果.【答案】(1)正方形,见解析(2)①,见解析;②【解析】(1)先证明四边形是矩形,再由可得,从而得四边形是正方形;(2)①由已知可得,再由等积方法,再结合已知即可证明结论;②设的交点为M,过M作于G,则易得,点G是的中点;利用三角函数知识可求得的长,进而求得的长,利用相似三角形的性质即可求得结果.(1)解:四边形为正方形.理由如下:∵,∴.∵,∴.∴.∵,∴四边形为矩形.∵,∴.∴矩形为正方形.(2):①.证明:∵,∴.∵,∴.∵,即,∴.∵,∴.由(1)得,∴.②解:如图:设的交点为M,过M作于G,∵,∴,,∴;∵,∴,∴,∵,∴点G是的中点;由勾股定理得,∴;∵,∴,即;∴;∵,,∴,∴,∴,即的长为.【点拨】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.23. 如图,二次函数的图象与轴的正半轴交于点A,经过点A的直线与该函数图象交于点,与轴交于点C.(1)求直线的函数表达式及点C的坐标;(2)点是第一象限内二次函数图象上的一个动点,过点作直线轴于点,与直线交于点D,设点的横坐标为.①当时,求的值;【答案】(1),点的坐标为(2)①2或3或;②,S的最大值为【解析】(1)利用待定系数法可求得直线的函数表达式,再求得点C的坐标即可;(2)①分当点在直线上方和点在直线下方时,两种情况讨论,根据列一元二次方程求解即可;②证明,推出,再证明四边形为矩形,利用矩形面积公式得到二次函数的表达式,再利用二次函数的性质即可求解.(1)解:由得,当时,.解得.∵点A轴正半轴上.∴点A坐标为.设直线的函数表达式为.将两点的坐标分别代入,得,解得,∴直线的函数表达式为.将代入,得.∴点C的坐标为;(2)①解:点在第一象限内二次函数的图象上,且轴于点,与直线交于点,其横坐标为.∴点的坐标分别为.∴.∵点的坐标为,∴.∵,∴.如图,当点在直线上方时,.∵,∴.解得.如图2,当点在直线下方时,.∵,∴.解得,∵,∴.综上所述,的值为2或3或;②解:如图3,由(1)得,.∵轴于点,交于点,点B的坐标为,∴.∵点在直线上方,∴.∵轴于点,∴.∴,,∴.∴.∴.∴.∴.∴四边形为平行四边形.∵轴,∴四边形为矩形.∴.即.∵,∴当时,S的最大值为.【点拨】本题属于二次函数综合题,考查了二次函数、一次函数、等腰三角形、矩形、勾股定理、相似三角形等知识点,第二问难度较大,需要分情况讨论,画出大致图形,用含m的代数式表示出是解题的关键.。
2017年山西省中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.32.(3分)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠43.(3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差4.(3分)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.5.(3分)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m46.(3分)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°7.(3分)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.8.(3分)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨9.(3分)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法10.(3分)如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()A.5πcm2B.10πcm2C.15πcm2D.20πcm2二、填空题(本大题共5个小题,每小题3分)11.(3分)计算:4﹣9=.12.(3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.13.(3分)如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.14.(3分)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)15.(3分)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.17.(6分)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.18.(7分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.19.(7分)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?20.(12分)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)21.(7分)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.22.(12分)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.23.(14分)如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A 在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).(1)求直线BC的函数表达式;(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)②在点P、Q运动的过程中,当PQ=PD时,求t的值;(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点?若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.2017年山西省中考数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.(3分)(2017•山西)计算﹣1+2的结果是()A.﹣3 B.﹣1 C.1 D.3【分析】直接利用有理数加减运算法则得出答案.【解答】解:﹣1+2=1.故选:C.【点评】此题主要考查了有理数加法,正确掌握运算法则是解题关键.2.(3分)(2017•山西)如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;由∠3=∠4,不能判定直线a与b平行,故选:D.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;同旁内角互补,两直线平行.3.(3分)(2017•山西)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数B.平均数C.中位数D.方差【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好;所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.故选D.【点评】本题考查平均数、方差、众数、中位数等知识,解题的关键是理解方差的意义,属于中考常考题型.4.(3分)(2017•山西)将不等式组的解集表示在数轴上,下面表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解集;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣4在数轴上表示为:故选:A.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2017•山西)下列运算错误的是()A.(﹣1)0=1 B.(﹣3)2÷=C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.【解答】解:A、(﹣1)0=1,正确,不符合题意;B、(﹣3)2÷=4,错误,符合题意;C、5x2﹣6x2=﹣x2,正确,不符合题意;D、(2m3)2÷(2m)2=m4,正确,不符合题意;故选B.【点评】本题考查了整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则,熟记法则是解题的关键.6.(3分)(2017•山西)如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()A.20°B.30°C.35°D.55°【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.【解答】解:∵∠1=35°,CD∥AB,∴∠ABD=35°,∠DBC=55°,由折叠可得∠DBC'=∠DBC=55°,∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,故选:A.【点评】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA的度数.7.(3分)(2017•山西)化简﹣的结果是()A.﹣x2+2x B.﹣x2+6x C.﹣D.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣==﹣故选(C)【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)(2017•山西)2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()A.186×108吨B.18.6×109吨 C.1.86×1010吨D.0.186×1011吨【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:186亿吨=1.86×1010吨.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)(2017•山西)公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“是有理数”的假设不成立,所以,是无理数.这种证明“是无理数”的方法是()A.综合法B.反证法C.举反例法D.数学归纳法【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.故选:B .【点评】此题主要考查了反证法,正确把握反证法的一般步骤是解题关键.10.(3分)(2017•山西)如图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A ,B ,C ,D ,得到四边形ABCD .若AC=10cm ,∠BAC=36°,则图中阴影部分的面积为( )A .5πcm 2B .10πcm 2C .15πcm 2D .20πcm 2【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,于是得到结论.【解答】解:∵AC 与BD 是⊙O 的两条直径,∴∠ABC=∠ADC=∠DAB=∠BCD=90°,∴四边形ABCD 是矩形,∴△ABO 与△CDO 的面积的和=△AOD 与△BOC 的面积的和,∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD ,∵OA=OB ,∴∠BAC=∠ABO=36°,∴∠AOD=72°,∴图中阴影部分的面积=2×=10π,故选B .【点评】本题考查了扇形的面积,矩形的判定和性质,圆周角定理,熟练掌握扇形的面积公式是解题的关键.二、填空题(本大题共5个小题,每小题3分)11.(3分)(2017•山西)计算:4﹣9=3.【分析】先化简,再做减法运算即可.【解答】解:原式=12=3,故答案为:3.【点评】本题主要考查了二次根式的加减法,先化简再求值是解答此题的关键.12.(3分)(2017•山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 1.08a元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【解答】解:由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.【点评】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.13.(3分)(2017•山西)如图,已知△ABC三个顶点的坐标分别为A(0,4),B (﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).【分析】由平移的性质和旋转的性质作出图形,即可得出答案.【解答】解:如图所示:∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,则点A″的坐标为(6,0);故答案为:(6,0).【点评】本题考查了坐标与图形性质、平移的性质、旋转的性质;熟练掌握平移和旋转的性质是解决问题的关键.14.(3分)(2017•山西)如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=1.5米,则这棵树的高度为15.3米.(结果保留一位小数.参考数据:sin54°=0.8090,cos54°=0.5878,tan54°=1.3764)【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=1.5,由此即可解决问题.【解答】解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=1.5m,在Rt△ACD中,CD=EB=10m,∠ACD=54°,∵tan∠ACE=,∴AD=CD•tan∠ACD≈10×1.38=13.8m.∴AB=AD+BD=13.8+1.5=15.3m.答:树的高度AB约为15.3m.故答案为15.3【点评】本题考查解直角三角形的应用﹣仰角俯角问题、锐角三角函数等知识,解题的关键是通过添加辅助线,构造直角三角形解决问题.15.(3分)(2017•山西)一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD 于点F.若AD=4cm,则EF的长为(+)cm.【分析】过A作AG⊥DC于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD和45°直角三角形BCD中,计算出BD,CB的值.再由AG∥EF∥BC,E是AB的中点,得到F为CG的中点,最后由梯形中位线定理得到EF的长.【解答】解:过点A作AG⊥DC与G.∵∠CDB=∠CBD=45°,∠ADB=90°,∴∠ADG=45°.∴AG==2.∵∠ABD=30°,∴BD=AD=4.∵∠CBD=45°,∴CB==2.∵AG⊥CG,EF⊥CG,CB⊥CG,∴AG∥EF∥BC.又∵E是AB的中点,∴F为CG的中点,∴EF=(AG+BC)=(2+2)=+.故答案为:(+).【点评】本题主要考查的是梯形的中位线定理、特殊锐角三角函数值的应用,证得EF为梯形ABCG的中位线是解题的关键.三、解答题(本大题共8个小题,共75分)16.(10分)(2017•山西)(1)计算:(﹣2)3+()﹣2﹣•sin45°(2)分解因式:(y+2x)2﹣(x+2y)2.【分析】(1)根据实数的运算,可得答案;(2)根据平方差公式,可得答案.【解答】解:(1)原式=﹣8+9﹣2=﹣1;(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]=3(x+y)(x﹣y).【点评】本题考查了因式分解,利用平方差公式是解题关键.17.(6分)(2017•山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD 至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵BE=DF,∴AB+BE=CD+DF,即AE=CF,∵AB∥CD,∴AE∥CF,∴∠E=∠F,∠OAE=∠OCF,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.18.(7分)(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O 与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.【分析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.【解答】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得x=1,∴点D的坐标为(1,2),∵函数y=的图象经过点D,∴2=,解得k=2,∴函数y=的表达式为y=,∴E(2,1),F(﹣1,﹣2);(2)过点F作FG⊥AB,与BA的延长线交于点G,∵E(2,1),F(﹣1,﹣2),∴AE=1,FG=2﹣(﹣1)=3,∴△AEF的面积为:AE•FG=×1×3=.【点评】本题主要考查了待定系数法求函数解析式,以及正方形的性质,解题的关键是求得D(1,2),E(2,1),F(﹣1,﹣2).19.(7分)(2017•山西)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?【分析】(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y万亩,依题意有,解得.答:我省2016年谷子的种植面积是300万亩.(2)设我省应种植z万亩的谷子,依题意有,解得z≥325,325﹣300=25(万亩).答:今年我省至少应再多种植25万亩的谷子.【点评】考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系和不等关系.20.(12分)(2017•山西)从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1)请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是2038亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)【分析】(1)根据图表将2016年七个重点领域的交易额从小到大罗列出来,根据中位数的定义即可得;(2)将(2016年的资金﹣2015年的资金)÷2015年的资金可分别求得两领域的增长率,结合增长率提出合理的认识即可;(3)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由图可知,2016年七个重点领域的交易额分别为70、245、610、2038、3300、7233、20863,2016年交易额的中位数是2038亿元,故答案为:2038;(2)“知识技能”的增长率为:×100%=205%,“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,其增长率最高,达到200%以上,其发展速度惊人.(3)画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率==.【点评】本题主要考查条形统计图、折线统计图和列表法与树状图法求概率,根据条形图得出解题所需数据及画树状图列出所有等可能结果是解题的关键.21.(7分)(2017•山西)如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C的⊙O的切线交于点D.(1)若AC=4,BC=2,求OE的长.(2)试判断∠A与∠CDE的数量关系,并说明理由.【分析】(1)由圆周角定理得出∠ACB=90°,由勾股定理求出AB==2,得出OA=AB=,证明△AOE∽△ACB,得出对应边成比例即可得出答案;(2)连接OC,由等腰三角形的性质得出∠1=∠A,由切线的性质得出OC⊥CD,得出∠2+∠CDE=90°,证出∠3=∠CDE,再由三角形的外角性质即可得出结论.【解答】解:(1)∵AB为⊙O的直径,∴∠ACB=90°,在Rt△ABC中,由勾股定理得:AB===2,∴OA=AB=,∵OD⊥AB,∴∠AOE=∠ACB=90°,又∵∠A=∠A,∴△AOE∽△ACB,∴,即,解得:OE=;(2)∠CDE=2∠A,理由如下:连接OC,如图所示:∵OA=OC,∴∠1=∠A,∵CD是⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠2+∠CDE=90°,∵OD⊥AB,∴∠2+∠3=90°,∴∠3=∠CDE,∵∠3=∠A+∠1=2∠A,∴∠CDE=2∠A.【点评】本题考查了切线的性质、圆周角定理、勾股定理、相似三角形的判定与性质、等腰三角形的性质、直角三角形的性质、三角形的外角性质;熟练掌握圆周角定理和切线的性质是解决问题的关键.22.(12分)(2017•山西)综合与实践背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.问题解决(1)请在图2中证明四边形AEFD是正方形.(2)请在图4中判断NF与ND′的数量关系,并加以证明;(3)请在图4中证明△AEN(3,4,5)型三角形;探索发现(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.【分析】(1)根据矩形的性质得到∠D=∠DAE=90°,由折叠的性质得得到AE=AD,∠AEF=∠D=90°,求得∠D=∠DAE=∠AEF=90°,得到四边形AEFD是矩形,由于AE=AD,于是得到结论;(2)连接HN,由折叠的性质得到∠AD′H=∠D=90°,HF=HD=HD′,根据正方形的想知道的∠HD′N=90°,根据全等三角形的性质即可得到结论;(3)根据正方形的性质得到AE=EF=AD=8cm,由折叠得,AD′=AD=8cm,设NF=xcm,则ND′=xcm,根据勾股定理列方程得到x=2,于是得到结论;(4)根据(3,4,5)型三角形的定义即可得到结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠D=∠DAE=90°,。