当前位置:文档之家› 山西省中考数学试卷(解析版)

山西省中考数学试卷(解析版)

山西省中考数学试卷(解析版)
山西省中考数学试卷(解析版)

2017年山西省中考数学试卷

一、选择题(本大题共10个小题,每小题3分,共30分)

1.计算﹣1+2的结果是()

A.﹣3 B.﹣1 C.1 D.3

2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()

A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4

3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()

A.众数B.平均数C.中位数D.方差

;

4.将不等式组的解集表示在数轴上,下面表示正确的是()

A.B.C.

D.

5.下列运算错误的是()

A.(﹣1)0=1 B.(﹣3)2÷= C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4 6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()

A.20°B.30°C.35°D.55°

7.化简﹣的结果是()

A.﹣x2+2x B.﹣x2+6x C.﹣D.

8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()

A.186×108吨B.×109吨 C.×1010吨D.×1011吨

9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:

假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“

是有理数”的假设不成立,所以,是无理数.

这种证明“是无理数”的方法是()

A.综合法B.反证法C.举反例法D.数学归纳法

10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()

A.5πcm2B.10πcm2C.15πcm2D.20πcm2

^

二、填空题(本大题共5个小题,每小题3分)

11.计算:4﹣9=.

12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为元.

13.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为.

14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=,cos54°=,tan54°=)

15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为cm.

三、解答题(本大题共8个小题,共75分)

16.(1)计算:(﹣2)3+()﹣2﹣?sin45°

(2)分解因式:(y+2x)2﹣(x+2y)2.

17.已知:如图,在?ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.

求证:OE=OF.

18.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.

(1)求函数y=的表达式,并直接写出E、F两点的坐标;

(2)求△AEF的面积.

~

19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:

(1)求我省2016年谷子的种植面积是多少万亩.

(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子

20.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.

如图是源于该报告中的中国共享经济重点领域市场规模统计图:

(1)请根据统计图解答下列问题:

①图中涉及的七个重点领域中,2016年交易额的中位数是亿元.

·

②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识.

(2)小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)

21.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,与过点C 的⊙O的切线交于点D.

(1)若AC=4,BC=2,求OE的长.

(2)试判断∠A与∠CDE的数量关系,并说明理由.

22.综合与实践

背景阅读早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.

:

实践操作如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.

第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点

E处,折痕为AF,再沿EF折叠,然后把纸片展平.

第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.

第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

问题解决

(1)请在图2中证明四边形AEFD是正方形.

(2)请在图4中判断NF与ND′的数量关系,并加以证明;

(3)请在图4中证明△AEN(3,4,5)型三角形;

探索发现

(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形请找出并直接写出它们的名称.

23.如图,抛物线y=﹣x2+x+3与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接AC、BC.点P沿AC以每秒1个单位长度的速度由点A向点C运动,同时,点Q沿BO以每秒2个单位长度的速度由点B向点O运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ.过点Q作QD⊥x轴,与抛物线交于点D,与BC交于点E,连接PD,与BC交于点F.设点P的运动时间为t秒(t>0).

(1)求直线BC的函数表达式;

(2)①直接写出P,D两点的坐标(用含t的代数式表示,结果需化简)

②在点P、Q运动的过程中,当PQ=PD时,求t的值;

(3)试探究在点P,Q运动的过程中,是否存在某一时刻,使得点F为PD的中点若存在,请直接写出此时t的值与点F的坐标;若不存在,请说明理由.

2017年山西省中考数学试卷

{

参考答案与试题解析

一、选择题(本大题共10个小题,每小题3分,共30分)

1.计算﹣1+2的结果是()

A.﹣3 B.﹣1 C.1 D.3

【考点】19:有理数的加法.

【分析】直接利用有理数加减运算法则得出答案.

【解答】解:﹣1+2=1.

故选:C.

|

2.如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()

A.∠1=∠3 B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠4

【考点】J9:平行线的判定.

【分析】根据同位角相等,两直线平行;同旁内角互补,两直线平行进行判断即可.

【解答】解:由∠1=∠3,可得直线a与b平行,故A能判定;

由∠2+∠4=180°,∠2=∠5,∠4=∠3,可得∠3+∠5=180°,故直线a与b平行,故B能判定;

由∠1=∠4,∠4=∠3,可得∠1=∠3,故直线a与b平行,故C能判定;

由∠3=∠4,不能判定直线a与b平行,

故选:D.

3.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()

A.众数B.平均数C.中位数D.方差

【考点】WA:统计量的选择;W1:算术平均数;W7:方差.

【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好;

【解答】解:因为方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,所以要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的方差.

故选D.

4.将不等式组的解集表示在数轴上,下面表示正确的是()

.

A.B.C.

D.

【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.

【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.

【解答】解:

解不等式①得,x≤3

解不等式②得,x>﹣4

在数轴上表示为:

故选:A.

5.下列运算错误的是()

A.(﹣1)0=1 B.(﹣3)2÷= C.5x2﹣6x2=﹣x2D.(2m3)2÷(2m)2=m4【考点】4H:整式的除法;1D:有理数的除法;1E:有理数的乘方;35:合并同类项;47:幂的乘方与积的乘方;6E:零指数幂.

【分析】根据整式和有理数的除法的法则,乘方的性质,合并同类项的法则,零指数的性质,幂的乘方与积的乘方的运算法则计算即可.

【解答】解:A、(﹣1)0=1,正确,不符合题意;

B、(﹣3)2÷=4,错误,符合题意;

C、5x2﹣6x2=﹣x2,正确,不符合题意;

D、(2m3)2÷(2m)2=m4,正确,不符合题意;

故选B.

6.如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E.若∠1=35°,则∠2的度数为()

A.20°B.30°C.35°D.55°

【考点】JA:平行线的性质.

【分析】根据矩形的性质,可得∠ABD=35°,∠DBC=55°,根据折叠可得∠DBC'=∠DBC=55°,最后根据∠2=∠DBC'﹣∠DBA进行计算即可.

【解答】解:∵∠1=35°,CD∥AB,

∴∠ABD=35°,∠DBC=55°,

由折叠可得∠DBC'=∠DBC=55°,

∴∠2=∠DBC'﹣∠DBA=55°﹣35°=20°,

故选:A.

@

7.化简﹣的结果是()

A.﹣x2+2x B.﹣x2+6x C.﹣D.

【考点】6B:分式的加减法.

【分析】根据分式的运算法则即可求出答案.

【解答】解:原式=﹣

=

=﹣

故选(C)

(

8.2017年5月18日,我国宣布在南海神狐海域成功试采可燃冰,成为世界上首个在海域连续稳定产气的国家.据粗略估计,仅南海北部陆坡的可燃冰资源就达到186亿吨油当量,达到我国陆上石油资源总量的50%.数据186亿吨用科学记数法可表示为()

A.186×108吨B.×109吨 C.×1010吨D.×1011吨

【考点】1I:科学记数法—表示较大的数.

【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.

【解答】解:186亿吨=×1010吨.

故选:C.

9.公元前5世纪,毕达哥拉斯学派中的一名成员希伯索斯发现了无理数,导致了第一次数学危机,是无理数的证明如下:

假设是有理数,那么它可以表示成(p与q是互质的两个正整数).于是()2=()2=2,所以,q2=2p2.于是q2是偶数,进而q是偶数,从而可设q=2m,所以(2m)2=2p2,p2=2m2,于是可得p也是偶数.这与“p与q是互质的两个正整数”矛盾.从而可知“

是有理数”的假设不成立,所以,是无理数.

$

这种证明“是无理数”的方法是()

A.综合法B.反证法C.举反例法D.数学归纳法

【考点】O3:反证法.

【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.

【解答】解:由题意可得:这种证明“是无理数”的方法是反证法.

故选:B.

10.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为()

A .5πcm 2

B .10πcm 2

C .15πcm 2

D .20πcm 2

#

【考点】MO :扇形面积的计算;M5:圆周角定理.

【分析】根据已知条件得到四边形ABCD 是矩形,求得图中阴影部分的面积=S

扇形

AOD +S

扇形

BOC =2S

扇形AOD

,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=72°,

于是得到结论..

【解答】解:∵AC 与BD 是⊙O 的两条直径, ∴∠ABC=∠ADC=∠DAB=∠BCD=90°, ∴四边形ABCD 是矩形,

∴△ABO 于△CDO 的面积=△AOD 与△BOD 的面积, ∴图中阴影部分的面积=S 扇形AOD +S 扇形BOC =2S 扇形AOD , ∵OA=OB ,

∴∠BAC=∠ABO=36°, ∴∠AOD=72°,

$

∴图中阴影部分的面积=2×=10π,

故选B .

二、填空题(本大题共5个小题,每小题3分) 11.计算:4

﹣9

= 3

【考点】78:二次根式的加减法. 【分析】先化简,再做减法运算即可. 【解答】解:原式=12=3,

故答案为:3.

:

12.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.

【考点】32:列代数式.

【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.

【解答】解:由题意可得,

该型号洗衣机的零售价为:a(1+20%)×=(元),

故答案为:.

13.如图,已知△ABC三个顶点的坐标分别为A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,点A,B,C的对应点分别为A′、B′、C′,再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,点A′、B′、C′的对应点分别为A″、B″、C″,则点A″的坐标为(6,0).

#

【考点】R7:坐标与图形变化﹣旋转;Q3:坐标与图形变化﹣平移.

【分析】由平移的性质和旋转的性质作出图形,即可得出答案.

【解答】解:如图所示:

∵A(0,4),B(﹣1,1),C(﹣2,2),将△ABC向右平移4个单位,得到△A′B′C′,∴A′、B′、C′的坐标分别为(4,4),B(3,1),C(2,2),

再将△A′B′C′绕点B′顺时针旋转90°,得到△A″B″C″,

则点A″的坐标为(6,0);

故答案为:(6,0).

%

14.如图,创新小组要测量公园内一棵树的高度AB,其中一名小组成员站在距离树10米的点E处,测得树顶A的仰角为54°.已知测角仪的架高CE=米,则这棵树的高度为米.(结果保留一位小数.参考数据:sin54°=,cos54°=,tan54°=)

【考点】TA:解直角三角形的应用﹣仰角俯角问题.

【分析】在Rt△ACD中,求出AD,再利用矩形的性质得到BD=CE=,由此即可解决问题.【解答】解:解:如图,过点C作CD⊥AB,垂足为D.则四边形CEBD是矩形,BD=CE=,在Rt△ACD中,CD=EB=10m,∠ACD=54°,

∵tan∠ACE=,

∴AD=CD?tan∠ACD≈10×=.

∴AB=AD+BD=+=.

答:树的高度AB约为.

\

故答案为

15.一副三角板按如图方式摆放,得到△ABD和△BCD,其中∠ADB=∠BCD=90°,∠A=60°,∠CBD=45°,E为AB的中点,过点E作EF⊥CD于点F.若AD=4cm,则EF的长为(+)cm.

【考点】LL:梯形中位线定理.

【分析】过A作AG⊥Dc于G,得到∠ADC=45°,进而得到AG的值,在30°的直角三角形ABD和45°直角三角形BCD中,计算出BD,CB的值.再由AG∥EF∥BC,E是AB的中点,得到F为CG的中点,最后由梯形中位线定理得到EF的长.

【解答】解:过点A作AG⊥DC与G.

∵∠DCB=∠CBD=45°,∠ADB=90°,

#

∴解ADG=45°.

∴AG==2.

∵∠ABD=30°,

∴BD=AD=4.

∵∠CBD=45°,

∴CB==2.

∵AG⊥CG,EF⊥CG,CB⊥CG,

∴AG∥EF∥BC.

又∵E是AB的中点,

∴F为CG的中点,

*

∴EF=(AG+BC)=(2+2)=+.

故答案为:(+).

三、解答题(本大题共8个小题,共75分)

16.(1)计算:(﹣2)3+()﹣2﹣?sin45°

(2)分解因式:(y+2x)2﹣(x+2y)2.

【考点】54:因式分解﹣运用公式法;2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.

【分析】(1)根据实数的运算,可得答案;

(2)根据平方差公式,可得答案.

【解答】解:(1)原式=﹣8+9﹣2=﹣1;

|

(2)原式=[(y+2x)+(x+2y)][(y+2x)﹣(x+2y)]

=3(x+y)(x﹣y).

17.已知:如图,在?ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.

求证:OE=OF.

【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.

【分析】由平行四边形的性质得出AB∥CD,AB=CD,证出AE=CF,∠E=∠F,∠OAE=∠OCF,由ASA证明△AOE≌△COF,即可得出结论.

【解答】证明:∵四边形ABCD是平行四边形,

∴AB∥CD,AB=CD,

∵BE=DF,

∴AB+BE=CD+DF,即AE=CF,

∵AB∥CD,

∴AE∥CF,

∴∠E=∠F,∠OAE=∠OCF,

在△AOE和△COF中,,

∴△AOE≌△COF(ASA),

∴OE=OF.

18.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.

&

(1)求函数y=的表达式,并直接写出E、F两点的坐标;

(2)求△AEF的面积.

【考点】G8:反比例函数与一次函数的交点问题;LE:正方形的性质.

【分析】(1)根据正方形的性质,以及函数上点的坐标特征可求点D的坐标为(1,2),根据待定系数法可求反比例函数表达式,进一步得到E、F两点的坐标;

(2)过点F作FG⊥AB,与AB的延长线交于点G,根据两点间的距离公式可求AE=1,FG=3,再根据三角形面积公式可求△AEF的面积.

【解答】解:(1)∵正方形OABC的边长为2,

∴点D的纵坐标为2,即y=2,

将y=2代入y=2x,得x=1,

∴点D的坐标为(1,2),

|

∵函数y=的图象经过点D,

∴2=,

解得k=2,

∴函数y=的表达式为y=,

∴E(2,1),F(﹣1,﹣2);

(2)过点F作FG⊥AB,与AB的延长线交于点G,

∵E(2,1),F(﹣1,﹣2),

∴AE=1,

FG=2﹣(﹣1)=3,

∴△AEF的面积为:AE?FG=×1×3=.

19.“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:

(1)求我省2016年谷子的种植面积是多少万亩.

(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子

【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.

【分析】(1)可设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y 万亩,根据2016年全国谷子年总产量为150万吨列出方程组求解即可;

(2)可设我省应种植z万亩的谷子,根据我省谷子的年总产量不低于52万吨列出不等式求解即可.

【解答】解:(1)设我省2016年谷子的种植面积是x万亩,其他地区谷子的种植面积是y 万亩,依题意有

)

解得.

答:我省2016年谷子的种植面积是300万亩.

(2)设我省应种植z万亩的谷子,依题意有

解得z≥325,

325﹣300=25(万亩).

东莞市数学中考试卷

2014年广东省初中毕业生学业考试 数 学 一.选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 在1,0,2,-3这四个数中,最大的数是( ) 2. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A. B. C. D. 3. 计算3a -2a 的结果正确的是( ) 4. 把3 9x x -分解因式,结果正确的是( ) A.() 29x x - B.()23x x - C.()2 3x x + D.()()33x x x +- 5. 一个多边形的内角和是900°,这个多边形的边数是( ) 6. 一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( ) A. 47 B.37 C.34 D.13 7. 如图7图,□ABCD 中,下列说法一定正确的是( ) =BD ⊥BD =CD =BC 题7图 8. 关于x 的一元二次方程2 30x x m -+=有两个不相等的实数根,则实数m 的取值范围为( ) A.94m > B.94m < C.94m = D.9 -4 m < 9. 一个等腰三角形的两边长分别是3和7,则它的周长为( ) 或17 10. 二次函数()2 0y ax bx c a =++≠的大致图象如题10图所示, 关于该二次函数,下列说法错误的是( ) A B C D

A.函数有最小值 B.对称轴是直线x =2 1 C.当x < 2 1 ,y 随x 的增大而减小 D.当 -1 < x < 2时,y >0 二. 填空题(本大题6小题,每小题4分,共24 答题卡相应的位置上. 11. 计算3 2x x ÷= ; 12. 据报道,截止2013年 12月我国网民规模达618 000 000人.将618 000 000 用科学计数法表示为 ; 13. 如题13图,在△ABC 中,点D ,E 分别是AB ,AC 的中点,若 BC=6,则DE= ; 题16图 O 8的距离为 ; 81+2 x >16. 如题16图,△ABC 绕点A 顺时针旋转45°得到△C B A ''若∠BAC=90°, AB=AC=2, 则图中阴影部分的面积等于 . 三.解答题(一)(本大题3小题,每小题6分,共18分) 17. ()1 1412-?? -+-- ??? 18. 先化简,再求值:()22 1111x x x ??+?- ?-+?? ,其中13x = 19. 如题19图,点D 在△ABC 的AB 边上,且∠ACD=∠A. (1)作∠BDC 的平分线DE ,交BC 于点E (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,判断直线DE 与直线 AC 的位置关系(不要求证明). 题19图 四.解答题(二)(本大题3小题,每小题7分,共21分) 20. 如题20图,某数学兴趣小组想测量一棵树CD 的高度,他们先在点A 处测得树顶C 的仰角为30°,然后沿AD 方向前行10m ,到达B 点,在B 处测得树顶C 的仰角高度为60°(三点在同一直线上)。请你根据他们测量数据计算这棵树CD 的高度(结果精确到)。(参考数据:2≈,3 B B C

山西省中考数学试题及解析

2015年山西省中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分。在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) . =1 = 3.(3分)(2015?山西)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗 B 4.(3分)(2015?山西)如图,在△ABC 中,点D 、E 分别是边AB ,BC 的中点.若△DBE 的周长是6,则△ABC 的周长是( ) 5.(3分)(2015?山西)我们解一元二次方程3x 2 ﹣6x=0时,可以运用因式分解法,将此方 程化为3x (x ﹣2)=0,从而得到两个一元一次方程:3x=0 或x ﹣2=0,进而得到原方程的解 6.(3分)(2015?山西)如图,直线a ∥b ,一块含60°角的直角三角板ABC (∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )

7.(3分)(2015?山西)化简﹣的结果是() B 8.(3分)(2015?山西)我国古代秦汉时期有一部数学著作,堪称是世界数学经典名著.它的出现,标志着我国古代数学体系的正式确立.它采用按类分章的问题集的形式进行编排.其中方程的解法和正负数加减运算法则在世界上遥遥领先,这部著作的名称是() 9.(3分)(2015?山西)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志 B 10.(3分)(2015?山西)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是() 二、填空题(本大题共6小题,每小题3分,共18分) 11.(3分)(2015?山西)不等式组的解集是.

历年全国中考数学试题及答案

班级 姓名 学号 成绩 一、精心选一选 1.下列运算正确的是( ) A.()11a a --=-- B.( ) 2 3624a a -= C.()2 22a b a b -=- D.3 2 5 2a a a += 2.如图,由几个小正方体组成的立体图形的左视图是( ) 3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖 C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球 D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o ∠ ∠∠ B.123360++=o ∠ ∠∠ C.1322+=∠∠∠ D.132+=∠ ∠∠ 5.已知24221 x y k x y k +=??+=+?,且10x y -<-<,则k 的取值范围为( ) A.112 k -<<- B.102 k << C.01k << D. 1 12 k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4 y x = 的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >> C.b c a >> D.c a b >> 8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.2 1185580x = B.()2 11851580x -= C.( )2 11851580x -= D.()2 58011185x += 9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D. A B D C 3 2 1 第4题图 P 第9题图

2020年广东省东莞市中考数学试卷答案解析

2020年东莞市初中毕业生水平考试 《数学》参考答案 一、选择题: 1-5CBDCA 6-10CBDAD 二、填空题: 12.10 14.110° 15.5 16.7 17.64(填62亦可) 三、解答题(一) 18.解:原式122212 =--+?- 4=- 19.解:原式2(1)1(1)(1) x x x x -=?-- 1x = 当x = = = 20.解:(1)如图,EF 为AB 的垂直平分线; (2)∵EF 为AB 的垂直平分线 ∵152 AE AB ==,90AEF ∠=? ∵在Rt ABC ?中,8AC =,10AB = ∵6BC = ∵90C AEF ∠=∠=?,A A ∠=∠ ∵AFE ABC ??∽ ∵AE EF AC BC =, 即 586EF =

∵154 EF = 四、解答题(二) 21.解:(1)108° (2) (3) ∵机会均等的结果有AB 、AC 、AD 、BA 、BC 、BD 、CA 、CB 、CD 、DA 、DB 、DC 等共12种情况,其中所选的项目恰好是A 和B 的情况有2种; ∵P (所选的项目恰好是A 和B )21126 ==. 22.解:(1)设乙厂每天能生产口罩x 万只,则甲厂每天能生产口罩1.5x 万只, 依题意,得:606051.5x x -=, 解得:4x =, 经检验,4x =是原方程的解,且符合题意, ∵甲厂每天可以生产口罩:1.546?=(万只). 答:甲、乙厂每天分别可以生产6万和4万只口罩. (3)设应安排两个工厂工作y 天才能完成任务, 依题意,得:()64100y +≥, 解得:10y ≥. 答:至少应安排两个工厂工作10天才能完成任务. 23.(1)证明:过点O 作OM BC ⊥,交AD 于点M , ∵MC MB =,90OMA ∠=?, ∵OA OD =,OM AD ⊥, ∵MA MD =

人教版初三数学圆的测试题及答案

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形A BC 中,∠C =90°,A C =2,A B =4,分别以A C 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π- 3 B 4π-4 3 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶ 2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △A BC 中,已知A B =6,A C =8,∠A =90°,如果把此直角三角形绕直线A C 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线A B 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对 9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么

广东省2020年东莞市中考数学模拟试题(含答案)

广东省2020年东莞市中考数学模拟试题 含答案 一、选择题(本大题10小题,每小题3分,共30分) 1.﹣2的相反数是() A. 2 B.-2 C. 1 2 D. 1 2 2.下列“慢行通过,禁止行人通行,注意危险,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是() A B C D 3.某种细胞的直径是0.000067厘米,将0.000067用科学记数法表示为() A. 0.67×10-5 B. 67×10-6 C.6.7×10-6 D.6.7×10-5 4.下列运算正确的是() A. 2a+3b=5ab B. 5a﹣2a=3a C. a2?a3=a6 D. (a+b)2=a2+b2 5.一组数据6,﹣3,0,1,6的中位数是() A. 0 B. 1 C.2 D. 6 6.如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为() A. 30° B. 35° C. 40° D. 45° 7.不等式组的解集在数轴上表示正确的是() A B C D 8.一个几何体的三视图如图所示,则这个几何体是()

A. 三棱锥 B. 三棱柱 C. 圆柱 D. 长方体 9.如图,在⊙O 中, = ,∠AOB=50°,则∠ADC 的度数是( ) A .50° B .40° C .30° D .25° 10.已知二次函数c bx ax y ++=2 的图象如下面左图所示,则一次函数c ax y +=的图象大致 是( ) 二、填空题(本大题6小题,每小题4分,共24分) 11.在函数y= 中,自变量x 的取值范围是______________. 12.分解因式:2a 2 ﹣4a+2= . 13.计算:18?2 1 2 等于 . 14.圆心角为120°的扇形的半径为3,则这个扇形的面积为 。 15.如果关于x 的方程x 2 -2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 . 16.如图所示,双曲线k y x = 经过Rt △BOC 斜边上的点A,且满足2 3 AO AB =,与BC 交于点D, 21BOD S ?=,求k= 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解方程组 . 18.先化简,再求值: ÷( + 1),其中x 满足022 =--x x 19.如图,BD 是矩形ABCD 的一条对角线.

2020年山西省中考数学试题

年山西省高中阶段教育教育招生统一考试 数 学 一、填空题(每小题2分,共20分) 1.-5的相反数是 。 2.在“2008北京”奥运会国家体育场“鸟巢”钢结构工程施工建设中,首先使用了我国科研人员自主研制的强度为460 000 000帕的钢材,这个数据用科学计数法表示为 帕。 3.计算:()=-?2 3 32x x 。 4.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。若∠1=20 o , ∠2=65 o ,则∠3= 。 5.某校开展为地震灾区捐款活动,九年级(2)班第1 组8名学生捐款如下(单位:元) 100 50 20 20 30 10 20 15 则这组数据的众数是 。 6.不等组? ? ?+<+≥-7140 3x x x 的解集是 。 7.计算:() =? ? ? ??+---1 212328 。 8.在方格纸上建立如图所示的平面直角坐标系,将△ABO 绕点O 按顺时针方向旋转90 o ,得△A’B’O ,则点A 的对应点A’的坐标为 。 9.二次函数322-+=x x y 的图象的对称轴是直 线 。 10.如图所示的图案是由正六边形密铺而成,黑色正六边形周围第一层有六个白色正六边形,则第n 层有 白色正六边形。 二、选择题(在下列各小题中,均给出四个备选答案,其中只有一个是正确答案,请将正确答案的字母代号填入下表相应的空格内。每小题3分,共24分) 题号 11 12 13 14 15 16 17 18 答案 11.一元二次方程032 =+x x 的解是 A .3-=x B .3,021==x x C .3,021-==x x D .3=x 12.下列运算正确的是 A .a b a b 11+-= +- B .()2 222b ab a b a ++=--

初三数学圆测试题和答案及解析

九年级上册圆单元测试 一、选择题(本大题共10小题,每小题3分,共计30分) 1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有( ) A.0个 B.1个 C.2个 D.3个 2.同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆 的位置关系是( ) A.外离 B.相切 C.相交 D.内含 3.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° B.70° C.110° D.140° 4.如图,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM的长的取值范围( ) A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于( ) A.42 ° B.28° C.21° D.20° 6.如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O的直径是( ) A.2cm B.4cm C.6cm D.8cm 7.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BD,则图

中阴 影部分的面积为( ) A. B. C. D. 8.已知⊙O1与⊙O2外切于点A,⊙O1的半径R=2,⊙O2的半径r=1,若半径为4的⊙C与⊙O1、⊙O2都相 切,则满足条件的⊙C有( ) A.2个 B.4个 C.5个 D.6个 9.设⊙O的半径为2,圆心O到直线的距离OP=m,且m使得关于x的方程有实数 根,则直线与⊙O的位置关系为( ) A.相离或相切 B.相切或相交 C.相离或相交 D.无法确定 10.如图,把直角△ABC的斜边AC放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A2B2C2的位置,设AB=,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为( ) A. B. C. D. 二、填空题(本大题共5小题,每小4分,共计20分) 11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包 装侧面,则需________________的包装膜(不计接缝,取3). 12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同样乙已经被攻冲到B点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅

中考数学试卷含答案

扬州市初中毕业、升学统一考试数学试题 第Ⅰ卷(共24分) 一、 选择题:(本大题共8个小题,每小题3分,共24分.) 二、 1.若数轴上表示1-和3的两点分别是点A 和点B ,则点A 和点B 之间的距离是( ) A .4- B .2- C .2 D .4 2.下列算式的运算结果为4a 的是( ) A .4a a ? B .()22a C .33a a + D .4a a ÷ 3.一元二次方程2720x x --=的实数根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .不能确定 4.下列统计量中,反映一组数据波动情况的是( ) A .平均数 B .众数 C.频率 D .方差 5.经过圆锥顶点的截面的形状可能是( ) A . B . C. D . 6.若一个三角形的两边长分别为2和4,则该三角形的周长可能是( ) A .6 B .7 C. 11 D .12 7.在一列数:1a ,2a ,3a ,???,n a 中,13a =,27a =,从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这一列数中的第2017个数是( ) A .1 B .3 C.7 D .9 8.如图,已知C ?AB 的顶点坐标分别为()0,2A 、()1,0B 、()C 2,1,若二次函数21y x bx =++的图象与 阴影部分(含边界)一定有公共点,则实数b 的取值范围是( ) A .2b ≤- B .2b <- C. 2b ≥- D .2b >- 第Ⅱ卷(共126分) 二、填空题(每题3分,满分30分,将答案填在答题纸上) 9.2017年5月18日,我国在南海北部神弧海域进行的可燃冰试开采成功,标志着 我国成为全球第一个在海域可燃冰开采中获得连续稳定的国家.目前每日的天然气 试开采量约为16000立方米,把16000立方米用科学记数法表示为 立方米. 10.若2a b =,6b c =,则a c = .11.因式分解:2327x -= .

东莞市中考数学试卷及答案

★ 机密·启用前 2008年广东省初中毕业生学业考试 数 学 说明:1.全卷共4页,考试用时100分钟,满分为120分. 2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号,姓名、试室号、座位号.用2B 铅笔把对应该号码的标号涂黑. 3.选择题每小题选出答案后,用用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上. 4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效. 5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回. 一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一 个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2 1 - 的值是 A .2 1 - B .21 C .2- D .2 2.2008年5月10日北京奥运会火炬接力传递活动在美丽的海滨城市汕头举行,整个火炬传递 路线全长约40820米,用科学计数法表示火炬传递路程是 A .2 102.408?米 B .3 1082.40?米 C .4 10082.4?米 D .5 104082.0?米 3.下列式子中是完全平方式的是 A .2 2 b ab a ++ B .222 ++a a C .2 22b b a +- D .122++a a 4.下列图形中是轴对称图形的是 5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中 位 数是 A .28 B . C .29 D .

山西省中考数学试题及答案

2013年山西中考数学试题(美化WODR 版) 第Ⅰ卷 选择题(共24分) 一.选择题 (本大题共12个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算2×(-3)的结果是( ) A. 6 B. -6 C. -1 D. 5 2.不等式组 的解集在数轴上表示为( ) 3.如图是一个长方体包装盒,则它的平面展开图是( ) 4.某班实行每周量化考核制学期末对考核成绩进行统计,结果显示甲、乙的平均成绩相同,方差是甲362 =甲s ,302 =乙s ,则两组成绩的稳定性:( ) A.甲组比乙组的成绩稳定; B. 乙组比甲组的成绩稳定; C. 甲、乙组成绩一样稳定; D.无法确定。 5.下列计算错误的是( ) A .3 3 3 2x x x =+ B.2 3 6 a a a =÷ C.3212= D.3311 =? ? ? ??- 6.解分式方程 31212=-++-x x x 时,去分母后变形为( ) A.2+(x+2)=3(x-1); B.2-x+2=3(x-1); C.2-(x+2)=3(1-x); D.2-(x+2)=3(x-1). 太原 大同 朔州 忻州 阳泉 晋中 吕梁 长治 晋城 临汾 运城 27 27 28 28 27 29 28 28 30 30 31 该日最高气温的众数和中位数分别是( ) A.27oC ,28oC ; B.28oC ,28oC ; C. 27oC ,27oC , D. 29oC ,29oC 。 8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )条。 A. 1 B. 2 C.4 D. 8. 9.王先生先到银行存了一笔三年的定期存款,年利率是4.25%,如果到期后取出的本 息和(本金+利息)为33825元,设王先生存入的本金为x 元,则下面所列方程正确的是( ) A.x+3×4.25%=33825; B.x+4.25%x=33825; C. 3×4.25%x=33825; D.3(x+4.25%x )=33825. 10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同

人教中考数学 圆的综合综合试题附答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.已知O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA , OB OC 5∴==, AB m 5==, OB OC AB ∴==, AOB ∴是等边三角形, AOB 60∠∴=,

1 ACB AOB 302 ∠∠∴==, 故答案为30; ()2①如图2,连接AO 并延长交 O 于D ,连接BD , AD 为O 的直径, AD 10∴=,ABD 90∠=, 在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3 tan ADB BD 4 ∠∴= =, C ADB ∠∠=, C ∠∴的正切值为3 4 ; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E , AC BC =,AO BO =, CE ∴为AB 的垂直平分线, AE BE 3∴==, 在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=, ABC 11 S AB CE 692722 ∴=?=??=; Ⅱ、当AC AB 6==时,如图4,

中考数学试卷含解析 (8)

湖北省恩施州中考数学试卷 一、选择题(本大题共12个小题,每小题3分,共36分。在每小题给出的四个选项中,恰有一项是符合要求的。) 1.(3分)(?恩施州)的相反数是() A.B. ﹣ C.3D.﹣3 考 点: 相反数. 分 析: 根据只有符号不同的两个数互为相反数求解后选择即可. 解 答: 解:﹣的相反数是. 故选A. 点 评: 本题主要考查了互为相反数的定义,是基础题,熟记概念是解题的关键. 2.(3分)(?恩施州)今年参加恩施州初中毕业学业考试的考试约有39360人,请将数39360用科学记数法表示为(保留三位有效数字)() A.3.93×104B.3.94×104C.0.39×105D.394×102 考 点: 科学记数法与有效数字. 分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于39360有5位,所以可以确定n=5﹣1=4. 有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字. 用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关. 解答:解:39360=3.936×104≈3.94×104.故选:B. 点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法. 3.(3分)(?恩施州)如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()

A.70°B.80°C.90°D.100° 考 点: 平行线的判定与性质. 分析:首先证明a∠b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4. 解答:解:∠∠1+∠5=180°,∠1+∠2=180°,∠∠2=∠5, ∠a∠b, ∠∠3=∠6=100°, ∠∠4=100°. 故选:D. 点 评: 此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等. 4.(3分)(?恩施州)把x2y﹣2y2x+y3分解因式正确的是() A.y(x2﹣2xy+y2)B.x2y﹣y2(2x﹣y)C.y(x﹣y)2D.y(x+y)2 考 点: 提公因式法与公式法的综合运用. 分 析: 首先提取公因式y,再利用完全平方公式进行二次分解即可. 解答:解:x2y﹣2y2x+y3 =y(x2﹣2yx+y2)=y(x﹣y)2. 故选:C. 点评:本题主要考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底. 5.(3分)(?恩施州)下列运算正确的是() A.x3?x2=x6B.3a2+2a2=5a2C.a(a﹣1)=a2﹣1D.(a3)4=a7 考 点: 多项式乘多项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方. 分析:根据乘方与积的乘方、合并同类项、同底数幂的乘法、合并同类项的运算法则分别进行计算,即可得出答案.

2020年广东省东莞市中考数学一模试卷 解析版

2020年广东省东莞市中考数学一模试卷 一.选择题(共10小题) 1.计算|﹣2|的结果是() A.2B.C.﹣D.﹣2 2.下列图形中,既是轴对称图形,又是中心对称图形的是() A.B.C.D. 3.我市2019年参加中考的考生人数约为52400人,将52400用科学记数法表示为()A.524×102B.52.4×103C.5.24×104D.0.524×105 4.下列运算正确的是() A.a﹣2a=a B.(﹣a2)3=﹣a6 C.a6÷a2=a3D.(x+y)2=x2+y2 5.函数y=中自变量x的取值范围是() A.x≥﹣1且x≠1B.x≥﹣1C.x≠1D.﹣1≤x<1 6.如图,P A、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为() A.65°B.130°C.50°D.100° 7.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为() A.4,5B.5,4C.4,4D.5,5 8.一个多边形每个外角都等于30°,这个多边形是() A.六边形B.正八边形C.正十边形D.正十二边形9.如图在同一个坐标系中函数y=kx2和y=kx﹣2(k≠0)的图象可能的是()

A.B. C.D. 10.如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA﹣AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),则下列最能反映y 与x之间函数关系的图象是() A.B. C.D. 二.填空题(共7小题) 11.实数81的平方根是. 12.分解因式:3x3﹣12x=. 13.抛物线y=2x2+8x+12的顶点坐标为. 14.如图,Rt△ABC中,∠B=90°,AB=4,BC=3,AC的垂直平分线DE分别交AB,AC于D,E两点,则CD的长为.

山西省中考数学试题与答案

2018年山西省中考数学试卷与答案20分)第Ⅰ卷选择题(共分.在每个小题给出的四个选项中,只分,共20一、选择题(本大题10个小题,每题2 有一项符合题目要求,请选出并在答题卡上将该项涂黑)的绝对值是()B1.-311 D.3B.3C.-A.-33的度数为235o, 则∠、、b相交于点AB。已知∠1=2.如图,直线a∥b,直线c分别与a C()oo D.135B.155o C.145165 A.o c a1 A 2 bB 题)(第2 ,这个数据用科学记数M.山西是我国古代文明发祥地之一,其总面积约为16万平方千3 D法表示为()5464106×平方千M D.116×10.平方千M C.1.6×10.A0.16×10M B平方千.M 平方千4.下列运算正确的是()B6246 22322223=6D.3aaB.(-a)·=-a.Cx2+xa =)(A.a-bx=a-b的正弦值()A o,若将各边长度都扩大为原来的2倍,则∠t△ABC中,∠C=90.在5R D倍D.不变.缩小2倍C.扩大4A.扩大2倍BB A C 题)(第5 C2的值().估算31-6 之间4和53.在和4之间D.在3 B1A.在和2之间.在2和之间C个红球37.在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有1 ,那么袋中球的总个数为()B且摸到红球的概率为 4 个D 个.39 C12 B15A.个.个.个完全相同的小立方块搭成的几何体,那么 这个几何体的左视图是().下图是由87A1 / 13 DA B C从中任取一根木棒,能组成三角10cm.9.现有四根木棒,长度分别为4cm,6cm,8cm,形的个数为()C 4个个C.3个D.A.1个B.2的解集0B(0,5)两点,则不等式-k x-b<10.如图,直线y=kx+b交坐标轴于A(-3,0)、A为()3 x>3 D.x<.A.x>-3 Bx<-3 C.

中考数学圆试题及答案

0 1 2 3 4 5 0 1 2 3 4 5 B . C . 一.选择 1. (2009 年泸州)已知⊙O 1 与⊙O 2 的半径分别为 5cm 和 3cm ,圆心距 020=7cm ,则两圆的位置关系为 A .外离 B .外切 C .相交 D .内切 2. (2009 年滨州)已知两圆半径分别为 2 和 3,圆心距为 d ,若两圆没有公共点,则下列结论正确的是( ) A . 0 < d < 1 B . d > 5 C . 0 < d < 1或 d > 5 D . 0 ≤ d < 1 或 d > 5 3.(2009 年台州市)大圆半径为 6,小圆半径为 3,两圆圆心距为 10,则这两圆的位置关系为( ) A .外离 B .外切 C.相交 D .内含 4.(2009 桂林百色)右图是一张卡通图,图中两圆的位置关系( ) A .相交 B .外离 C .内切 D .内含 5.若两圆的半径分别是 1cm 和 5cm ,圆心距为 6cm ,则这两圆的位置关系是( ) A .内切 B .相交 C .外切 D .外离 6(2009 年衢州)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 7.(2009 年舟山)外切两圆的圆心距是 7,其中一圆的半径是 4,则另一圆的半径是 A .11 B .7 C .4 D .3 8. .(2009 年益阳市)已知⊙O 1 和⊙O 2 的半径分别为 1 和 4,如果两圆的位置关系为相交,那么圆心距 O 1O 2 的 取值范围在数轴上表示正确的是 0 1 2 3 4 5 0 1 2 3 4 5 A . D . 9. (2009 年宜宾)若两圆的半径分别是 2cm 和 3cm,圆心距为 5cm ,则这两个圆的位置关系是( ) A. 内切 B.相交 C.外切 D. 外离 10.. (2009 肇庆)10.若⊙O 与 ⊙O 相切,且 O O = 5 ,⊙O 的半径 r = 2 ,则⊙O 的半径 r 是( ) 1 2 1 2 1 1 2 2 A . 3 B . 5 C . 7 D . 3 或 7 11. .(2009 年湖州)已知⊙O 与 ⊙O 外切,它们的半径分别为 2 和 3,则圆心距 O O 的长是( ) 1 2 1 2 A . O O =1 B . O O =5 C .1< O O <5 D . O O >5 1 2 1 2 1 2 1 2

中考数学试卷及答案解析word版完整版

中考数学试卷及答案解 析w o r d版 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

2015年北京市中考数学试卷 一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一.个.是符合题意的 1.(3分)(2015?北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A.14×104B.×105C.×106D.14×106 考 点: 科学记数法—表示较大的数. 专 题: 计算题. 分 析: 将140000用科学记数法表示即可. 解答:解:140000=×105,故选B. 点评:此题考查了科学记数法﹣表示较大的数,较小的数,以及近似数与有效数字,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值. 2.(3分)(2015?北京)实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是() A.a B.b C.c D.d 考 点: 实数大小比较. 分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答:解:根据图示,可得 3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a. 故选:A. 点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a,b,c,d的绝对值的取值范围. 3.(3分)(2015?北京)一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为() A.B.C.D. 考 点: 概率公式. 专 题: 计算题. 分 析: 直接根据概率公式求解. 解 答: 解:从中随机摸出一个小球,恰好是黄球的概率==. 故选B. 点本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出

2017年度广东地区东莞市中考数学试卷(含详解)

2017年广东省东莞市中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分) 1.5的相反数是() A.B.5 C.﹣D.﹣5 2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃,据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过4000000000美元,将4000000000用科学记数法表示为() A.0.4×109B.0.4×1010C.4×109D.4×1010 3.已知∠A=70°,则∠A的补角为() A.110°B.70°C.30°D.20° 4.如果2是方程x2﹣3x+k=0的一个根,则常数k的值为() A.1 B.2 C.﹣1 D.﹣2 5.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的平分分别为:90,85,90,80,95,则这组数据的众数是() A.95 B.90 C.85 D.80 6.下列所述图形中,既是轴对称图形又是中心对称图形的是() A.等边三角形 B.平行四边形 C.正五边形D.圆 7.如图,在同一平面直角坐标系中,直线y=k1x(k1≠0)与双曲线 y=(k2≠0) 相交于A,B两点,已知点A的坐标为(1,2),则点B的坐标为() A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣1,﹣1)D.(﹣2,﹣2)8.下列运算正确的是() A.a+2a=3a2B.a3?a2=a5 C.(a4)2=a6D.a4+a2=a4

9.如图,四边形ABCD内接于⊙O,DA=DC,∠CBE=50°,则∠DAC的大小为() A.130°B.100°C.65°D.50° 10.如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是列结论:①S △ABF () A.①③B.②③C.①④D.②④ 二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:a2+a=. 12.一个n边形的内角和是720°,则n=. 13.已知实数a,b在数轴上的对应点的位置如图所示,则a+b0.(填“>”,“<”或“=”) 14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5,随机摸出一个小球,摸出的小球标号为偶数的概率是. 15.已知4a+3b=1,则整式8a+6b﹣3的值为. 16.如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F 的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为.

广东省东莞市中考数学试卷

广东省东莞市中考数学试卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共10题;共20分) 1. (2分)(2016·孝义模拟) 的相反数是() A . 2 B . C . -2 D . 2. (2分)下列四个几何体中,主视图、左视图与俯视图相同的几何体是() A . 圆锥 B . 圆柱 C . 球 D . 三棱柱 3. (2分)下列一次函数中,y的值随着x值的增大而减小的是(). A . y=x B . y=-x C . y=x+1 D . y=x-1 4. (2分) 如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论: ①△BDF和△CEF都是等腰三角形; ②DE=BD+CE; ③△ADE的周长等于AB与AC的和; ④BF=CF. 其中正确的有()

A . ①②③④ B . ①②③ C . ①② D . ① 5. (2分)在一个不透明的口袋中装有若干个质地相同而颜色可能不全相同的球,如果口袋中只装有3个黄球,且摸出黄球的概率为,那么袋中共有球()个 A . 6个 B . 7个 C . 9个 D . 12个 6. (2分) (2018八上·阳新月考) 若的整数部分为a,小数部分为b,则a﹣b的值为() A . ﹣ B . 6 C . 8﹣ D . ﹣6 7. (2分) (2019八上·阜新月考) 如图,在矩形中,,,将矩形沿AC折叠,点D落在点D'处,则重叠部分的面积为() A . 6 B . 12 C . 10 D . 20 8. (2分) (2015九上·莱阳期末) 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()

2019年2016年山西省中考数学试卷

数学精品复习资料 2016年山西省中考数学试卷 一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中, 只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.(2016·山西)6 1 -的相反数是( ) A . 61 B .-6 C .6 D .6 1- 2.(2016·山西)不等式组? ??<>+620 5x x 的解集是( ) A .x >5 B .x <3 C .-5

相关主题
文本预览
相关文档 最新文档