音频锁相环精密温度控制计电路论文
- 格式:doc
- 大小:2.60 MB
- 文档页数:20
1摘 要随着通信及电子系统的飞速发展,促使集成锁相环和数字锁相环突飞猛进。
本次毕业设计的主要任务是,采用0.180.18μμm CMOS 工艺,设计实现一个基于改进的鉴频鉴相器,压控振荡器,环路滤波器的全集成的CMOS PLL 锁相环电路,设计重点为PLL 锁相环电路的版图设计,设计工具为Laker 。
本论文介绍了PLL 锁相环电路的基本原理以及其完整的版图设计结果。
本次设计表明,采用该方案实现的锁相环电路主要功能工作正常,初步达到设计要求。
求。
关键词:PLL 锁相环电路,鉴频鉴相器,压控振荡器,环路滤波器,版图设计,0.180.18μμm CMOS 工艺工艺AbstractWith the development of the communications and electronic systems, the technology of the integrated PLL and digital PLL develops rapidly.The main task of graduation is to design and realize a fully integrated CMOS PLL circuit which is based on an improved phase detector, VCO, loop filter using the 0.18μm CMOS technology 0.18μm CMOS technology. The design focus on the layout of the PLL circuit, and the . The design focus on the layout of the PLL circuit, and the design tools is the Laker.This paper introduces the basic principles of PLL phase locked loop circuit and its comprehensive layout results. This design shows that the program implemented by the main function of PLL circuit is working well, and it meets the design requirements.Key words:PLL phase locked loop circuits, popularly used phase detectors, discrimination, VCO loop filter, layout design, 0.18 μm CMOS process目 录 (11)摘 要.............................................................................................................................. (22)Abstract .......................................................................................................................... (44)第1章 绪论................................................................................................................ (44)1.1 锁相技术的发展.............................................................................................. (44)1.2 锁相环路的主要特性......................................................................................1.3 PLL锁相环的应用领域 (5)第2章 基于CMOS锁相环的电路设计 (7)2.1 锁相环的基本组成.......................................................................................... (77) (77)2.2 锁相环工作原理.............................................................................................. (88)2.3 鉴相器..............................................................................................................2.3.1 鉴频鉴相器(PFD) (9) (110)2.3.2 鉴频鉴相器设计.................................................................................. (110)2.4 环路滤波器....................................................................................................11 (11)2.5 压控振荡器....................................................................................................第3章 关于COMS锁相环的版图设计 (12) (112)3.1 电路设计........................................................................................................3.2 版图设计........................................................................................................ (112) (113)3.2.1 版图设计规则检查.............................................................................. (113)3.2.2 注意事项..............................................................................................3.3 锁相环的版图设计........................................................................................ (115) (117)第4章 结束语............................................................................................................ (118)参考文献...................................................................................................................... (119)致谢..............................................................................................................................第1章 绪论1.1锁相技术的发展 锁相技术起源于20世纪30年代,提出无线电调幅信号的锁相同步检波技术。
锁相环电路设计
锁相环电路是一种常见的电路设计,它可以用于信号的同步和频率的稳定。
锁相环电路的基本原理是将输入信号与参考信号进行比较,然后通过反馈控制来调整输出信号的相位和频率,使其与参考信号保持同步。
锁相环电路广泛应用于通信、雷达、测量等领域。
锁相环电路的基本组成部分包括相频检测器、环路滤波器、控制电压源和振荡器。
相频检测器用于将输入信号与参考信号进行比较,产生误差信号。
环路滤波器用于滤除误差信号中的高频成分,以保证系统的稳定性。
控制电压源根据误差信号的大小和方向来产生控制电压,用于调整振荡器的频率和相位。
振荡器则产生输出信号,其频率和相位受到控制电压的影响。
锁相环电路的设计需要考虑多个因素,如相频检测器的灵敏度、环路滤波器的带宽、控制电压源的响应速度等。
此外,还需要根据具体应用场景选择合适的振荡器类型和工作频率。
在实际应用中,锁相环电路的性能也受到环境温度、电源噪声等因素的影响,因此需要进行充分的测试和优化。
锁相环电路是一种重要的电路设计,它可以实现信号同步和频率稳定,广泛应用于通信、雷达、测量等领域。
在设计锁相环电路时,需要考虑多个因素,进行充分的测试和优化,以保证系统的性能和稳定性。
本实验要使用CMOS4046集成电路研究锁相环(PLL )的工作原理。
电路包括两个不同的鉴相器和一个VCO 。
另外还有一个齐纳二极管参考电压源用在供电调节中,在解调器输出中有一个缓冲电路。
用户必须提供环路滤波器。
4046具有高输入阻抗和低输出阻抗,容易选择外围元件。
注意事项1. 本实验较为复杂,进入实验室之前,确认你已经弄懂了电路预计应该怎样工作。
对 某样东西还没有充分分析之前,不要去尝试制作它。
在开始实验之前要通读本文。
2. 在实验第一部分得到的数据要用来完成实验的其它任务。
所以要仔细对待这部分内容。
3. 小心操作4046芯片,CMOS 集成电路很容易损坏。
避免静电释放,使用10k Ω电阻 把信号发生器的输出耦合到PLL 。
在关掉4046供电电源之前先关闭信号发生器,或者从信号输入端给整个电路供电。
要避免将输出端对电源或对地短路,TTL 门电 路可以容忍这种误操作但CMOS 不能(要注意松散的导线)。
CMOS 输出也没有能力驱动电容负载。
VSS 应该接地,VDD 应该接5V ,引脚5应该接地(否则VCO 被禁止)。
1 VCO 工作原理阅读数据手册中的电路描述。
VCO 常数(0K 单位为弧度/秒-伏)是工作频率变化与输入电压(引脚9上)变化之比值。
测量出0K ,即,画出输出频率关于输入电压的曲线。
确认数据范围要覆盖5kHz 到50kHz 。
对于R1, R2 和C 的各种参数取值进行测量,确定0K 对于R1 ,R2 和C 是怎样的近似关系。
测量VCO 输出的上升和下降时间,研究电容性负载的影响。
2 无源环路滤波器无源环路滤波器位于鉴相器输出与VCO 输入之间。
此滤波器对鉴相器输出中的高次谐波进行衰减,并控制环路的强度。
通常用一个简单RC 滤波器就可以满足要求,这种设计能避免有源滤波器设计中固有的电平移动和输出限制的恼人问题。
但另外一方面,有源滤波器可以提供更优越的性能。
2.1 相位比较器首先来看一下4046的相位比较器II 的输出。
锁相环的原理及应用论文锁相环是一种控制系统中常用的技术手段,它的原理是通过对输入信号进行相位检测和调节,使得输出信号与参考信号之间始终保持特定的相位关系。
锁相环广泛应用于通信、测量、控制等领域,能够有效地提高系统的稳定性和抗干扰能力。
本文将围绕锁相环的原理和应用展开详细论述。
锁相环的原理基于负反馈控制理论,其基本结构包括相位比较器、低通滤波器、电压控制振荡器(VCO)和分频器等组成。
其中,相位比较器用于比较输入信号和参考信号的相位差,得到控制电压;低通滤波器用于平滑控制电压,避免频率偏移;VCO根据控制电压调节输出信号的频率,使其与输入信号保持一定的相位关系;分频器将输出信号进行分频,得到反馈信号输入到相位比较器,构成闭环控制系统。
通过不断调节VCO的频率,使得输入信号和参考信号之间的相位差保持在一个稳定的范围内,从而实现锁相的目的。
锁相环在通信系统中有着重要的应用。
在数字通信中,接收到的信号往往受到噪声和失真的影响,其相位和频率可能会发生偏移。
利用锁相环技术,可以实现信号的恢复和重构,使得接收到的信号能够与发送端的时钟信号同步,从而实现可靠的数据传输。
此外,锁相环还能够用于频率合成器的设计,通过对参考信号施加锁相环控制,可以获得稳定的输出频率信号,满足系统对时钟信号稳定性和频率准确性的要求。
在测量和控制系统中,锁相环也具有重要的应用价值。
例如,在频谱分析仪中,为了获得更加精确的频率测量结果,可以采用锁相环技术来提高频率测量的准确性和稳定性。
在激光干涉仪中,锁相环可以实现对干涉信号的稳定检测和测量,从而提高仪器的测量精度。
在实时控制系统中,锁相环也可以用于对时间基准信号的稳定提取和跟踪,保证系统的稳定性和精度。
总之,锁相环作为一种重要的控制技术,在通信、测量、控制等领域都有着广泛的应用前景。
通过对锁相环原理的深入理解和应用,可以有效地提高系统的稳定性和可靠性,满足不同领域对于信号同步、频率稳定和相位精度的需求。
锁相环路及其在调频\鉴频电路中的应用摘要:本文主要介绍锁相环工作原理,及其在无线电技术中发挥的优越性能,给出一种实验的方法来测量锁相环的同步带和捕捉带,分析其在调频和鉴频电路中的应用。
关键词:锁相环;原理;同步带;捕捉带在无线电技术中,各种类型的反馈控制电路得到了广泛的应用。
锁相环路就是其中一种,它以其优越的稳频、滤波等性能,在许多反馈控制系统中发挥着重要的作用。
锁相环路在早期电视机同步系统中的应用,使电视图像的同步性能得到了很大的改善。
而在锁相环接收机中,由于中频信号可以锁定,频带可以做的很窄,带宽的大幅下降,使得输出信噪比大大提高了。
在空间技术中,比如接收来自宇宙飞行器的微弱信号,相比超外差式接收机的宽频带,信噪比也很低。
锁相环路简称锁相环(PLL)。
锁相环利用外部输入的参考信号控制环路内部振荡信号的频率和相位。
因锁相环输出信号频率能够自动跟踪输入信号的频率,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出信号与输入信号电压保持某种特定的关系,即输出电压与输入电压的相位被锁定,这也是锁相环名称的由来。
锁相环路由三部分组成:鉴相器PD、环路滤波器LF和压控振荡器VCO。
1鉴相器组成鉴相器PD通常鉴相器由模拟相乘器和低通滤波器组成。
设输入信号为Ui (t)和本振信号(压控振荡器输出信号)Uo(t)。
输入、输出信号在鉴相器中进行比较,输出一个与两者相位差成比例的电压,称作误差电压,记为Ud(t);该电压是两个信号相位差的函数。
环路滤波器LF为线性电路低通滤波器,作用是滤除误差电压Ud(t)中的高频分量及噪声,具有窄带滤波器的特性。
如果电路设计合理,会得到一个极窄的通道。
经过LF输出的电压为Uc(t),将它加给压控振荡器。
压控振荡器VCO 通常由变容二极管和电抗管等组成振荡电路。
VCO的输出频率受Uc(t)的控制。
当Uc(t)变化时,引起二极管结电容的变化,从而振荡器频率发生改变。
目录第1章绪论 (1)1.1锁相环(PLL)-全数字锁相环(ADPLL)的发展过程 (1)1.2锁相环(PLL) (1)1.2.1锁相环的发展及应用 (1)1.2.2锁相环的分类与特点 (2)1.2.3锁相环的优点 (3)1.3全数字锁相环的现状及发展 (3)1.4本论文的研究内容 (4)第2章全数字锁相环的开发系统 (5)2.1EDA技术简介 (5)2.1.1EDA的发展 (5)2.1.2EDA技术的主要内容 (5)2.1.3EDA技术的基本特征及特点 (5)2.1.4EDA设计工具 (6)2.2现场可编程门阵列(FPGA) (6)2.3硬件设计语言-VHDL (6)2.3.1VHDL语言简介 (6)2.3.2VHDL语言的特点 (7)2.4软件开发工具-MAX+plus II (8)2.4.1MAX+PLUSⅡ概述 (8)2.4.2Max+plusⅡ功能简介 (9)2.4.3Max+plusⅡ设计流程 (12)2.5实验开发系统 (12)第3章设计总体规划 (14)3.1整体方案 (14)3.2关于全数字锁相环设计的几种方案 (14)3.3设计分工 (17)3.3.1模块划分 (17)第4章基于VHDL的全数字锁相环的设计 (19)4.1全数字锁相环的介绍 (19)4.2ADPLL结构及工作原理 (19)4.3全数字锁相环模块介绍 (20)4.4全数字锁相环的VHDL设计 (20)4.4.1全数字锁相环的基本结构框图 (20)4.4.2全数字锁相环各模块原理及子程序设计 (21)4.4.3总体模块、仿真及体统性能分析 (25)第5章结论与进一步研究的问题 (30)5.1主要结论-ADLL同步范围 (30)5.2进一步研究的问题 (31)5.2.1ADPLL的减小波纹技术 (31)5.2.2ADPLL的实际应用 (32)参考文献 (34)致谢 (35)附录A英文资料翻译 (36)附录B源程序代码 (52)第1章绪论1.1 锁相环(PLL)-全数字锁相环(ADPLL)的发展过程锁相环从30年代开始发展,1932年,De Bellescize实现了第一个PLL,这个法国工程师称该发明为“相关通信”(coherent conmmunication)。
《锁相技术论文》题目:锁相环基本工作原理院(系)信息科学与工程学院专业通信工程专业届别 2010级班级学号姓名任课老师摘要锁相环是指一种电路或者模块,它用于在通信的接收机中,其作用是对接收到的信号进行处理,并从其中提取某个时钟的相位信息。
或者说,对于接收到的信号,仿制一个时钟信号,使得这两个信号从某种角度来看是同步的(或者说,相干的)。
由于锁定情形下(即完成捕捉后),该仿制的时钟信号相对于接收到的信号中的时钟信号具有一定的相差,所以很形象地称其为锁相器。
锁相环最初用于改善电视接收机的行同步和帧同步,以提高抗干扰能力。
20世纪50年代后期随着空间技术的发展,锁相环用于对宇宙飞行目标的跟踪、遥测和遥控。
60年代初随着数字通信系统的发展,锁相环应用愈广,例如为相干解调提取参考载波、建立位同步等。
具有门限扩展能力的调频信号锁相鉴相器也是在60年代初发展起来的。
在电子仪器方面,锁相环在频率合成器和相位计等仪器中起了重要作用.。
关键词:锁相环、鉴相器、频率合成器、振荡器、AbstractPhase-locked loop is to point to a circuit or module, it is used in the receiver of communication, its function is to process the signals received, extract a clock phase information from it. Or, for the received signal, the generic a clock signal, make the two signals from some perspective is synchronous (or, coherent). Because the lock case (i.e., completion of capture), the imitation of the clock signal relative to the clock signal in the received signal has a certain difference, so it is vividly called the phase locking device.Phase-locked loop is used to improve initial television receiver's synchronization and frame synchronization, in order to improve anti-interference ability. In the late 1950 s with the development of space technology, phase lock loop used for space flight target tracking, telemetry and remote control. The early 60 s with the development of digital communication system, phase-locked loop is more widely used, for example for the extraction of coherent demodulation reference carrier, to establish a synchronous, etc. With extended threshold ability of FM signal phase locking phase is developed in the early 60 s. In terms of electronic instruments, phase-locked loop frequency synthesizer and plays an important role in phase meter and other equipment..Key words: phase lock loop and phase discriminator, frequency synthesizer,Oscillator,目录1 锁相环路的基本构成 (4)2 鉴相器 (4)3 环路滤波器 (6)4 压控振荡器 (8)5 参考文献 (9)1 锁相环路的基本构成锁相环是由鉴相器,环路滤波器和压控振荡器组成。
摘要测量汽车转速是车辆工程重要组成部分。
本文是基于利用数字锁相环4046的锁相和压控振荡原理配合合理的传感器采集信号。
本文是利用点火信号的磁电感应转换而来的转速信号,然后经过限幅和电压比较将信号转换成方波即脉冲的形式,经过处理后的信号送给数字锁相环4046的输入信号端口,采用4046的第二相位比较器,当输出信号的相位与输入信号的相位差恒定时,输出信号频率为输入信号频率的整数倍。
频率大小取决于相位比较器的输出信号经低通滤波处理后的电压和6、7管脚间的电容和11、12管脚上外接的电阻的大小。
4046的输出信号经计数器计数,数据锁存后,送给译码电路,译码输出驱动共阴极发光二极管,直接显示测量结果。
本文的方案将用于不同气缸的汽车转速的测量,具有一定的实用价值和应用前景。
关键词:信号转换,压控振荡,相位差,低通滤波,测量转速AbstractMeasuring vehicle speed vehicles is an important component of the project. This paper is based on the use of digital PLL lock-in the 4046 and VCO with the principle of reasonable acquisition sensor signal.This is the use of the ignition signal magnetic induction converted speed signals Then after limiting and voltage comparator of the square wave signal isconverted into the form of pulses, After treatment, the signal given to the 4,046 DPLL input signal ports, The use of 4046 compared with the second phase, when the output signal phase of the input signal with a constant phase difference, output signal frequency of the input signal frequency integer multiples. Frequency depends on the size of phase comparison of the output signal by the low-pass filter after the voltage and 6, 7 pin capacitance between the pin on 11, 12 and the external resistor size. 4046 output signal Counting, data latches, gave decoding circuit, Decoding the total output driving LED cathode direct measurement results show.In this paper, the program will be used for different cylinder motor speed measurement, has some practical value and prospects.第一章 引言1.1锁相环基本原理一个典型的锁相环(PLL )系统,是由鉴相器(PD ),压控荡器(VCO )和低通滤波器(LPF )三个基本电路组成,如图1,Ud = Kd (θi –θo) U F = Ud F (s )θi θo 图11.1.1.鉴相器(PD )构成鉴相器的电路形式很多,这里仅介绍实验中用到的两种鉴相器。
锁相环的研究与设计——用于DSP芯片时钟发生器
的开题报告
一、研究背景
随着现代数字信号处理技术的日益成熟,数字信号处理(DSP)芯片在通信、音视频处理、图像处理等领域得到了广泛应用。
因为DSP芯片需要精确的时钟信号来同步各个模块之间的数据传输,常用的时钟发生器是基于晶振的,然而晶振的频率稳定性和精度难以满足高精度时钟信号的要求。
锁相环(PLL)是一种常用的时钟发生器,用于将一个参考时钟信号锁定到设定频率的输出时钟信号。
锁相环可以提供相对于晶振更高的频率稳定性和精度,适用于DSP芯片的时钟信号发生器。
二、研究内容
本论文将重点研究锁相环的理论原理与设计方法,并将其应用于DSP芯片的时钟发生器中。
主要研究内容包括:
1. 锁相环的基本结构和原理。
重点分析锁相环中的相位检测器、环路滤波器和控制电路等核心组成部分,并探讨其作用和影响因素。
2. 锁相环的设计方法。
基于理论分析和电路实现,设计一种高性能的锁相环,包括参数选取、电路布局和仿真验证等环节。
3. DSP芯片时钟发生器的整体设计。
将锁相环与其他电路模块相结合,构建一个完整的DSP芯片时钟发生器,并对其进行整体性能测试与验证。
三、研究意义
本论文的研究结果可以为DSP芯片时钟发生器的设计与制造提供参考,并为相关领域的进一步研究提供理论基础和实践经验。
同时,本研究探讨的锁相环设计方法可适用于其他电子设备中时钟发生器的设计与制造,具有一定的普适性和推广价值。
毕业设计(论文)论文题目:锁相环设计学生姓名:何宝园学号: 082006008专业:电子信息工程指导教师:程伟第1章绪论1.1 课题研究的目的意义本次进行研究的课题是全数字锁相环。
锁相环路是一种反馈电路,锁相环的英文全称是Phase-Locked Loop,简称PLL。
其作用是使得电路上的时钟和某一外部时钟的相位同步。
因锁相环可以实现输出信号频率对输入信号频率的自动跟踪,所以锁相环通常用于闭环跟踪电路。
锁相环在工作的过程中,当输出信号的频率与输入信号的频率相等时,输出电压与输入电压保持固定的相位差值,即输出电压与输入电压的相位被锁住,这就是锁相环名称的由来。
锁相环在通信、雷达、测量和自动化控制等领域应用极为广泛,随着电子技术向数字化方向发展,需要采用数字方式实现信号的锁相处理。
因此,对全数字锁相环的研究和应用得到了越来越多的关注。
传统的数字锁相环系统是希望通过采用具有低通特性的环路滤波器,获得稳定的振荡控制数据。
对于高阶全数字锁相环,其数字滤波器常常采用基于DSP 的运算电路。
这种结构的锁相环,当环路带宽很窄时,环路滤波器的实现将需要很大的电路量,这给专用集成电路的应用和片上系统SOC(system on chip)的设计带来一定困难。
另一种类型的全数字锁相环是采用脉冲序列低通滤波计数电路作为环路滤波器,如随机徘徊序列滤波器、先N 后M 序列滤波器等。
这些电路通过对鉴相模块产生的相位误差脉冲进行计数运算,获得可控振荡器模块的振荡控制参数。
1.2 国内外研究现状1.2.1 锁相环技术的产生背景锁相环路诞生于20世纪30年代。
在40年代开始在电视接收技术中得到广泛应用。
此后空间技术的发展又极大的促进了锁相技术的发展,现已广泛应用于电子技术的各个领域。
随着数字电路技术的发展,数字锁相环在调制解调、频率合成、FM 立体声解码、彩色副载波同步、图象处理等各个方面得到了广泛的应用。
数字锁相环不仅吸收了数字电路可靠性高、体积小、价格低等优点,还解决了模拟锁相环的直流零点漂移、器件饱和及易受电源和环境温度变化等缺点,此外还具有对离散样值的实时处理能力,已成为锁相技术发展的方向。
1 绪论在工业生产中温度、压力,流量是四种最常见的过程变量。
其中温度是一个非常重要的过程变量,因为它直接影响燃烧、烘烤、煅烧、蒸馏、浓度、挤压成形,结晶以及空气流动等物理和化学过程。
温度控制不准确就可能引起生产安全,产品质量等一系列问题。
任何物理变化和化学反应过程都与温度密切相关,因此实现对温度的控制是生产自动化的重要任务。
随着社会工业化程度的提高,温度这个和我们每个人生活息息相关的词汇在工业、农业中发挥着越来越大的作用,各种工矿企业,科研机构,都要用到温度控制。
例如:烟花爆竹工厂的仓库必须对温度的上限有严格的控制,炼钢厂的锅炉温度等等,都需要对温度的变化进行严密的监测和控制。
常见的温度控制系统,是先利用温度敏感元件,如热敏电阻,将温度的变化转换为热敏电阻本身阻抗的变化,继而引起其两端电压的变化,实现控制功能,虽其实现容易,但可靠性低,抗干扰能力差。
本篇力求解决这一问题,设计思路是将温度变化转换为频率变化加以控制,其具体原理是先借助温度传感器----热敏电阻和NE555集成芯片组成多谐振荡器,即可把温度的变化转变为振荡器输出信号频率的变化,随着温度的渐渐升高,信号频率也随之慢慢改变,当达到设定温度时,频率也将确定。
多谐振荡器后接由LM567音频译码芯片组成的锁相环路,在温度设定范围内,信号频率与锁相环路自身的振荡频率不一致,该电路输出为高电平,后续控制电路不动作,指示电路只显示绿灯,表明目前温度正常;但当温度达到控制点,信号频率就会与锁相环路的振荡频率相一致,该电路将输出低电平,从而启动后接控制器,接通报警电路,同时指示电路将点亮红灯给予人们提醒。
该电路设计简单,实现容易,可靠性好,实用价值高。
在下面的章节里我们将具体分体其工作原理。
2 温度控制系统简介在电子电路控制系统中,要实现温度的控制,首先要把温度的变化量转换为电量变化,才能加以分析处理和加以控制。
本篇也不例外,取用的温度敏感元件是具有灵敏度高,体积小,热惯性小的热敏电阻,它能把温度的变化反映为其本身阻值的变化,从而就能引起电量的变化。
由于我们要处理的电量为信号频率,那么我们就需要一个波形产生电路----多谐振荡器,它的振荡频率由其外接电阻和电容控制,其两个中任何一个元件参量的变化都将引起振荡器输出信号频率的改变,因此我们可以用热敏电阻代替振荡器的外接电阻,从而就能将温度的变化转为频率的变化。
要实现对温度的控制,必然要有控制条件,本篇的控制条件则是对温度下限的控制,即当温度下降到某一设定值时,电路加以动作,此时的温度是确定值,那么热敏电阻阻值也是确定的,则振荡器输出频率也就确定了,显然我们现在要做的将是在信号达到这一频率时,电路采取措施。
由此,我们就需要一个频率比较电路----译码电路,先将该译码电路的自身频率即参考频率加以设定,当控制信号频率与参考频率不同时,译码电路输出高电平;当控制信号频率与参考频率相同时,译码电路输出低电平。
利用输出的高低电平,将会很容易实现控制和指示,我们的设计思路也将由此展开。
下面是温度控制系统总体框图,如图2.1所示:图2.1 温度控制系统总体框图各部分简介如下:直流电源部分:为系统各部分提供稳定,可靠的直流电源。
它由变压,整流,滤波,稳压四个部分组成。
温度/频率转换电路:由温度敏感元件及波形产生电路组成。
利用正温度系数热敏电阻的特性----阻值随着温度的升高而增大,将温度的变化转变阻值的变化,阻值的变化引起频率的变化,从而把温度的改变转化为信号频率的改变。
译码电路:当输入信号频率与参考频率不同时,译码电路输出高电平,当信号频率与参考频率相同时,译码电路输出变为低电平。
控制及指示电路:在允许温度范围内,电路以绿灯显示,当超出温度控制点时,电路以红灯显示,同时接通报警电路,给予提示。
报警电路:产生音频信号,驱动扬声器,提醒人们温度已超出设置点。
3 电源部分直流电源的组成框图如图3.1所示。
其中包括四个组成部分。
本文电源部分具体电路如图3.2所示。
图3.1 直流电源的组成框图图3.2 直流电源部分电路图3.1 电源变压器城市电网提供的一般为220V(或380V)/50HZ的正弦交流电,而本电路系统所需的是8V的直流电,因此要利用变压器将220V的市电先降至合适的交流电压,然后再将变换以后的变压器次级电压去整流、滤波和稳压,最后得到所需要的直流电压幅值。
3.2 桥式整流桥式整流电路的作用是利用具有单向导电性的整流元件二极管,将正负交替的正弦交流电压整流成为单向的脉动电压。
但是,这种单向电压往往包含着很大的脉动成分,距离理想的直流电压还差得很远。
桥式整流电路原理图如图3.3所示。
图3.3 桥式整流原理图由图可知,在u2正半周内,二极管D1、D3导通,D2、D4截止;u2负半周时,D2、D4导通,D1、D3截止。
每两只二极管串联导通正弦电压的半个周期,而负载电阻在一个周期内均有电流通过,故两只二极管中流过的电流平均值为负载电流的一半,且流过负载电阻R L的电流方向是一致的,因而使输出电压的直流成分得到提高,脉动成分得到降低。
桥式整流电路的波形如图3.4所示:图3.4 桥式整流电路的波形图桥式整流电路的主要参数如表3.1所示:表3.1 桥式整流电路的主要参数(忽略变压器内阻和整流管压降)其中U O(A V)为输出直流电压平均值,S为脉动系数(整流输出电压的基波峰值与平均值之比),I D(A V)为二极管正向平均电流,U RM为二极管最大反向峰值电压。
3.3 滤波电路滤波电路由电容、电感等储能元件组成。
它的作用是尽可能地将单向脉动电压中的交流成分滤掉,使输出电压成为比较平滑的直流电压,显然,这里需要利用截止频率低于整流输出电压基波频率的低通滤波电路。
这时我们虽然得到了较平滑的直流电,但电压值还易受电网电压波动和负载变化的影响,这样的直流电源是不稳定的。
如图2.2电容C1的作用是滤去电路中的低频成分,C2、C3的作用是用来防止自激振荡,减小高频噪声,改善负载的瞬态响应。
3.4 稳压器稳压电路的作用是采取某些措施,使输出的直流电压在电网电压或负载电流发生变化时保持稳定。
本篇选用固定正输出8V的三端集成稳压器W7808,它具有体积小、可靠性高以及温度特性好等优点,而且使用灵活、价格低廉,只有三个引出端子,分别接输入端、输出端和公共端,基本上不需外接元件,而且内部有限流保护、过热保护和过压保护电路,使用更加方便、安全。
它的封装为塑料直插式,如图3.5所示。
图3.5 三端集成稳压器的外形、引脚功能及电路符号W7808是一个三端集成稳压器,它的内部结构如下图3.6所示。
图3.6 三端集成稳压压器的内部结构图由图可见,电路内部实际上包括了串联型直流稳压电路的各个组成部分,另外加上保护电路和启动电路。
现对各部分的作用扼要介绍一下:调整管在电网电压或负载电流波动时,调整自身的集-射压降使输出电压基本保持不变;放大电路将基准电压与从输出端得到的采样电压进行比较,然后再放大并送到调整管的基极,放大倍数越大,稳定性越好;基准电压的稳定性将直接影响稳压电路输出电压的稳定性;采样电路由两个分压电阻组成,它将输出电压变化量的一部分送到放大电路的输入端;启动电路的作用是在刚接通直流输入电压时,使调整管、放大电路和基准电源等建立起各自的工作电流,而当稳压电路正常工作时启动电路被断开,以免影响稳压电路的性能;保护电路将三种保护电路集成在芯片内部,它们是限流保护电路、过热保护电路和过压保护电路。
W7808的主要性能参数如表3.2所示。
表3.2 W7808的主要参数表4温度/频率转换部分4.1 555集成芯片简介555定时器是一种中规模集成电路,只要在外部配上适当阻容元件,就可以方便地构成脉冲产生和整形电路,在工业控制、定时、仿声、电子乐器用防盗报警等方面应用很广。
它主要由三个5KΩ电阻组成的分压器、两个高精度电压比较器、一个基本RS触发器,一个作为放电通路的管子及输出驱动电路组成,其结构框图如图4.1所示。
图4.1 555集成定时器电路结构图1、分压器三个阻值均为5kΩ的电阻串联起来构成分压器(555也因此而得名),为比较器C1V=2VCC/3、C2之反相输入端“-”:和C2提供参考电压,C1之同相输入端“+”:1RV=VCC/3。
如果在电压控制端CO(5脚)另加控制电压,则可改变C1、C2的参考电压。
R2工作中不使用CO端时,一般都通过一个0.01μF的电容接地,以旁路高频干扰。
2、比较器C1、C2是两个电压比较器。
比较器有两个输入端,分别标有“+”号和“-”号,如果用U+和U-表示相应输入端上所加的电压,则当U+>U-时其输出为高电平,U+<U-时输出为低电平,两个输入端基本上不向外电路索取电流,即输入电阻趋近于无穷大。
3、基本RS触发器由两个与非门组成,它的状态由两个比较器的输出控制,根据基本RS触发器的工R是专门设置的可从外部进行置“0”的复位作原理就可以决定触发器输出端的状态。
DR=0时,使Q=0、Q=1。
端,当D4、晶体管开关和输出缓冲器晶体管TD构成开关,其状态受Q端控制,当Q为“1”时TD截止、为“0”时TD导G,其作用是提高定时器的带负载能力和隔通。
输出缓冲器就是接在输出端的反相器4离负载对定时器的影响。
它的功能如表4.1所示。
4.2 热敏电阻热敏电阻:热敏电阻的基本电气特性是它们随其温度变化而改变自身电阻。
它们不整定,也不产生信号,热敏电阻温度会随周围温度或电流通过热敏电阻而导致的自热而改变。
阻值随温度升高而变大的为正温度系数热敏电阻,简称PTC;阻值随温度升高而变小的称为负温度系数热敏电阻,简称NTC。
热敏电阻主要参数的定义为:1、标称阻值:指在环境温度为25时电阻的阻值,单位为Ω。
2、耗散常数:温度每升高或降低1℃所耗散的功率,单位是W/℃。
3、温度系数:温度变化1℃度时电阻的相对变化量,单位是%℃-1。
4、时间常数:热敏电阻在无功耗状态下,环境温度从一个温度向另一个温度突然转变时电阻体温度变化了这两个特定温度之差的63.2%所用时间,单位为S。
本电路采用正温度系数的热敏电阻,它的型号为MZ11A-10K- 5%,它的主要参数如表4.2所示:表4.2 热敏电阻的主要参数表其阻值可用公式3.1计算:R(t)=R 0[1+α(T -T 0)] 3.1(其中为R 0标称电阻值,α为温度系数,T 0为常温27℃)取α≈0.05/℃,当下限温度T 取-4℃时,R tmax =10000×[1+0.05(-4-27)]≈145k Ω4.3 多谐振荡器图4.2所示是用555定时器构成的多谐振荡器。
R P1、R 1、Rt 、C 4是外接定时元件,定时器TH 、TR 端连接起来接u C ,晶体三极管集电极接到R T 、R 1的连接点。