概率统计试卷5
- 格式:doc
- 大小:186.75 KB
- 文档页数:2
新乡学院期末考试试卷概率论与数理统计考试范围 第1至7章命题人院系 数学与信息科学 考试形式闭卷课程类别必修 学 期专业一、选择题(本题共_5__小题,每小题 3 分,共 15 分) (从下列备选答案中选择正确答案)1.设A ,B 为任意两个事件,0)(,>⊂B P B A ,则下式成立的为( ) (A )B)|()(A P A P < (B )B)|()(A P A P ≤ (C )B)|()(A P A P > (D )B)|()(A P A P ≥ 2. 下列函数为随机变量的密度函数的为:( )(A) ⎩⎨⎧∈=其他,0],0[,cos )(πx x x f (B) ⎪⎩⎪⎨⎧<=其他,02,21)(x x f(C) ⎪⎩⎪⎨⎧<≥=--0,00,21)(222)(x x e x f x σμπσ (D) ⎩⎨⎧<≥=-0,00,)(x x e x f x3.设随机变量)4,(~2μN X ,)5,(~2μN Y ,}{41-≤=μX P P ,}{52+≥=μY P P ,则( )(A ) 对任意的实数21,P P =μ, (B )对任意的实数21,P P <μ, (C )只对实数μ的个别值,有21P P =, (D )对任意的实数21,P P >μ4.如果随机变量Y X ,满足)()(Y X D Y X D -=+,则必有( ) (A )独立与Y X (B )不相关与Y X (C )0=DY (D )0=DX5.设随机变量X 的概率密度函数为()x f ,且)()(x f x f -=,又)(x F 为分布函数,则对任意实数a ,有( ) (A) (),1)(0dx x f a F a⎰-=- (B) (),21)(0dx x f a F a ⎰-=- (C) )()(a F a F =-, (D) ()1)(2-=-a F a F , 二、填空题(本题共 5 小题,每小题 3 分,共 15 分) 1.事件A 在4次独立实验中至少成功一次的概率为8180,则事件A 在一次实验中成功的概率为 。
考研数学三(概率论与数理统计)-试卷5(总分:70.00,做题时间:90分钟)一、选择题(总题数:13,分数:26.00)1.选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
(分数:2.00)__________________________________________________________________________________________解析:2.设随机变量X的方差存在,并且满足不等式P{|X( )(分数:2.00)A.D(X)=2.B.P{|X—E(X)|<3}C.D(X)≠2.D.P{|X—E(X)|√解析:解析:由于事件{|X—E(X)|<3}是事件{|X—E(X)|≥3}的对立事件,且题设P{|X—E(X)|≥3}≤,因此一定有P{|X—E(X)|<3}≥选项D正确.进一步分析,满足不等式P{|X—E(X)|≥3}≤的随机变量,其方差既可能不等于2,亦可以等于2,因此选项A与C都不能选.若X服从参数n=8,p=0.5的二项分布,则有E(X)=4,D(X)=2.但是P{|X—E(X)|≥3}=P{|X一4|≥3}=P{X=0}+P{X=1}+P{X=7}+P{X=8}=因此选项B也不成立.故选D.3.已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,P的值为( )(分数:2.00)A.n:4,P=0.6.B.n=6,P=0.4.√C.n=8,P=0.3.D.n=24,P=0.1.解析:解析:因为X~B(n,P),所以E(X)=np,D(X)=np(1一P)组,得n=6,p=0.4,故选项B正确.4.对任意两个随机变量X和Y,若E(XY)=E(X).E(Y),则( )(分数:2.00)A.D(XY)=D(X).D(Y).B.D(X+Y)=D(X)+D(Y).√C.X与Y独立.D.X与Y不独立.解析:解析:因为 D(X+Y)=D(X)+D(Y)+2[E(XY)一E(X).E(Y)],可见E(XY)=E(X).E(Y),故选项B正确.对于随机变量X与Y,下面四个结论是等价的.①Cov(X,Y)=0;②X 与Y不相关;③E(XY)=E(X)E(Y);④D(X+Y)=D(X)+D(Y).5.已知随机变量X与Y均服从0—1分布,且E(XY)=则(分数:2.00)A.B.C. √D.解析:解析:因为X与Y均服从0一1分布,所以可以列出(X,Y)的联合分布如下:又已知E(XY)=.即P 22 = 从而P{X+Y≤1}=P 11 +P 12 +P 21 =1一P 22.故选项C正确.6.设二维随机变量(X,Y)满足E(XY)=E(X).E(Y),则X与Y( )(分数:2.00)A.相关.B.不相关.√C.独立.D.不独立.解析:解析:因E(XY)=E(x)E(Y),故cov(X,Y)=E(XY)一E(X)E(Y)=0X与Y不相关,故选项B正确.7.将一枚硬币重复掷n次,以X和Y分别表示正面向上和反面向上的次数,则X和Y的相关系数等于( ) (分数:2.00)A.一1.√B.0.D.1.解析:解析:根据题意,y=n—X,故ρXY =一1.应选A.一般来说,两个随机变量X与Y的相关系数ρXY满足|ρXY|≤1.若Y=aX+b(a,b为常数),则当a>0时,ρXY =1,当a<0时,ρXY =一1.8.对于任意两随机变量X和Y,与命题“X和Y不相关”不等价的是( )(分数:2.00)A.E(XY)=E(X).E(Y).B.Cov(X,Y)=0.C.D(XY)=D(X).D(Y).√D.D(X+Y)=D(X)+D(Y).解析:解析:因为Cov(X,Y)=E(XY)一E(X)E(Y)=0是“X和Y不相关”的充分必要条件,所以A与B等价.由D(X+Y)=D(X)+D(Y)的充分必要条件是Cov(X,Y)=0,可见选项B与D等价.于是,“X和Y不相关”与选项A,B和D等价.故应选C.9.假设随机变量X在区间[一1,1]上均匀分布,则U=arcsinX和V=arccosX的相关系数等于( )(分数:2.00)A.一1.√B.0.C.0.5.D.1.解析:解析:因为U=arcsinX和V=arccosX满足下列关系:即U是V的线性函数,且其增减变化趋势恰恰相反,所以其相关系数ρ=一1.应选A.10.X与Y的相关系数ρ=1,则P{X=0,Y=1}的值必为( )(分数:2.00)A.0.√D.1.11.设随机变量X和Y独立同分布,记U=X—Y,V=X+Y,则随机变量U与V必然( )(分数:2.00)A.不独立.B.独立.C.相关系数不为零.D.相关系数为零.√解析:解析:因为 Cov(U,V)=E(UV)一E(U).E(V) =E(X 2一Y 2 )一E(X一Y).E(X+Y) =E(X 2 )一E(Y 2 )一E 2 (X)+E 2 (Y) =D(X)一D(Y)=0.则所以U与V的相关系数为零,故选D.12.设随机事件A与B互不相容,0<P(A)<1,0<P(B)<1与Y的相关系数为ρ,则( ) (分数:2.00)A.ρ=0.B.ρ=1.C.ρ<0.√D.ρ>0.解析:解析:选项B不能选,否则选项D必成立.因此仅能在选项A、C、D中考虑,即考虑ρ的符号,而相关系数符号取决于Coy(X,Y)=E(XY)-E(X).E(Y),根据题设知E(X)=P(A),E(Y)=P(B),(因为P(AB)=0),所以Cov(X,Y)=一E(X).E(Y)<0,故选C.13.设两个相互独立的随机变量X和Y的方差分别为4和2,则随机变量3X一2Y的方差是( )(分数:2.00)A.8.B.16.C.28.D.44.√解析:解析:本题考查方差的运算性质,是一道纯粹的计算题.可根据方差的运算性质D(C)=0(C为常数),D(CX)=C 2 D(X)以及相互独立随机变量的方差性质D(X±Y)=D(X)+D(Y)自行推演.故选项D正确.二、填空题(总题数:14,分数:28.00)14.设连续型随机变量X的分布函数为E(X)=1,则D(X)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:1)解析:解析:根据题意已知连续型随机变量X15.相互独立的随机变量X 1和X 2均服从正态分布D(|X 1—X 2 |)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:根据题意随机变量X 1和X 2相互独立,且服从正态分布设Z=X 1—X 2,则Z~N(0,1),其概率密度函数为φ(z)= D(|X 1 -X 2 |)=D(|Z|)=E(|Z| 2 )一E 2 |Z|=E(Z 2 )-E 2 |Z|=D(Z)+E2 (Z)一E 2 |Z|,显然,D(Z)=1,E(Z)=0.16.设随机变量X和Y X和Y的协方差Cov(X,Y)= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:一0.1)E(X)=0.5,E(Y)=(一1)×0.3+1×0.3=0. E(XY)=一P{XY=一1}+P{XY=1}=一0.2+0.1=一0.1. Coy(X,Y)=E(XY)一E(X)E(Y)=一0.1—0=一0.1.17.已知随机变量X的分布函数F(x)在x=1处连续,且F(1)=若EY= 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:[*])解析:解析:根据离散型随机变量期望公式计算.由于F(x)在x=1处连续,故E(Y)=aP{X>1}+bP{X=1}+cP{X<1} =a[1一P{X≤1}]+bP{X=1}+cP{18.已知(X,Y)在以点(0,0),(1,0),(1,1)为顶点的三角形区域上服从均匀分布,对(X,Y)作4次独立重复观察,观察值X+Y不超过1出现的次数为Z,则EZ 2 = 1.(分数:2.00)填空项1:__________________ (正确答案:正确答案:5)解析:解析:根据题干可知(X,Y)的联合概率密度函数为令事件A=“X+Y≤1”,则Z是4次独立重复试验事件A发生的次数,故Z~B(4,P),其中如图4—119.已知某自动生产线一旦出现不合格产品就立即进行调整,经过调整后生产出的产品为不合格产品的概率是0.1,如果用X表示两次调整之间生产出的产品数量,则EX= 1。
《概率论与数理统计》试卷(A )注:可能用到的数据()()()()()()()()()()()0.050.0250.050.050.0250.02522220.9750.9750.0250.0251.645,1.96,4 2.3138,5 2.0150,004 2.7764,5 2.5706, 1.6450.95, 1.960.9756 1.237,7 1.1.690,614.449,716.013z z t t t t χχχχ====Φ===Φ=Φ=====一、填空题(每小题4分,共40分)1.设3/1)()(==B P A P ,()1/2P A B = ,则()|P A B = 3/4 2.设随机变量X 的概率密度为()⎩⎨⎧<<=其他,010,2x x x fY 表示对X 的三次独立重复观察试验中事件{}2/1≤X 出现的次数,则{}==2Y P 9/643.设随机变量()()0,~2>σσμN X ,且二次方程042=++X y y 无实根的概率为12,则=μ 44.设随机变量1X 与2X 有相同的分布,其分布律为{}114i P X =-=, {}102i P X ==, {}114i P X ==, 1,2i =且满足1}0{21==X X P ,则==}{21X X P 05.已知随机变量X 服从参数为λ的泊松分布,令1232-+=X X Y ,则Y的数学期望()E Y = 1532-+λλ6.设随机变量X 的数学期望()μ=X E ,方差()2σ=X D ,则由切比雪夫不等式,有{}≤≥-σμ3X P 1/97.设121,,,,+n n X X X X 是来自正态总体()2,σμN 的样本,记∑==ni i X nX 11, ()∑=--=ni iXX n S 12211,则统计量1n X Sμ+-服从___t____分布,自由度为 n-18.已知总体X 的概率密度为()1,01()0,x x f x θθ⎧+<<=⎨⎩其他1θ>-设n X X X ,,,21 为X 的样本,则参数θ的矩估计量为ˆθ= ˆθ=211X X--9.设随机变量X 的分布函数为⎪⎩⎪⎨⎧≥<≤-+-<=1,111,16751,0)(x x x x x F则==}1{2XP ____ 3/8_10.随机变量X 在区间[]1,2-上服从均匀分布,随机变量1,00,01,0X Y X X >⎧⎪==⎨⎪-<⎩则Y 的方差()D Y = 8/9二 、(10分)设有来自A 、B 、C 三个地区考生报名表各10份、15份和25份,其中女生的报名表分别为3份、7份和5份,今随机地抽取一份报名表。
高一数学复习专题练习专题5 概率与统计一、选择题1.某校有40个班,每班50人,要求每班随机选派3人参加“学生代表大会”.在这个问题中样本容量是( )A .40B .50C .120D .150【答案】 C【解析】 由于样本容量即样本的个数,故抽取的样本的个数为40×3=120. 2.从6个篮球、2个排球中任选3个球,则下列事件中,是必然事件的是( ) A.3个都是篮球 B.至少有1个是排球 C.3个都是排球D.至少有1个是篮球【答案】 D【解析】 从6个篮球、2个排球中任选3个球,A ,B 是随机事件,C 是不可能事件,D 是必然事件,故选D.3.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( ) A .1对 B .2对 C .3对D .4对【答案】 B【解析】 E 1与E 3,E 1与E 4均为互斥而不对立的事件.4.袋中装有白球和黑球各3个,从中任取2个,则至多有一个黑球的概率是( ) A.15 B.45 C.13 D.12【答案】 B【解析】 把白球编号为1,3,5,黑球编号为2,4,6.从中任取2个,基本事件为12,13,14,15,16,23,24,25,26,34,35,36,45,46,56,共15个.其中至多一个黑球的事件有12个.由古典概型公式得P =1215=45.学-科网5.某中学举办电脑知识竞赛,满分为100分,80分以上为优秀(含80分),现将高一两个班参赛学生的成绩进行整理后分成五组:第一组[50,60),第二组[60,70),第三组[70,80),第四组[80,90),第五组[90,100],其中第一、三、四、五小组的频率分别为0.30,0.15,0.10,0.05,而第二小组的频数是40,则参赛的人数以及成绩优秀的概率分别是( ) A.50,0.15 B.50,0.75 C.100,0.15D.100,0.75【答案】 C【解析】 由已知得第二小组的频率是1-0.30-0.15-0.10-0.05=0.40,频数为40,设共有参赛学生x 人,则x ×0.4=40,∴x =100. 成绩优秀的概率为0.15,故选C.6.如图所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会地进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是( )A.12B.14C.316D.16【答案】 C7.样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均数为1,则样本方差为( ) A.65 B.65C. 2D.2 【答案】 D【解析】 ∵样本的平均数为1, 即15×(a +0+1+2+3)=1,∴a =-1. ∴样本方差s 2=15×[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2.8.已知集合A ={-5,-3,-1,0,2,4},在平面直角坐标系中,点(x ,y )的坐标满足x ∈A ,y ∈A ,且x ≠y ,则点(x ,y )不在x 轴上的概率( ) A.13B.12C.56D.14【答案】 C【解析】 因为x ∈A ,y ∈A ,且x ≠y ,所以x 有6种可能,y 有5种可能,所以试验的所有结果有6×5=30(种),且每种结果的出现是等可能的.设事件A 为“点(x ,y )不在x 轴上”,那么y ≠0,有5种可能,x 有5种可能,事件A 包含基本事件个数为5×5=25种.因此所求事件的概率为P (A )=2530=56.9.为了调查某厂2 000名工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为[10,15),[15,20),[20,25),[25,30),[30,35],频率分布直方图如图所示.工厂规定从生产低于20件产品的工人中随机地选取2位工人进行培训,则这2位工人不在同一组的概率是( )A.110B.715C.815D.1315【答案】 C【解析】 根据频率分布直方图,可知产品件数在[10,15),[15,20)内的人数分别为5×0.02×20=2,5×0.04×20=4.设生产产品件数在[10,15)内的2人分别是A ,B ,生产产品件数在[15,20)内的4人分别为C ,D ,E ,F ,则从生产低于20件产品的工人中随机地选取2位工人的结果有(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.2位工人不在同一组的结果有(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),共8种.故选取的2位工人不在同一组的概率为815.二、填空题(本大题共4小题,每小题5分,共20分)10.某企业共有职工150人,其中高级职称15人,中级职称45人,低级职称90人,现采用分层抽样来抽取30人,则抽取的高级职称的人数为________.【答案】 3【解析】 由题意得抽样比为30150=15,所以抽取的高级职称的人数为15×15=3.11.一批产品共有100件,其中5件是次品,95件是合格品,从这批产品中任意抽5件,记A 为“恰有1件次品”,B 为“至少有2件次品”,C 为“至少有1件次品”,D 为“至多有1件次品”.现给出下列结论:①A +B =C ;②B +D 是必然事件;③A +C =B ;④A +D =C .其中正确的结论为________.(写出序号即可) 【答案】 ①②【解析】 由互斥、对立事件的概念得A +B =C ,故③错;A +D 表示“至多有1件次品”,所以④错. 12.为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.如果用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本,则该样本平均数与总体平均数之差的绝对值不超过0.5的概率为________. 【答案】715三、解答题13.(12分)一个包装箱内有6件产品,其中4件正品,2件次品.现随机抽出两件产品. (1)求恰好有一件次品的概率; (2)求都是正品的概率; (3)求抽到次品的概率.解 将6件产品编号,abcd (正品),ef (次品),从6件产品中选2件,其包含的基本事件为ab ,ac ,ad ,ae ,af ,bc ,bd ,be ,bf ,cd ,ce ,cf ,de ,df ,ef ,共15种.(1)设恰好有一件次品为事件A ,事件A 包含的基本事件为ae ,af ,be ,bf ,ce ,cf ,de ,df ,共有8种, 则P (A )=815.(2)设都是正品为事件B ,事件B 包含的基本事件数为6,则P (B )=615=25.(3)设抽到次品为事件C ,事件C 与事件B 是对立事件,则P (C )=1-P (B )=1-25=35.14.已知关于x 的一元二次方程x 2-2(a -2)x -b 2+16=0.若a ,b 是一枚骰子掷两次所得到的点数,求方程有两正根的概率;解 a ,b 是一枚骰子掷两次所得到的点数,总的基本事件(a ,b )共有36个. 设事件A 表示“方程有两正根”,则∆≥0,a -2>0,16-b 2>0,即a -2 2+b 2≥16,a >2,-4<b <4,则事件A 包含的基本事件有(6,1),(6,2),(6,3),(5,3),共4个,故方程有两正根的概率为P (A )=436=19.15.(12分)先后2次抛掷一枚骰子,将得到的点数分别记为a ,b . (1)求直线ax +by +5=0与圆x 2+y 2=1相切的概率;(2)将a ,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.解 先后2次抛掷一枚骰子,将得到的点数分别记为a ,b 包含的基本事件:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),…,(6,5),(6,6),共36个. (1)∵直线ax +by +5=0与圆x 2+y 2=1相切,∴5a 2+b2=1,整理得a 2+b 2=25. 由于a ,b ∈{1,2,3,4,5,6},∴满足条件的情况只有a =3,b =4或a =4,b =3两种情况. ∴直线ax +by +5=0与圆x 2+y 2=1相切的概率是236=118.(2)∵三角形的一条边长为5,三条线段围成等腰三角形,∴当a =1时,b =5,共1个基本事件; 当a =2时,b =5,共1个基本事件; 当a =3时,b =3,5,共2个基本事件; 当a =4时,b =4,5,共2个基本事件; 当a =5时,b =1,2,3,4,5,6,共6个基本事件; 当a =6时,b =5,6,共2个基本事件;∴满足条件的基本事件共有1+1+2+2+6+2=14(个). ∴三条线段能围成等腰三角形的概率为1436=718.学-科网16.(12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:组别 A B C D E人数5010015015050(1)为了调查大众评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组中抽取了6人.请将其余各组抽取的人数填入下表.组别 A B C D E人数5010015015050抽取人数 6(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.解 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 A B C D E50[来人数50100150150源:Z*xx*]抽取人数3699 3(2)记从A组抽到的3个评委为a1,a2,a3,其中a1,a2支持1号歌手;从B组抽到的6个评委为b1,b2,b3,b4,b5,b6,其中b1,b2支持1号歌手.从{a1,a2,a3}和{b1,b2,b3,b4,b5,b6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2,共4种,故所求概率P=418=29.。
概率论与数理统计期末试卷及答案一、填空题:1、一袋中有50个球,其中20个红球,30个白球,现两人从袋中各取一球,取后不放回,则第二个人取到白球的概率为 3/5 。
2、设P(A)=1/2, P(B|A)=1/3, P(A|B)=1/2,那么()P AB = 2/3 。
3、若随机变量X 的概率密度为2(),11,f x Ax x =-<<那么A= 3/2 。
4、若二维随机变量(X,Y )在以原点为圆心的单位圆内的概率密度函数是1/π,其它区域都是0,那么221()2P X Y +<= 1/2 。
5、掷n 枚骰子,记所得点数之和为X ,则EX = 3.5n 。
6、若X ,Y ,Z 两两不相关,且DX=DY=DZ=2,则D(X+Y+Z) = 6 。
7、若随机变量12,,,n X X X 相互独立且同分布于标准正态分布N(0,1),那么它们的平方和22212n X X X +++服从的分布是2()n χ。
8、设A n 是n 次相互独立的试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的0>ε,lim {||}An n p n→+∞-≥ε= 0 。
9、设总体2(,)XN μσ,其中2σ已知,样本为12,,,n X X X ,设00:H =μμ,10:H <μμ,则拒绝域为z α<-。
10、设总体X 服从区间[1,a ]上的均匀分布,其中a 是未知参数。
若有一个来自这个总体的样本2, 1.8, 2.7, 1.9, 2.2, 那么参数a 的极大似然估计值a = 12max{,,,} 2.7n x x x =。
二、选择题1、设10张奖券只有一张中奖,现有10个人排队依次抽奖,则下列结论正确的是( A ) (A )每个人中奖的概率相同; (B )第一个人比第十个人中奖的概率大;(C )第一个人没有中奖,而第二个人中奖的概率是1/9; (D )每个人是否中奖是相互独立的 2、设随机变量X 与Y 相互独立,且21(,)X N μσ,22(,)Y N μσ,则X Y -服从的分布是( B )(A )212(,)N -μμσ;(B )212(,2)N -μμσ;(C )212(,)N +μμσ;(D )212(,2)N +μμσ3、设事件A 、B 互斥,且()0P A >,()0P B >,则下列式子成立的是( D )(A )(|)()P A B P A =; (B )(|)0P B A >; (C )(|)()P A B P B =; (D )(|)0P B A =;4、设随机变量X 与Y 独立同分布,P(X= -1) = P(Y= -1) =1/2,P(X= 1) = P(Y= 1) =1/2,则下列成立的是( A )(A )()1/2P X Y ==; (B )()1P X Y ==; (C )(0)1/4P X Y +==; (D )(1)1/4P XY ==;5、有10张奖券,其中8张2元,2张5元。
概率统计考试试卷一、选择题(每题3分,共30分)1. 设随机变量X服从正态分布N(μ, σ^2),下列说法正确的是:A. X的期望值是μB. X的方差是σ^2C. X的取值范围是(-∞, +∞)D. 以上说法均正确答案:D2. 已知随机变量X的概率密度函数为f(x),下列关于X的分布函数F(x)的说法正确的是:A. F(x)是单调递增的B. F(x)是连续的C. F(x)在x=0处的值为0.5D. F(x)在x=0处的值为0答案:A3. 设随机变量X服从二项分布B(n, p),下列说法正确的是:A. X的期望值是npB. X的方差是np(1-p)C. X的取值范围是{0, 1, ..., n}D. 以上说法均正确答案:D4. 已知随机变量X和Y相互独立,下列说法正确的是:A. X和Y的期望值之和等于它们的期望值B. X和Y的方差之和等于它们的方差C. X和Y的协方差为0D. 以上说法均正确答案:C5. 设随机变量X服从泊松分布,下列说法正确的是:A. X的期望值等于其方差B. X的取值范围是{0, 1, 2, ...}C. X的概率质量函数为P(X=k) = λ^k / k! * e^(-λ)D. 以上说法均正确答案:D6. 已知随机变量X服从均匀分布U(a, b),下列说法正确的是:A. X的期望值是(a+b)/2B. X的方差是(b-a)^2/12C. X的概率密度函数为f(x) = 1/(b-a)D. 以上说法均正确答案:D7. 设随机变量X服从指数分布,下列说法正确的是:A. X的期望值是1/λB. X的方差是1/λ^2C. X的概率密度函数为f(x) = λe^(-λx)D. 以上说法均正确答案:D8. 已知随机变量X和Y的联合概率密度函数为f(x, y),下列说法正确的是:A. X和Y的边缘概率密度函数可以通过对f(x, y)积分得到B. X和Y的期望值可以通过对f(x, y)积分得到C. X和Y的协方差可以通过对f(x, y)积分得到D. 以上说法均正确答案:A9. 设随机变量X服从正态分布N(0, 1),下列说法正确的是:A. X的期望值是0B. X的方差是1C. X的概率密度函数为f(x) = 1/√(2π) * e^(-x^2/2)D. 以上说法均正确答案:D10. 已知随机变量X服从t分布,下列说法正确的是:A. X的期望值是0B. X的方差是1C. X的概率密度函数为f(x) = Γ((ν+1)/2) / (√(νπ) *Γ(ν/2) * (1+x^2/ν)^((ν+1)/2))D. 以上说法均正确答案:C二、填空题(每题2分,共20分)1. 设随机变量X服从正态分布N(μ, σ^2),则X的期望值E(X) = ________。
概率论与数理统计复习试卷一、填空题(本题共10小题,每小题2分,共20分)1. 已知事件A ,B 有概率4.0)(=A P ,5.0)(=B P ,条件概率3.0)|(=A B P ,则=⋃)(B A P .2. 设随机变量X 的分布律为1234020104Xp ..a .b c+-,则常数c b a ,,应满足的条件为 .3. 已知二维随机变量),(Y X 的联合分布函数为),(y x F ,试用),(y x F 表示概率{}P X a ,Y b >>= .4. 设随机变量)2,2(~-U X ,Y 表示作独立重复m 次试验中事件)0(>X 发生的次数,则=)(Y E ,=)(Y D .5.设12n X ,X ,,X 是从正态总体),(~2σμN X 中抽取的样本,则概率()202221201037176i i P .X X.σσ=⎧⎫≤-≤=⎨⎬⎩⎭∑ .6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信度为1α-的单侧置信区间的下限为7、设θ∧是参数θ的估计,若θ∧满足________________,则称θ∧是θ的无偏估计。
8、设E (X )=-1,D (X )=4,则由切比雪夫不等式估计概率:P {-4<X<2}≥_______________.9、设随机变量X 服从二项分布()2.0,100B ,应用中心极限定理可以得到{}≈≥30X P (已知()9938.05.2=Φ)。
10、设样本,,,,21n X X X 取自正态总体()2,,0Nμσσ>X ______________。
二、单项选择题(本题共10小题,每小题2分,共20分)注意:在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写下面的表格内.............。
错选、多选或未选均无分。
1、如果 1)()(>+B P A P ,则 事件A 与B 必定( ))(A 独立;)(B 不独立;)(C 相容;)(D 不相容.2、已知人的血型为 O 、A 、B 、AB 的概率分别是0.4; 0.3;0.2;0.1。
概率论与数理统计试卷一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
)1. 设A 、B 满足1)(=A B P ,则 . 【 】(a )A 是必然事件;(b )0)(=A B P ;(c )B A ⊃;(d ))()(B P A P ≤.2. 设X ~N (μ,σ2),则概率P (X ≤1+μ)=( ) 【 】 A ) 随μ的增大而增大 ; B ) 随μ的增加而减小; C ) 随σ的增加而增加; D ) 随σ的增加而减小.3. 设总体X 服从正态分布),(N 2σμ,其中μ已知,2σ未知,321X ,X ,X 是总体X 的一个简单随机样本,则下列表达式中不是统计量的是 . 【 】 (a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4. 在假设检验中, 0H 表示原假设, 1H 表示备择假设, 则成为犯第二类错误 的是 . 【 】 (a )1H 不真, 接受1H ; (b )0H 不真, 接受1H ; (c )0H 不真, 接受0H ; (d )0H 为真, 接受1H .5.设n 21X ,,X ,X Λ为来自于正态总体),(N ~X 2σμ的简单随机样本,X 是样本均值,记2n1i i21)X X(1n 1S --=∑=,2n1i i22)X X(n1S -=∑= ,2n1i i23)X(1n 1S μ--=∑=,2n1i i24)X(n1S μ-=∑=,则服从自由度为1-n 的t 分布的随机变量是 . 【】 (a )1n S X T 1-μ-=;(b )1n S X T 2-μ-=;(c )nS X T 3μ-=;(d )nS X T 4μ-=.………………………………… 装 ……………………………… 订 ……………………………… 线 …………………………………二、填空题(将答案写在该题横线上。
填空题(每题2分,共20分)A1、记三事件为A ,B,C . 则用A ,B ,C 及其运算关系可将事件,“A ,B ,C 中只有一个发生”表示为 .A3、已知P(A)=0.3,P (B )=0.5,当A ,B 相互独立时,06505P(A B )_.__,P(B |A )_.__⋃==。
A4、一袋中有9个红球1个白球,现有10名同学依次从袋中摸出一球(不放回),则第6位同学摸出白球的概率为 1/10 。
A5、若随机变量X 在区间 (,)a b 上服从均匀分布,则对a c b <<以及任意的正数0e >,必有概率{}P c x c e <<+ =⎧+<⎪⎪-⎨-⎪+>⎪-⎩e,c e b b a b c ,c e b b aA6、设X 服从正态分布2(,)N μσ,则~23X Y -= N ( 3-2μ , 4σ2 ) .A7、设1128363X B EX DX ~n,p ),n __,p __==(且=,=,则 A8、袋中装有5只球,编号为1,2,3,4,5,在袋中同时取出3只,以X 表示取出3只球中的最大号码。
则X 的数学期望=)(X E 4.5 。
A9、设随机变量(,)X Y 的分布律为则条件概率 ===}2|3{Y X P 2/5 .A10、设121,,X X 来自正态总体)1 ,0(N , 2129285241⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=∑∑∑===i i i i i i X X X Y ,当常数k =1/4 时,kY 服从2χ分布。
A 二、计算题(每小题10分,共70分)A1、三台机器因故障要人看管的概率分别为0.1,0.2,0.15,求: (1)没有一台机器要看管的概率(2)至少有一台机器不要看管的概率 (3)至多一台机器要看管的概率解:以A j 表示“第j 台机器需要人看管”,j =1,2,3,则:P ( A 1 ) = 0.1 , P ( A 2 ) = 0.2 , P ( A 3 ) = 0.15 ,由各台机器间的相互独立性可得()()()()()123123109080850612P A A A P A P A P A ....=⋅⋅=⨯⨯=ABC ABC ABC()()()12312321101020150997P A A A P A A A ....⋃⋃=-=-⨯⨯= ()()()()()()1231231231231231231231233010808509020850908015090808500680153010806120941P A A A A A A A A A A A A P A A A P A A A P A A A P A A A .................=+++=⨯⨯+⨯⨯+⨯⨯+⨯⨯=+++=A2、甲袋中有n 只白球、m 只红球;乙袋中有N 只白球、M 只红球。
一、选择题(20分,每题4分,请将您选的答案填在( )内)
1、下列结论哪一个不正确 ( )
()A 设A,B 为任意两个事件,则;A
B A B -=
()B 若,A B =则A,B 同时发生或A,B 同时不发生; ()C 若,A B ⊂且,B A ⊂则;A B = ()D 若,A B ⊂则A-B 是不可能事件.
2、 设(),X Y 的联合概率函数为
则(1)()13,0P Y X ≤<≥等于 ( )
()A 5;8
()1;2B ()3;4C ()7
.8
D (2)Z X Y =+的概率函数为
()A
()B
()C
()D
3、 如果22,,EY EX ∞<<∞且X 与Y 满足()(),D X Y D X Y +=-则必有 ( )
()A X 与Y 独立; ()B X 与Y 不相关; ()()0C D Y =; ()()()0.D D X D Y =
4、若()()25,36,D X D Y ==X 与Y 的相关系数(),0.4,X Y ρ=
则,X Y 的协方差(),Cov X Y 等于 ( )
()5;A ()10;B ()12;C ()36.D
二、(12分)设X,Y 为随机变量,且()30,0,7P X Y ≥≥=
()()4
007
P X P Y ≥=≥= 求(1)()()
min ,0;P X Y < (2)()()
max ,0.P X Y ≥
三、(10分)一个男子在某城市的一条街道遭到背后袭击和抢劫,他断言凶犯是黑人。
然而,当调查这一案件的警察在可比较的光照条件下多次重新展现现场情况时,发现受害者正确识别
袭击者肤色的概率只有80%,假定凶犯是本地人,而在这个城市人口中90%是白人,10%是黑人,且假定白人和黑人的犯罪率相同,
(1)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯确实是黑人的概率是多大? (2)问:在这位男子断言凶犯是黑人的情况下,袭击他的凶犯是白人的概率是多大?
四、(10分)某商业中心有甲、乙两家影城,假设现有1600位观众去这个商业中心的影城看电影,每位观众随机地选择这两家影城中的一家,且各位观众选择哪家影城是相互独立的。
问:影城甲至少应该设多少个座位,才能保证因缺少座位而使观众离影城甲而去的概率小于0.01. (要求用中心极限定理求解)
五、(16分)设随机变量(,)X Y 的联合密度函数为
2,01
(,)0,x y f x y <<<⎧=⎨
⎩其它
(1)分别求,X Y 的边缘密度函数; (2)求1130;224P X Y ⎛⎫
<<<< ⎪⎝
⎭
(3)试问:,X Y 是否相互独立?请说明理由. (3)求Z X Y =+的概率密度函数().Z f z
六、(14分)某地交通管理部门随机调查了100辆卡车,得到它们在最近的一年的行驶里程(单位:100km )的数据1100,
,,x x 有数据算出145,24.x s ==假设卡车一年行驶里程服从正态分
布()
2,,N μσ分别求μ和2
σ的置信水平0.99的双侧置信区间.
七、(18分)设n X X X 21,是取自总体X 的简单随机样本.总体X 的密度函数为
()()1,;0,e x
x e f x θθθθθθ-+⎧>⎪=⎨⎪⎩
,其中为未知参数,0<<1.其它
(1)求θ的极大似然估计θˆ; (2) 记1
,αθ
=
求参数α的极大似然估计;
(3)问:在(2)中求得的α的极大似然估计是否为α的无偏估计?请说明理由。