「精品」高中数学第二章点直线平面之间的位置关系章末复习课学案新人教A版必修2
- 格式:doc
- 大小:605.03 KB
- 文档页数:12
2.3.1直线与平面垂直的判定[学习目标] 1.掌握直线与平面垂直的定义.2.掌握直线与平面垂直的判定定理.3.理解直线与平面所成的角的概念,并能解决简单的线面角问题.知识点一直线与平面垂直画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直思考直线与平面垂直定义中的关键词“任意一条直线”是否可以换成“所有直线”“无数条直线”?答定义中的“任意一条直线”与“所有直线”是等效的,但是不可说成“无数条直线”,因为一条直线与某平面内无数条平行直线垂直,该直线与这个平面不一定垂直.知识点二直线与平面垂直的判定定理思考线面垂直判定定理中,平面内两条相交直线和已知直线l必须有公共点吗?答用线面垂直判定定理判定直线与平面垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,则是无关紧要的.知识点三直线和平面所成的角思考若直线l与平面α所成的角是0°角,则必然有l∥α吗?答不一定.若直线l与平面α所成的角是0°角,则l∥α或l⊂α.题型一直线和平面垂直的定义例1直线l与平面α内的无数条直线垂直,则直线l与平面α的关系是()A.l和平面α平行B.l和平面α垂直C.l在平面α内D.不能确定答案D解析如图所示,直线l和平面α平行,或直线l和平面α垂直或直线l在平面α内都有可能.故正确答案为D.反思与感悟 1.直线和平面垂直的定义是描述性定义,对直线的任意性要注意理解.实际上,“任何一条”与“所有”表达相同的含义.当直线与平面垂直时,该直线就垂直于这个平面内的任何直线.由此可知,如果一条直线与一个平面内的一条直线不垂直,那么这条直线就一定不与这个平面垂直.2.由定义可得线面垂直⇒线线垂直,即若a⊥α,b⊂α,则a⊥b.A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m答案B解析对于A,直线l⊥m,m并不代表平面α内任意一条直线,所以不能判定线面垂直;对于B,因l⊥α,则l垂直α内任意一条直线,又l∥m,由异面直线所成角的定义知,m与平面α内任意一条直线所成的角都是90°,即m⊥α,故B正确;对于C,也有可能是l,m 异面;对于D,l,m还可能相交或异面.题型二线面垂直的判定例2如图所示,已知P A垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过点A作AE⊥PC于点E.求证:AE⊥平面PBC.证明∵P A⊥平面ABC,∴P A⊥BC.又∵AB是⊙O的直径,∴BC⊥AC.而P A∩AC=A,∴BC⊥平面P AC.又∵AE⊂平面P AC,∴BC⊥AE.∵PC⊥AE,且PC∩BC=C,∴AE⊥平面PBC.反思与感悟证线面垂直的方法有:(1)线线垂直证明线面垂直:①定义法(不常用,但由线面垂直可得出线线垂直);②判定定理最常用:要着力寻找平面内哪两条相交直线(有时作辅助线);结合平面图形的性质(如勾股定理逆定理、等腰三角形底边中线等)及一条直线与平行线中一条垂直也与另一条垂直等结论来论证线线垂直.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.跟踪训练2如图,在正方体ABCD-A1B1C1D1中,E,F分别是棱AB,BC的中点,O是底面ABCD的中心,求证:EF⊥平面BB1O.证明∵ABCD为正方形,∴AC⊥BO.又∵BB1⊥平面ABCD,AC⊂平面ABCD,∴AC⊥BB1,又∵BO ∩BB 1=B ,∴AC ⊥平面BB 1O , 又EF 是△ABC 的中位线, ∴EF ∥AC ,∴EF ⊥平面BB 1O .题型三 直线与平面所成的角例3 如图所示,已知正四面体ABCD 的棱长a ,E 为AD 的中点,连接CE .(1)求AD 与平面BCD 所成角的余弦值; (2)求CE 与平面BCD 所成角的正弦值.解 (1)如图所示,过点A 作AO ⊥底面BCD ,垂足为点O ,连接OB ,OC ,OD .则OB ,OC ,OD 分别是AB ,AC ,AD 在平面BCD 上的射影. ∴∠ADO 为直线AD 与平面BCD 所成的角. 又∵AB =AC =AD ,∴OB =OC =OD . ∴O 为△BCD 的外心.∵△BCD 为正三角形,∴点O 为重心. 又正四面体棱长为a ,∴OD =32a ×23=33a . ∴cos ∠ADO =OD AD =33,∴AD 与平面BCD 所成角的余弦值为33. (2)取OD 的中点F ,连接EF ,CF .∵E ,F 分别为△DAO 的边AD ,OD 的中点, ∴EF 为△DAO 的中位线. ∴EF ∥AO .又AO ⊥平面BCD ,∴EF ⊥平面BCD . ∴FC 为EC 在平面BCD 上的射影. ∴∠ECF 为CE 与平面BCD 所成的角. 在Rt △EFC 中,EF =12AO .而AO =AD 2-OD 2= a 2-⎝⎛⎭⎫33a 2=63a , ∴EF =66a . ∵E 为AD 的中点,∴CE =32AD =32a .∴sin∠ECF=EFCE=66a32a=23.∴CE与平面BCD所成角的正弦值为2 3.反思与感悟 1.求直线和平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线;(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角即为所求的角;(3)把该角归结在某个三角形中,通过解三角形,求出该角.2.在上述步骤中,作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.跟踪训练3在正方体ABCD-A1B1C1D1中,E,F分别是AA1,A1D1的中点.(1)求D1B与平面AC所成的角的余弦值;(2)求EF与平面A1C1所成的角的大小.解(1)如图所示,连接DB.因为D1D⊥平面AC,所以DB是D1B在平面AC内的射影.所以∠D1BD即为D1B与平面AC所成的角.在Rt△D1DB中,DB=2AB,D1B=3AB,所以cos∠D1BD=DBD1B=63.故D1B与平面AC所成的角的余弦值为6 3.(2)因为E是A1A的中点,A1A⊥平面A1C1,所以∠EF A1是EF与平面A1C1所成的角.在Rt△EA1F中,因为F是A1D1的中点,所以∠EF A1=45°.故EF与平面A1C1所成的角的大小为45°.分类讨论思想例4 如图,在矩形ABCD 中,AB =1,BC =a (a >0),P A ⊥平面AC ,且P A =1,问:BC 边上是否存在点Q ,使得PQ ⊥QD ?并说明理由. 分析 由于矩形是变动的,在BC 边上是否存在点Q ,使得PQ ⊥QD 与a 有关,故应对a 进行分类讨论.解 因为P A ⊥平面AC ,QD ⊂平面AC , 所以P A ⊥QD .又因为PQ ⊥QD ,P A ∩PQ =P , 所以QD ⊥平面P AQ .所以AQ ⊥QD .①当0<a <2时,由四边形ABCD 是矩形,且AB =1,知以AD 为直径的圆与BC 无交点,即对于BC 上任一点Q ,都有∠AQD <90°,此时BC 边上不存在点Q ,使PQ ⊥QD ; ②当a =2时,以AD 为直径的圆与BC 相切于BC 的中点Q ,此时∠AQD =90°,所以BC 边上存在一点Q ,使PQ ⊥QD ;③当a >2时,以AD 为直径的圆与BC 相交于点Q 1,Q 2,此时∠AQ 1D =∠AQ 2D =90°,故BC 边上存在两点Q (即Q 1与Q 2),使PQ ⊥QD .解后反思 应注意到矩形是变动的,所以应对a 进行分类讨论.分类的依据是直线与圆的位置关系的几种情况,从而划分a 的取值范围,然后进行讨论. 线面垂直例5 如图,在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,O 是底面正方形ABCD 的中心,求证:OE ⊥平面ACD 1.分析 根据线面垂直的判定定理,要证明OE ⊥平面ACD 1,只要在平面ACD 1内找两条相交直线与OE 垂直即可.证明 如图,连接AE ,CE ,D 1O ,D 1E ,D 1B 1.设正方体ABCD -A 1B 1C 1D 1的棱长为a ,易证AE =CE . 因为AO =OC ,所以OE ⊥AC . 在正方体中易求出:D 1O =DD 21+DO 2=a 2+⎝⎛⎭⎫22a 2=62a , OE =BE 2+OB 2=⎝⎛⎭⎫a 22+⎝⎛⎭⎫22a 2=32a ,D 1E =D 1B 21+B 1E 2=(2a )2+⎝⎛⎭⎫a 22=32a .因为D 1O 2+OE 2=D 1E 2,所以D 1O ⊥OE .因为D1O∩AC=O,D1O⊂平面ACD1,AC⊂平面ACD1.所以OE⊥平面ACD1.解后反思在立体几何的垂直关系的证明中,通过勾股定理及其逆定理计算证明线线垂直是一种常用的技巧.1.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为()A.75°B.60°C.45°D.30°答案C解析如图,连接AC,BD,两线相交于O,连接SO,则∠SBO就是侧棱与底面所成的角.易得OB=22.因为SB=1,所以SO=SB2-OB2=2 2.所以∠SBO=45°.2.下列条件中,能判定直线l⊥平面α的是()A.l与平面α内的两条直线垂直B.l与平面α内的无数条直线垂直C.l与平面α内的某一条直线垂直D.l与平面α内的任意一条直线垂直答案D解析根据线面垂直的定义可知,l垂直于α内的所有直线时,l⊥α.3.已知P A⊥矩形ABCD,下列结论中,不正确的是()A.PB⊥BCB.PD⊥CDC.PD⊥BDD.P A⊥BD答案C解析如图,由P A⊥矩形ABCD,得BC⊥平面P AB,DA⊥平面P AB,DC⊥平面P AD,AB⊥平面P AD,则有PB⊥BC,PD⊥CD,P A⊥BD均正确,而PD⊥BD错,故选C.4.如果一条直线垂直于一个平面内的下列各种情况,能保证该直线与平面垂直的是()①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边.A.①③B.②C.②④D.①②④答案A解析由线面垂直的判定定理知,直线垂直于①③图形所在的平面,对于②④图形中的两边不一定是相交直线,所以该直线与它们所在的平面不一定垂直.5.矩形ABCD中,AB=1,BC=2,P A⊥平面ABCD,P A=1,则PC与平面ABCD所成的角是________.答案30°解析tan∠PCA=P AAC=13=33,∴∠PCA=30°.1.直线和平面垂直的判定方法:(1)利用线面垂直的定义;(2)利用线面垂直的判定定理;(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°;(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算);(2)转移法(找过点与面平行的线或面);(3)等积法(三棱锥变换顶点,属间接求法).一、选择题1.已知直线m,n是异面直线,则过直线n且与直线m垂直的平面()A.有且只有一个B.至多一个C.有一个或无数个D.不存在答案B解析若异面直线m、n垂直,则符合要求的平面有一个,否则不存在.2.线段AB的长等于它在平面α内的射影长的2倍,则AB所在直线与平面α所成的角为( )A.30°B.45°C.60°D.120° 答案 C解析 如图,AC ⊥α,AB ∩α=B ,则BC 是AB 在平面α内的射影,则 BC =12AB ,所以∠ABC =60°,它是AB 与平面α所成的角.3.空间四边形ABCD 的四边相等,则它的两对角线AC 、BD 的关系是( ) A.垂直且相交 B.相交但不一定垂直 C.垂直但不相交 D.不垂直也不相交答案 C解析 取BD 中点O , 连接AO ,CO , 则BD ⊥AO ,BD ⊥CO , ∴BD ⊥面AOC ,BD ⊥AC , 又BD 、AC 异面,∴选C.4.如图所示,P A ⊥平面ABC ,BC ⊥AC ,则图中直角三角形的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 ∵P A ⊥平面ABC ,∴P A ⊥AC ,P A ⊥AB ,P A ⊥BC .又∵BC ⊥AC ,AC ∩P A =A ,∴BC ⊥平面P AC ,∴BC ⊥PC ,∴直角三角形有△P AB 、△P AC 、△ABC 、△PBC .5.如图,在正方形ABCD 中,E ,F 分别是BC 和CD 的中点,G 是EF 的中点,现在沿着AE 和AF 及EF 把正方形折成一个四面体,使B ,C ,D 三点重合,重合后的点记为H .那么,在四面体A -EFH 中必有( )A.HG ⊥△AEF 所在平面B.AG ⊥△EFH 所在平面C.HF ⊥△AEF 所在平面D.AH ⊥△EFH 所在平面 答案 D解析 ∵AD ⊥DF ,AB ⊥BE ,∴AH ⊥HF ,AH ⊥HE .又∵EH ∩FH =H ,∴AH ⊥面EFH .6.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( ) A.63 B.265 C.155 D.105答案 D解析 如右图,在长方体ABCD -A 1B 1C 1D 1中,连接A 1C 1,与B 1D 1交于O 点,连接OB ,由已知A 1B 1C 1D 1是正方形,∴A 1C 1⊥B 1D 1. 又∵BB 1⊥平面A 1B 1C 1D 1,OC 1⊂平面A 1B 1C 1D 1, ∴OC 1⊥BB 1.而BB 1∩B 1D 1=B 1, ∴OC 1⊥平面BB 1D 1D .∴OB 是BC 1在平面BB 1D 1D 内的射影. ∴∠C 1BO 是BC 1与平面BB 1D 1D 所成的角. 在正方形A 1B 1C 1D 1中, OC 1=12A 1C 1=12×22+22= 2.在矩形BB 1C 1C 中,BC 1=BC 2+CC 21=4+1= 5. ∴sin ∠C 1BO =OC 1BC 1=25=105.二、填空题7.在直三棱柱ABC -A 1B 1C 1中,BC =CC 1,当底面A 1B 1C 1满足条件________时,有AB 1⊥BC 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况) 答案 A 1C 1⊥B 1C 1解析 如图所示,连接B 1C .由BC =CC 1,可得BC 1⊥B 1C .因此,要得AB 1⊥BC 1,则需BC 1⊥平面AB 1C ,即只需AC ⊥BC 1即可.由直三棱柱可知,只要满足AC ⊥BC 即可.而A 1C 1∥AC ,B 1C 1∥BC ,故只要满足A 1C 1⊥B 1C 1即可.8.如图所示,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是棱AA 1和AB 上的点,若∠B 1MN 是直角,则∠C 1MN =________. 答案 90°解析 ∵B 1C 1⊥平面ABB 1A 1,MN ⊂平面ABB 1A 1,∴B 1C 1⊥MN .又∵MN ⊥B 1M ,B 1M ∩B 1C 1=B 1,∴MN ⊥平面C 1B 1M ,∴MN ⊥C 1M ,即∠C 1MN =90°. 9.已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____.答案 332解析 由点P 到△ABC 三个顶点的距离相等可知,P 在面ABC 上的投影为△ABC 的外心.又∵△ABC 为直角三角形,∴其外心是斜边的中点,即P 在面ABC 上的投影是△ABC 斜边的中点D ,如图.∴点P 到平面ABC 的距离为PD =72-⎝⎛⎭⎫1322=32 3.10.如图所示,P A ⊥圆O 所在的平面,AB 是圆O 的直径,C 是圆O 上的一点,E ,F 分别是点A 在PB ,PC 上的正投影,给出下列结论:①AF ⊥PB ;②EF ⊥PB ;③AF ⊥BC ;④AE ⊥平面PBC .其中正确结论的序号是________.答案 ①②③解析 ∵P A ⊥平面ABC ,BC ⊂平面ABC ,∴P A ⊥BC .又∵AC ⊥BC ,P A ∩AC=A ,∴BC ⊥平面P AC ,∴BC ⊥AF .∵AF ⊥PC ,BC ∩PC =C ,∴AF ⊥平面PBC ,∴AF ⊥PB .又∵AE ⊥PB ,AE ∩AF =A ,∴PB ⊥平面AEF ,∴PB ⊥EF .故①②③正确.三、解答题11.如图,AB 为⊙O 的直径,P A 垂直于⊙O 所在的平面,M 为圆周上任意一点,AN ⊥PM ,N 为垂足.(1)求证:AN ⊥平面PBM .(2)若AQ ⊥PB ,垂足为Q ,求证:NQ ⊥PB .证明 (1)∵AB 为⊙O 的直径,∴AM ⊥BM .又P A ⊥平面ABM ,∴P A ⊥BM .又∵P A ∩AM =A ,∴BM ⊥平面P AM .又AN ⊂平面P AM ,∴BM ⊥AN .又AN ⊥PM ,且BM ∩PM =M ,∴AN ⊥平面PBM .(2)由(1)知AN ⊥平面PBM ,PB ⊂平面PBM ,∴AN ⊥PB .又∵AQ ⊥PB ,AN ∩AQ =A ,∴PB ⊥平面ANQ .又NQ ⊂平面ANQ ,∴PB ⊥NQ .12.如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点,且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积;(3)证明:EF ⊥平面P AB .(1)证明 ∵AB ⊥平面P AD ,PH ⊂平面P AD ,∴AB ⊥PH .又∵PH ⊥AD ,AB ∩AD =A ,∴PH ⊥平面ABCD .(2)解 ∵PH ⊥平面ABCD ,E 为PB 的中点,PH =1,∴点E 到平面ABCD 的距离h =12PH =12. 又∵AB ∥CD ,AB ⊥AD ,∴AD ⊥CD ,∴S △BFC =12·CF ·AD =12×1×2=22, ∴V E -BCF =13S △BCF ·h =13×22×12=212. (3)证明 如图,取P A 的中点G ,连接GE ,DG .∵DA =DP ,∴DG ⊥P A .∵AB ⊥平面P AD ,DG ⊂平面P AD ,∴AB ⊥DG .又∵AB ∩P A =A ,∴DG ⊥平面P AB .∵GE ∥AB ,GE =12AB ,DF ∥AB ,DF =12AB , ∴GE ∥FD ,GE =FD ,∴四边形DFEG 为平行四边形,∴DG ∥EF ,∴EF ⊥平面P AB .。
山东省沂水县高中数学第二章点、直线、平面之间的位置关系2.1.1 平面学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第二章点、直线、平面之间的位置关系2.1.1 平面学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第二章点、直线、平面之间的位置关系2.1.1 平面学案(含解析)新人教A版必修2的全部内容。
2.1.1 平面学习目标 1.掌握平面的表示法,点、直线与平面的位置关系;2。
掌握有关平面的三个公理;3。
会用符号表示图形中点、直线、平面之间的位置关系.知识点一平面思考几何里的“平面”有边界吗?用什么图形表示平面?答案没有.平行四边形.1.平面的概念(1)平面是一个不加定义,只需理解的原始概念.(2)立体几何里的平面是从呈平面形的物体中抽象出来的.如课桌面、黑板面、平静的水面等都给我们平面的局部形象.2.平面的画法常常把水平的平面画成一个平行四边形,并且其锐角画成45°,且横边长等于邻边长的2倍.一个平面被另一个平面遮挡住,为了增强立体感,被遮挡部分用虚线画出来.3(1)用希腊字母表示,如平面α,平面β,平面γ.(2)用表示平面的平行四边形的四个顶点的大写字母表示,如平面ABCD.(3)用表示平面的平行四边形的相对的两个顶点表示,如平面AC,平面BD.知识点二点、直线、平面之间的关系思考直线和平面都是由点组成的,联系集合的观点,点和直线平面的位置关系,如何用符号来表示?直线和平面呢?答案点和直线,平面的位置关系可用数字符号“∈”或“∉”表示,直线和平面的位置关系,可用数学符号“⊂"或“⊄"表示.点、直线、平面之间的基本位置关系及语言表达文字语言表达图形语言表达符号语言表达点A在直线l上A∈l点A在直线l外A∉l点A在平面α内A∈α点A在平面α外A∉α直线l在平面αl⊂α内直线l在平面αl⊄α外平面α,β相交α∩β=l于l知识点三平面的基本性质思考1 直线l与平面α有且仅有一个公共点P。
(浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.3 2.3.2 平面与平面垂直的判定学案新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.3 2.3.2 平面与平面垂直的判定学案新人教A版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专用)2018版高中数学第二章点、直线、平面之间的位置关系2.3 2.3.2 平面与平面垂直的判定学案新人教A版必修2的全部内容。
2.3.2 平面与平面垂直的判定目标定位1。
了解二面角及其平面角的概念,会求简单的二面角的大小.2.通过直观感知、操作确认,归纳平面与平面垂直的判定定理.3.能运用判定定理证明一些空间位置关系的简单命题。
自主预习1.二面角(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
这条直线叫做二面角的棱.这两个半平面叫做二面角的面。
如图(1)可记作:二面角α-l-β或P-AB-Q或P-l-Q。
如图(2)对二面角α-l-β若有:①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l.则∠AOB就叫做二面角α-l-β的平面角。
2.平面与平面的垂直(1)定义:如果两个平面相交,且它们所成的二面角是直二面角,就说这两个平面互相垂直。
(2)画法:记作:α⊥β。
(3)面面垂直的判定定理文字语言:一个平面过另一个平面的垂线,则这两个平面垂直。
图形语言:如图所示符号语言:错误!⇒α⊥β。
即时自测1.判断题(1)若α∩β=a,b⊂α,a⊥b,则α⊥β.(×)(2)若直线l⊥平面α,l⊂平面β,则α与β相交且垂直。
【三维设计】高中数学第二章点、直线、平面之间的位置关系学案新人教A版必修22.1空间点、直线、平面之间的位置关系2.1.1 平面平面[提出问题]宁静的湖面、海面;生活中的课桌面、黑板面;一望无垠的草原给你什么样的感觉?问题1:生活中的平面有大小之分吗?提示:有.问题2:几何中的“平面”是怎样的?提示:从物体中抽象出来的,绝对平,无大小之分.[导入新知]1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD、平面AC或平面BD.[化解疑难]几何里的平面有以下几个特点(1)平面是平的;(2)平面是没有厚度的;(3)平面是无限延展而没有边界的;平面的基本性质[提出问题]问题1:若把直尺边缘上的任意两点放在桌面上,直尺的边缘上的其余点和桌面有何关系?提示:在桌面上.问题2:为什么自行车后轮旁只安装一只撑脚就能固定自行车?提示:撑脚和自行车的两个轮子与地面的接触点不在一条直线上.问题3:两张纸面相交有几条直线?提示:一条.[导入新知]平面的基本性质公理内容图形符号公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内A∈l,B∈l,且A∈α,B∈α⇒l⊂α公理2过不在一条直线上的三点,有且只有一个平面A,B,C三点不共线⇒存在唯一的α使A,B,C∈α公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线P∈α,P∈β⇒α∩β=l,且P∈l[化解疑难]从集合角度理解点、线、面之间的关系(1)直线可以看成无数个点组成的集合,故点与直线的关系是元素与集合的关系,用“∈”或“∉”表示;(2)平面也可以看成点集,故点与平面的关系也是元素与集合的关系,用“∈”或“∉”表示;(3)直线和平面都是点集,它们之间的关系可看成集合与集合的关系,故用“⊂”或“⊄”表示.文字语言、图形语言、符号语言的相互转化[例1] 根据图形用符号表示下列点、直线、平面之间的关系.(1)点P与直线AB;(2)点C与直线AB;(3)点M与平面AC;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解] (1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.[类题通法]三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.[活学活用]1.根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解:(1)点A在平面α内,点B不在平面α内,如图(1);(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图(2);(3)直线l经过平面α外一点P和平面α内一点Q,如图(3).点、线共面问题[例2][解] 已知:如图所示,l 1∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.[类题通法]证明点、线共面问题的理论依据是公理1和公理2,常用方法有(1)先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;(2)先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;(3)假设不共面,结合题设推出矛盾,用“反证法”.[活学活用]2.下列说法正确的是( )①任意三点确定一个平面②圆上的三点确定一个平面③任意四点确定一个平面④两条平行线确定一个平面A.①②B.②③C.②④D.③④解析:选C 不在同一条直线上的三点确定一个平面.圆上三个点不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.当四点在一条直线上时不能确定一个平面,③不正确.根据平行线的定义知,两条平行直线可确定一个平面,故④正确.共线问题[例3] 已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.[证明] 法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.[类题通法]点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.[活学活用]3.如图所示,在正方体ABCDA 1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明:如下图所示,连接A1B,CD1.显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q∈BD1,即B,Q,D1三点共线.2.证明三线共点问题[典例] 如图,在四面体ABCD 中,E ,G 分别为BC ,AB 的中点,F 在CD 上,H 在AD 上,且有DF ∶FC =DH ∶HA =2∶3.求证:EF ,GH ,BD 交于一点.[解题流程]欲证EF 、GH 、BD 交于一点,可先证两条线交于一点,再证此点在第三条直线上.由DF ∶FC =DH ∶HA =2∶3可得GE ∥FH 且GE ≠FH ,即EFHG 是梯形,由此得到GH 与EF 交于一点.证明E 、F 、H 、G 四点共面―→EFHG 为梯形―→GH 和EF 交于一点O ―→证O ∈平面ABD ―→O ∈平面BCD ―→平面ABD ∩平面BCD =BD ―→O ∈BD ―→得出结论. [规范解答]因为E ,G 分别为BC ,AB 的中点,所以GE ∥AC .又因为DF ∶FC =DH ∶HA =2∶3,所以FH ∥AC ,从而FH ∥GE .∴GE ≠FH .(4分)故E ,F ,H ,G 四点共面.又因为GE =12AC ,FH =25AC ,所以四边形EFHG 是一个梯形,设GH 和EF 交于一点O .(6分)因为O 在平面ABD 内,又在平面BCD 内,所以O 在这两平面的交线上,而这两个平面的交线是BD ,(9分)且交线只有这一条,所以点O 在直线BD 上.(10分)这就证明了GH 和EF 的交点也在BD 上,所以EF ,GH ,BD 交于一点.(12分)[名师批注]如何证明四点共面?,根据公理2的推论可知,本题可利用HF ∥GE 即可确定E ,F ,H ,G 四点共面.为什么GH 和EF 交于一点?,因为E ,F ,H ,G 四点共面,且GE 綊12AC ,HF 綊25AC ,所以GE ∥HF 且GE ≠HF ,即EFHG 为梯形,梯形两腰延长线必相交于一点.怎样确定第三条直线也过交点?只要证明交点在第三条直线上,这条直线恰好是分别过GH 和EF 的两个平面的交线.[活学活用]如图所示,在空间四边形各边AD ,AB ,BC ,CD 上分别取E ,F ,G ,H 四点,如果EF ,GH 交于一点P ,求证:点P 在直线BD 上.证明:∵EF ∩GH =P , ∴P ∈EF 且P ∈GH .又∵EF ⊂平面ABD ,GH ⊂平面CBD ,∴P ∈平面ABD ,且P ∈平面CBD ,又P ∈平面ABD ∩平面CBD ,平面ABD ∩平面CBD =BD ,由公理3可得P ∈BD .∴点P 在直线BD 上.[随堂即时演练]1.若点Q 在直线b 上,b 在平面β内,则Q ,b ,β之间的关系可记作( ) A .Q ∈b ∈β B .Q ∈b ⊂β C .Q ⊂b ⊂βD .Q ⊂b ∈β解析:选B ∵点Q (元素)在直线b (集合)上,∴Q ∈b . 又∵直线b (集合)在平面β(集合)内,∴b ⊂β,∴Q ∈b ⊂β. 2.两个平面若有三个公共点,则这两个平面( ) A .相交 B .重合 C .相交或重合D .以上都不对解析:选C 若三个点在同一直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.3.下列对平面的描述语句:①平静的太平洋面就是一个平面;②8个平面重叠起来比6个平面重叠起来厚;③四边形确定一个平面;④平面可以看成空间中点的集合,它当然是一个无限集.其中正确的是________.解析:序号正误原因分析①×太平洋面只是给我们以平面的形象,而平面是抽象的,且无限延展的②×平面是无大小、无厚薄之分的③×如三棱锥的四个顶点相连的四边形不能确定一个平面④√平面是空间中点的集合,是无限集答案:④4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________.解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C5.将下列符号语言转化为图形语言.(1)a⊂α,b∩α=A,A∉a.(2)α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解:(1)(2)[课时达标检测]一、选择题1.用符号表示“点A在直线l上,l在平面α外”,正确的是( )A.A∈l,l∉αB.A∈l,l⊄αC.A⊂l,l⊄αD.A⊂l,l∉α解析:选B 注意点与直线、点与平面之间的关系是元素与集合间的关系,直线与平面之间的关系是集合与集合间的关系.2.(2019·福州高一检测)下列说法正确的是( )A.三点可以确定一个平面B.一条直线和一个点可以确定一个平面C.四边形是平面图形D.两条相交直线可以确定一个平面解析:选D A错误,不共线的三点可以确定一个平面.B错误,一条直线和直线外一个点可以确定一个平面.C错误,四边形不一定是平面图形.D正确,两条相交直线可以确定一个平面.3.空间两两相交的三条直线,可以确定的平面数是( )A.1 B.2C.3 D.1或3解析:选D 若三条直线两两相交共有三个交点,则确定1个平面;若三条直线两两相交且交于同一点时,可能确定3个平面.4.下列推断中,错误的是( )A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A,B,C∈α,A,B,C∈β,且A,B,C不共线⇒α,β重合解析:选C A即为直线l上有两点在平面内,则直线在平面内;B即为两平面的公共点在公共直线上;D为不共线的三点确定一个平面,故D也对.5.在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG 交于点M,那么( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在直线AC上,也可能在直线BD上D.M既不在直线AC上,也不在直线BD上解析:选A 点M一定在平面ABC与平面CDA的交线AC上.二、填空题6.(2019·福州高一检测)线段AB在平面α内,则直线AB与平面α的位置关系是________.解析:因为线段AB在平面α内,所以A∈α,B∈α.由公理1知直线AB⊂平面α.答案:直线AB⊂平面α7.把下列符号叙述所对应的图形的字母编号填在题后横线上.(1)A∉α,a⊂α________.(2)α∩β=a,P∉α且P∉β________.(3)a⊄α,a∩α=A________.(4)α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O________.解析:(1)图C符合A∉α,a⊂α(2)图D符合α∩β=a,P∉α且P∉β(3)图A符合a⊄α,a∩α=A(4)图B符合α∩β=a,α∩γ=c,β∩γ=b,a∩b∩c=O答案:(1)C (2)D (3)A (4)B8.平面α∩平面β=l,点A,B∈α,点C∈平面β且C∉l,AB∩l=R,设过点A,B,C三点的平面为平面γ,则β∩γ=________.解析:根据题意画出图形,如图所示,因为点C∈β,且点C∈γ,所以C∈β∩γ.因为点R∈AB,所以点R∈γ,又R∈β,所以R∈β∩γ,从而β∩γ=CR.答案:CR三、解答题9.求证:如果两两平行的三条直线都与另一条直线相交,那么这四条直线共面.解:已知:a∥b∥c,l∩a=A,l∩b=B,l∩c=C.求证:直线a,b,c和l共面.证明:如图所示,因为a∥b,由公理2可知直线a与b确定一个平面,设为α.因为l∩a=A,l∩b=B,所以A∈a,B∈b,则A∈α,B∈α.又因为A∈l,B∈l,所以由公理1可知l⊂α.因为b∥c,所以由公理2可知直线b与c确定一个平面β,同理可知l⊂β.因为平面α和平面β都包含着直线b与l,且l∩b=B,而由公理2的推论2知:经过两条相交直线,有且只有一个平面,所以平面α与平面β重合,所以直线a,b,c和l 共面.10.已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD=P,A1C1∩EF =Q.求证:(1)D,B,F,E四点共面;(2)若A1C交平面DBFE于R点,则P,Q,R三点共线.证明:如图.(1)连接B1D1.∵EF是△D1B1C1的中位线,∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD.∴EF、BD确定一个平面,即D,B,F,E四点共面.(2)正方体AC1中,设平面A1ACC1确定的平面为α,又设平面BDEF为β.∵Q∈A1C1,∴Q∈α.又Q∈EF,∴Q∈β.则Q是α与β的公共点,同理P是α与β的公共点,∴α∩β=PQ.又A1C∩β=R,∴R∈A1C.∴R∈α,且R∈β,则R∈PQ.故P,Q,R三点共线.2.1.2 空间中直线与直线之间的位置关系空间两直线的位置关系[提出问题]立交桥是伴随高速公路应运而生的.城市的立交桥不仅大大方便了交通,而且成为城市建设的美丽风景.为了车流畅通,并安全地通过交叉路口,1928年,美国首先在新泽西州的两条道路交叉处修建了第一座苜蓿叶形公路交叉桥.1930年,芝加哥建起了一座立体交叉桥.1931年至1935年,瑞典陆续在一些城市修建起立体交叉桥.从此,城市交通开始从平地走向立体.问题1:在同一平面内,两直线有怎样的位置关系?提示:平行或相交.问题2:若把立交桥抽象成一直线,它们是否在同一平面内?有何特征?提示:不共面,即不相交也不平行.问题3:观察一下,教室内日光灯管所在直线与黑板的左、右两侧所在直线,是否也具有类似特征?提示:是.[导入新知]1.异面直线(1)定义:不同在任何一个平面内的两条直线. (2)异面直线的画法2.空间两条直线的位置关系位置关系 特 点相交 同一平面内,有且只有一个公共点平行 同一平面内,没有公共点 异面直线不同在任何一个平面内,没有公共点[化解疑难]1.对于异面直线的定义的理解异面直线是不同在任何一个平面内的两条直线.注意异面直线定义中“任何”两字,它指空间中的所有平面,因此异面直线也可以理解为:在空间中找不到一个平面,使其同时经过a 、b 两条直线.例如,如图所示的长方体中,棱AB 和B 1C 1所在的直线既不平行又不相交,找不到一个平面同时经过这两条棱所在的直线,故AB 与B 1C 1是异面直线.2.空间两条直线的位置关系①若从有无公共点的角度来看,可分为两类:直线⎩⎨⎧有且仅有一个公共点——相交直线,无公共点——⎩⎪⎨⎪⎧平行直线,异面直线.②若从是否共面的角度看,也可分两类:直线⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线,平行直线,不共面直线:异面直线.平行公理及等角定理[提出问题]1.同一平面内,若两条直线都与第三条直线平行,那么这两条直线互相平行.空间中是否有类似规律?提示:有.观察下图中的∠AOB 与∠A ′O ′B ′.问题2:这两个角对应的两条边之间有什么样的位置关系? 提示:分别对应平行.问题3:测量一下,这两个角的大小关系如何? 提示:相等. [导入新知]1.平行公理(公理4)(1)文字表述:平行于同一条直线的两条直线互相平行.这一性质叫做空间平行线的传递性.(2)符号表述:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .2.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.异面直线所成的角(1)定义:已知两条异面直线a ,b ,经过空间任一点O 作直线a ′∥a ,b ′∥b ,我们把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).(2)异面直线所成的角θ的取值范围:0°<θ≤90°. (3)当θ=π2时,a 与b 互相垂直,记作a ⊥b .[化解疑难]对平行公理与等角定理的理解公理4表明了平行的传递性,它可以作为判断两直线平行的依据,同时也给出了空间两直线平行的一种证明方法.等角定理是由平面图形推广到空间图形而得到的,它是公理4的直接应用,并且当这两个角的两边方向分别相同时,它们相等,否则它们互补.两直线位置关系的判定[例1]如图,正方体ABCD—A 1B1C1D1中,判断下列直线的位置关系:①直线A1B与直线D1C的位置关系是________;②直线A1B与直线B1C的位置关系是________;③直线D1D与直线D1C的位置关系是________;④直线AB与直线B1C的位置关系是________.[解析] 直线D1D与直线D1C相交于D1点,所以③应该填“相交”;直线A1B与直线D1C 在平面A1BCD1中,且没有交点,则两直线平行,所以①应该填“平行”;点A1、B、B1在平面A1BB1内,而C不在平面A1BB1内,则直线A1B与直线B1C异面.同理,直线AB与直线B1C 异面.所以②④应该填“异面”.[答案] ①平行②异面③相交④异面[类题通法]1.判定两条直线平行或相交的方法判定两条直线平行或相交可用平面几何的方法去判断,而两条直线平行也可以用公理4判断.2.判定两条直线是异面直线的方法(1)定义法:由定义判断两直线不可能在同一平面内.(2)重要结论:连接平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线.用符号语言可表示为A∉α,B∈α,l⊂α,B∉l⇒AB与l是异面直线(如图).[活学活用]1.(2019·台州高一检测)如图,AA1是长方体的一条棱,这个长方体中与AA1异面的棱的条数是( )A.6 B.4C.5 D.8解析:选B 与AA1异面的棱有BC,B1C1,CD,C1D1共4条.2.若a,b,c是空间三条直线,a∥b,a与c相交,则b与c的位置关系是________.解析:在正方体ABCD-A′B′C′D′中,设直线D′C′为直线b,直线A′B′为直线a,满足a∥b,与a相交的直线c可以是直线B′C′,也可以是直线BB′.显然直线B′C′与b相交,BB′与b异面,故b与c的位置关系是异面或相交.答案:异面或相交平行公理及等角定理的应用[例2] 如图,在正方体ABCD-A 1B1C1D1中,M,M1分别是棱AD和A1D1的中点.(1)求证:四边形BB1M1M为平行四边形;(2)求证:∠BMC=∠B1M1C1.[证明] (1)在正方形ADD1A1中,M、M1分别为AD、A1D1的中点,∴MM1綊AA1.又∵AA1綊BB1,∴MM1∥BB1,且MM1=BB1,∴四边形BB1M1M为平行四边形.(2)法一:由(1)知四边形BB1M1M为平行四边形,∴B1M1∥BM.同理可得四边形CC1M1M为平行四边形,∴C1M1∥CM.由平面几何知识可知,∠BMC和∠B1M1C1都是锐角.∴∠BMC=∠B1M1C1.法二:由(1)知四边形BB1M1M为平行四边形,∴B1M1=BM.同理可得四边形CC1M1M为平行四边形,∴C1M1=CM.又∵B1C1=BC,∴△BCM≌△B1C1M1.∴∠BMC=∠B1M1C1.[类题通法]1.证明两条直线平行的方法:(1)平行线定义(2)三角形中位线、平行四边形性质等(3)公理42.空间中,如果两个角的两边分别对应平行,那么这两个角相等或互补,当两个角的两边方向都相同时或都相反时,两个角相等,否则两个角互补,因此,在证明两个角相等时,只说明两个角的两边分别对应平行是不够的.[活学活用]3.如图,已知E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面; (2)若四边形EFGH 是矩形,求证:AC ⊥BD . 证明:(1)如题图,在△ABD 中, ∵E ,H 分别是AB ,AD 的中点, ∴EH ∥BD .同理FG ∥BD ,则EH ∥GH . 故E ,F ,G ,H 四点共面. (2)由(1)知EH ∥BD ,同理AC ∥GH .又∵四边形EFGH 是矩形,∴EH ⊥GH .故AC ⊥BD .两异面直线所成的角[例3] 11111BD 1和AD 中点,求异面直线CD 1,EF 所成的角的大小.[解] 取CD 1的中点G ,连接EG ,DG ,∵E 是BD 1的中点,∴EG ∥BC ,EG =12BC .∵F 是AD 的中点,且AD ∥BC ,AD =BC ,∴DF ∥BC ,DF =12BC ,∴EG ∥DF ,EG =DF ,∴四边形EFDG 是平行四边形,∴EF ∥DG ,∴∠DGD 1(或其补角)是异面直线CD 1与EF 所成的角.又∵A 1A =AB ,∴四边形ABB 1A 1,四边形CDD 1C 1都是正方形,且G 为CD 1的中点,∴DG ⊥CD 1,∴∠D1GD=90°,∴异面直线CD1,EF所成的角为90°.[类题通法]求两异面直线所成的角的三个步骤(1)作:根据所成角的定义,用平移法作出异面直线所成的角;(2)证:证明作出的角就是要求的角;(3)计算:求角的值,常利用解三角形得出.可用“一作二证三计算”来概括.同时注意异面直线所成角范围是(0°,90°].[活学活用]4.已知ABCD-A1B1C1D1是正方体,求异面直线A1C1与B1C所成角的大小.解:如图所示,连接A1D和C1D,∵B1C∥A1D,∴∠DA1C1即为异面直线A1C1与B1C所成的角.∵A1D,A1C1,C1D为正方体各面上的对角线,∴A1D=A1C1=C1D,∴△A1C1D为等边三角形.即∠C1A1D=60°.∴异面直线A1C1与B1C所成的角为60°.2.探究空间中四边形的形状问题[典例] 如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点.求证:四边形EFGH是平行四边形.[证明] 连接BD.因为EH是△ABD的中位线,所以EH ∥BD ,且EH =12BD .同理,FG ∥BD ,且FG =12BD .因此EH ∥FG . 又EH =FG ,所以四边形EFGH 为平行四边形. [多维探究] 1.矩形的判断本例中若加上条件“AC ⊥BD ”,则四边形EFGH 是什么形状? 证明:由例题可知EH ∥BD ,同理EF ∥AC , 又BD ⊥AC , 因此EH ⊥EF ,所以四边形EFGH 为矩形. 2.菱形的判断本例中,若加上条件“AC =BD ”,则四边形EFGH 是什么形状? 证明:由例题知EH ∥BD ,且EH =12BD ,同理EF ∥AC ,且EF =12AC .又AC =BD , 所以EH =EF .又EFGH 为平行四边形, 所以EFGH 为菱形. 3.正方形的判断本例中,若加上条件“AC ⊥BD ,且AC =BD ”,则四边形EFGH 是什么形状? 证明:由探究1与2可知,EFGH 为正方形.4.梯形的判断若本例中,E 、H 分别是AB 、AD 中点,F 、G 分别是BC ,CD 上的点,且CF ∶FB =CG ∶GD =1∶2,那么四边形EFGH 是什么形状?证明:由题意可知EH 是△ABD 的中位线,则EH ∥BD 且EH =12BD .又CF FB =CG GD =12, ∴FG ∥BD ,FG BD =FC BC =13, ∴FG =13BD ,∴FG ∥EH 且FG ≠EH , ∴四边形EFGH 是梯形. [方法感悟]根据三角形的中位线、公理4证明两条直线平行是常用的方法.公理4表明了平行线的传递性,它可以作为判断两条直线平行的依据,同时也给出空间两直线平行的一种证明方法.[随堂即时演练]1.不平行的两条直线的位置关系是( ) A .相交 B .异面 C .平行D .相交或异面解析:选D 若两直线不平行,则直线可能相交,也可能异面. 2.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于( ) A .30° B .30°或150° C .150°D .以上结论都不对解析:选B ∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同. ∴∠PQR =30°或150°.3.已知正方体ABCD -EFGH ,则AH 与FG 所成的角是________. 解析:∵FG ∥EH ,∴∠AHE =45°,即为AH 与FG 所成的角. 答案:45°4.正方体AC 1中,E ,F 分别是线段C 1D ,BC 的中点,则直线A 1B 与直线EF 的位置关系是________.解析:直线A 1B 与直线外一点E 确定的平面为A 1BCD 1,EF ⊂平面A 1BCD 1,且两直线不平行,故两直线相交.答案:相交5.如图所示,空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E 、F 分别为BC 、AD 的中点,求EF 和AB 所成的角.解:如图所示,取BD 的中点G ,连接EG 、FG . ∵E 、F 分别为BC 、AD 的中点,AB =CD ,∴EG∥CD,GF∥AB,且EG=12CD,GF=12AB.∴∠GFE就是EF与AB所成的角,EG=GF.∵AB⊥CD,∴EG⊥GF.∴∠EGF=90°.∴△EFG为等腰直角三角形.∴∠GFE=45°,即EF与AB所成的角为45°.[课时达标检测]一、选择题1.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( )A.平行或异面B.相交或异面C.异面D.相交解析:选B 假设a与b是异面直线,而c∥a,则c显然与b不平行(否则c∥b,则有a∥b,矛盾).因此c与b可能相交或异面.2.如图所示,在三棱锥S—MNP中,E、F、G、H分别是棱SN、SP、MN、MP的中点,则EF与HG的位置关系是( )A.平行B.相交C.异面D.平行或异面解析:选A ∵E、F分别是SN和SP的中点,∴EF∥PN.同理可证HG∥PN,∴EF∥HG.3.(2019·福州高一检测)如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为( )A.相交B.平行C.异面而且垂直D.异面但不垂直解析:选D 将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.①如果一个角的两边与另一个角的两边分别平行,那么这两个角相等;②如果两条相交直线和另两条直线分别平行,那么这两组直线所成的锐角(或直角)相等;③如果一个角的两边和另一个角的两边分别垂直,那么这两个角相等或互补;④如果两条直线同时平行于第三条直线,那么这两条直线互相平行.正确的结论有( )A.1个B.2个C.3个D.4个解析:选B 对于①,这两个角也可能互补,故①错;对于②,正确;对于③,不正确,举反例:如右图所示,BC⊥PB,AC⊥PA,∠ACB的两条边分别垂直于∠APB的两条边,但这两个角既不一定相等,也不一定互补;对于④,由公理4可知正确.故②④正确,所以正确的结论有2个.5.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面解析:选B 逐个分析,过点P与l,m都平行的直线不存在;过点P与l,m都垂直的直线只有一条;过点P与l,m都相交的直线1条或0条;过点P与l,m都异面的直线有无数条.二、填空题6.(2019·连云港高一检测)空间中有一个角∠A的两边和另一个角∠B的两边分别平行,∠A=70°,则∠B=________.解析:∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°.又∠A=70°,∴∠B=70°或110°.答案:70°或110°7.已知正方体ABCD -A 1B 1C 1D 1中,E 为C 1D 1的中点,则异面直线AE 与A 1B 1所成的角的余弦值为________.解析:设棱长为1,因为A 1B 1∥C 1D ,所以∠AED 1就是异面直线AE 与A 1B 1所成的角.在△AED 1中,AE =12+12+⎝⎛⎭⎪⎫122=32,cos ∠AED 1=D 1E AE =1232=13.答案:138.如图,点P 、Q 、R 、S 分别在正方体的四条棱上,且是所在棱的中点,则直线PQ 与RS 是异面直线的一个图是________.解析:①中PQ ∥RS ,②中RS ∥PQ ,④中RS 和PQ 相交. 答案:③ 三、解答题9.如图所示,E 、F 分别是长方体A 1B 1C 1D 1—ABCD 的棱A 1A ,C 1C 的中点.求证:四边形B 1EDF 是平行四边形. 证明:设Q 是DD 1的中点,连接EQ 、QC 1.∵E 是AA 1的中点, ∴EQ 綊A 1D 1.又在矩形A 1B 1C 1D 1中,A 1D 1綊B 1C 1, ∴EQ 綊B 1C 1(平行公理).∴四边形EQC 1B 1为平行四边形.∴B 1E 綊C 1Q . 又∵Q 、F 是DD 1、C 1C 两边的中点,∴QD 綊C 1F . ∴四边形QDFC 1为平行四边形. ∴C 1Q 綊DF . 又∵B 1E 綊C 1Q , ∴B 1E 綊DF .∴四边形B 1EDF 为平行四边形.10.已知三棱锥A -BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M ,N 分别是BC ,AD 的中点,求直线AB 和MN 所成的角.解:如图,取AC 的中点P ,连接PM ,PN ,因为点M ,N 分别是BC ,AD 的中点,所以PM ∥AB ,且PM =12AB ;PN ∥CD ,且PN =12CD ,所以∠MPN (或其补角)为AB 与CD 所成的角. 所以∠PMN (或其补角)为AB 与MN 所成的角. 因为直线AB 与CD 成60°角, 所以∠MPN =60°或∠MPN =120°. 又因为AB =CD ,所以PM =PN ①,(1)若∠MPN =60°,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°. (2)若∠MPN =120°,则易知△PMN 是等腰三角形. 所以∠PMN =30°,即AB 与MN 所成的角为30°. 综上可知:AB 与MN 所成角为60°或30°.2.1.3 & 2.1.4 空间中直线与平面、平面与平面之间的位置关系空间中直线与平面的位置关系[提出问题]应县木塔,在山西应县城佛宫寺内,辽清宁二年(1056年)建.塔呈平面八角形,外观五层,夹有暗层四级,实为九层,总高67.31米,底层直径30.27米,是国内外现存最古老最高大的木结构塔式建筑.塔建在4米高的两层石砌台基上,内外两槽立柱,构成双层套筒式结构,柱头间有栏额和普柏枋,柱脚间有地伏等水平构件,内外槽之间有梁枋相连接,使双层套筒紧密结合.暗层中用大量斜撑,结构上起圈梁作用,加强木塔结构的整体性.问题1:立柱和地面是什么位置关系?提示:相交.问题2:柱脚间有地伏等水平构件看成直线,它和地面有什么关系?提示:在平面内.问题3:直线和平面还有其他关系吗?提示:平行.[导入新知]直线与平面的位置关系位置关系直线a在平面α内直线a在平面α外直线a与平面α相交直线a与平面α平行公共点无数个公共点一个公共点没有公共点符号表示a⊂αa∩α=A a∥α图形表示[化解疑难]1.利用公共点的个数也可以理解直线与平面的位置关系.(1)当直线与平面无公共点时,直线与平面平行.(2)当直线与平面有一个公共点时,直线与平面相交.(3)当直线与平面有两个公共点时,它们就有无数个公共点,这时直线在平面内.2.直线在平面外包括两种情形:a∥α与a∩α=A.空间中平面与平面的位置关系[观察拿在手中的两本书,我们可以想象两本书为两个平面.问题1:两本书所在的平面可以平行吗?公共点的个数是多少?。
点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。
2、本章知识结构框图平面(公理1、公理2、公理3、公理4)空间直线、平面的位置关系直线与直线的位置关系直线与平面的位置关系平面与平面的位置关系(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固1、P.73 A 组第1题2、P.74 A 组第6、8题(四)、课堂练习:1.选择题 (1)如图BC 是R t ⊿ABC 的斜边,过A 作⊿ABC 所在平面α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是( ) (A )4个 (B )6个 (C )7个 (D )8个(2)直线a 与平面α斜交,则在平面α内与直线a 垂直的直线( ) (A )没有 (B )有一条 (C )有无数条 (D )α内所有直线 答案:(1)D (2) C2.填空题(1)边长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA =a ,则P 到CD 的距离为 ,P 到BC 的距离为 .(2)AC 是平面α的斜线,且AO =a ,AO 与α成60º角,OC ⊂α,AA '⊥α于A ',∠A 'OC =45º,则A 到直线OC 的距离是 , ∠AOC 的余弦值是 . 答案:(1)a a 27,2; (2)42,414a 3.在正方体ABCD -A 1B 1C 1D 1中,求证:A 1C ⊥平面BC 1D .分析:A 1C 在上底面ABCD 的射影AC ⊥BD, A 1C 在右侧面的射影D 1C ⊥C 1D,所以A 1C ⊥BD, A 1C ⊥C 1D,从而有A 1C ⊥平面BC 1D .直线与直线平行直线与平面平行平面与平面平行直线与直线垂直直线与平面垂直 平面与平面垂直 A A ′CαODCPαABC 1B 11D 1DC课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.76 B组第2题。
专题二——空间中的垂直关系最新考纲1.以立体几何的有关定义、公理和定理为出发点,认识和理解空间中线面垂直、面面垂直的有关性质与判定定理,并能够证明相关性质定理;2.能运用线面垂直、面面垂直的判定及性质定理证明一些空间图形的垂直关系的简单命题。
重点难点聚焦直线与直线、直线与平面、平面与平面垂直的性质和判定不光是确立垂直关系的重要依据,也是以后计算角和距离重要环节、因此,垂直关系及其相互转化是整个立体几何部分的重点和关键。
解决措施1.应用“间题探究式”教学法,采用层层递进探究的方式,既降低了起点又分散了难点,通过学生发现问题、分析问题和解决问题的过程,让学生主动参与到教学和学习活动中来,并且始终处于积极地动手操作、问题探究和辨析思考的学习气氛之中,形成以学生为中心的探究性学习活动。
通过直观感知、操作确认、思辨论证,认识和理解空间中线面垂直的有关性质与判定。
2.通过实物模型课件演示,以笔和书本及教室为学习工具直观认识概念,培养学生的善于观察、发现、归纳的能力。
3.利用现代信息技术动画展示形成和发展变化过程,微课预习,对比学生板演进行分析点评,引起学生学习兴趣和学习热情,提高学习效率,改进教学方法,引领学生更好的参与学习活动中来。
高考分析及预测近年来,立体几何高考命题形式比较稳定,题目难易适中,常常立足于棱柱、棱锥和正方体,复习是要以多面体为依托,始终把直线与直线、直线与平面、平面与平面垂直的性质和判定作为考查重点。
在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点放在对图形及几何体的认识上, 实现平面到空间的转化,是知识深化和拓展的重点,因而在这部分知识点上命题, 将是重中之重。
教学设计环节一:微课预习知识点、尝试解决问题(微课资源,自习课观看,10分钟)环节二:课堂知识探究1.知识回顾(以提问的形式呈现,对预习作业的检查)(1)直线和平面垂直的定义:如果一条直线l与平面α内的直线都垂直,就说直线l与平面α互相垂直。
2.1 《空间点、直线、平面之间的位置关系》导学案【学习目标】 1.能够从日常生活实例中抽象出数学中所说的“平面”;2.理解平面的无限延展性;3.理解公理1、2、3、4;4.了解空间中两条直线的位置关系;5.理解异面直线的概念、画法,培养学生的空间想象能力;6.理解并掌握等角定理;7.异面直线所成角的定义、范围及应用;8.了解空间中直线与平面的位置关系;9.了解空间中平面与平面的位置关系.【重点难点】重点:1.异面直线的概念;2.公理4;3.空间直线与平面、平面与平面之间的位置关系难点:用图形表达直线与平面、平面与平面的位置关系;异面直线所成角的计算及等角定理.【学法指导】自主探索与合作交流相结合【知识链接】空间几何体【学习过程】一.预习自学1.平面概述(1)平面的两个特征:①无限延展②没有厚度(2)平面的画法:(3)平面的表示:平面可以看成点的集合,点A在平面错误!未找到引用源。
内,记作,点B不在平面错误!未找到引用源。
内,记作2.三个公理公理1:用数学符号表示为:公理2:公理3:用数学符号表示为:3.空间中直线与直线的位置关系(1)异面直线:(2)空间两条直线的位置关系:相交直线——在同一平面内,;平行直线——在同一平面内,;异面直线——,没有公共点.相交直线和平行直线也称为共面直线.异面直线的画法(3)在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的.公理4:(平行线的传递性)(4)等角定理:(5)异面直线 a ,b 所成的角(异面直线 a ,b 的夹角)(6)如果两条异面直线 a ,b,那么我们就说异面直线a ,b 互相垂直,记作所以,在空间里说两条直线互相垂直包括相交垂直和异面垂直两种情况.4.空间中直线与平面的位置关系(1)(无数个公共点);(2)(有且只有一个公共点);(3)(没有公共点)直线和平面相交或平行统称用图形分别可表示为用符号分别可表示为5.两个平面的位置关系(1)(没有公共点)(2)(有一条公共直线)平面错误!未找到引用源。
第二章点、直线、平面之间的位置关系章末复习课1.线线关系空间两条直线的位置关系有且只有相交、平行、异面三种.两直线垂直有“相交垂直”与“异面垂直”两种情况.(1)证明线线平行的方法①线线平行的定义;②公理4:平行于同一条直线的两条直线互相平行;③线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b;④线面垂直的性质定理:a⊥α,b⊥α⇒a∥b;⑤面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.(2)证明线线垂直的方法①线线垂直的定义:两条直线所成的角是直角,在研究异面直线所成的角时,要通过平移把异面直线转化为相交直线;②线面垂直的性质:a⊥α,b⊂α⇒a⊥b;③线面垂直的性质:a ⊥α,b ∥α⇒a ⊥b . 2.线面关系直线与平面之间的位置关系有且只有线在面内、相交、平行三种. (1)证明直线与平面平行的方法 ①线面平行的定义;②判定定理:a ⊄α,b ⊂α,a ∥b ⇒a ∥α; ③平面与平面平行的性质:α∥β,a ⊂α⇒a ∥β. (2)证明直线与平面垂直的方法 ①线面垂直的定义; ②判定定理1:⎭⎪⎬⎪⎫m ,n ⊂α,m ∩n =A l ⊥m ,l ⊥n⇒l ⊥α; ③判定定理2:a ∥b ,a ⊥α⇒b ⊥α;④面面平行的性质定理:α∥β,a ⊥α⇒a ⊥β;⑤面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β. 3.面面关系两个平面之间的位置关系有且只有平行、相交两种. (1)证明面面平行的方法 ①面面平行的定义;②面面平行的判定定理:a ∥β,b ∥β,a ⊂α,b ⊂α,a ∩b =A ⇒α∥β;③线面垂直的性质定理:a ⊥α,a ⊥β⇒α∥β; ④公理4的推广:α∥γ,β∥γ⇒α∥β. (2)证明面面垂直的方法①面面垂直的定义:两个平面相交所成的二面角是直二面角; ②面面垂直的判定定理:a ⊥β,a ⊂α⇒α⊥β. 4.证明空间线面平行或垂直需注意的三点 (1)由已知想性质,由求证想判定.(2)适当添加辅助线(或面)是解题的常用方法之一. (3)用定理时要先明确条件,再由定理得出相应结论. 5.“升降维”思想用降维的方法把空间问题转化为平面或直线问题,可以使问题得到解决.用升维的方法把平面或直线中的概念、定义或方法向空间推广,可以从已知探索未知,是“学会学习”的重要方法. 平面图形的翻折问题的分析与解决,就是升维与降维思想方法的不断转化运用的过程.方法一转化与化归思想立体几何中最重要、最常用的思想就是转化与化归思想.(1)线线、线面、面面的位置关系,由转化思想使它们建立联系,如面面平行、线面平行、线线平行的互化,面面垂直、线面垂直、线线垂直的互化,有关线面位置关系的论证往往就是通过这种联系和转化得到解决的.(2)通过“平移”,将一些线面关系转化为平面内的线线关系,通过线面平行,将空间角最终转化为平面角,并构造三角形,借助于三角形的知识解决问题.(3)通过添加辅助线而将立体问题转化为平面问题.【例1】(2016·山东)在如图所示的几何体中,D是AC的中点,EF∥DB.(1)已知AB=BC,AE=EC.求证:AC⊥FB;(2)已知G,H分别是EC和FB的中点.求证:GH∥平面ABC.证明(1)因为EF∥DB,所以EF与DB确定平面BDEF,连接DE.因为AE=EC,D为AC的中点,所以DE⊥AC.同理可得BD⊥AC.又BD∩DE=D,所以AC⊥平面BDEF.因为FB⊂平面BDEF,所以AC⊥FB.(2)设FC的中点为I,连接GI,HI.在△CEF中,因为G是CE的中点,所以GI ∥EF .又EF ∥DB , 所以GI ∥DB .在△CFB 中,因为H 是FB 的中点,所以HI ∥BC . 又HI ∩GI =I ,所以平面GHI ∥平面ABC , 因为GH ⊂平面GHI ,所以GH ∥平面ABC .【例2】 (2016·全国Ⅰ文)如图,已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G .(1)证明:G 是AB 的中点;(2)作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体P -DEF 的体积. (1)证明 因为P 在平面ABC 内的正投影为D ,所以AB ⊥PD . 因为D 在平面PAB 内的正投影为E ,所以AB ⊥DE . 所以AB ⊥平面PED ,故AB ⊥PG .又由已知可得,PA =PB ,从而G 是AB 的中点.(2)解 在平面PAB 内,过点E 作PB 的平行线交PA 于点F ,F 即为E 在平面PAC 内的正投影. 理由如下:由已知可得PB ⊥PA ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥PA ,EF ⊥PC ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(1)知,G 是AB 的中点,所以D 在CG 上,故CD =23CG .由题设可得PC ⊥平面PAB ,DE ⊥平面PAB , 所以DE ∥PC ,因此PE =23PG ,DE =13PC .由已知,正三棱锥的侧面是直角三角形且PA =6,可得DE =2,PE =2 2. 在等腰直角三角形EFP 中, 可得EF =PF =2.所以四面体P -DEF 的体积V =13×12×2×2×2=43.【训练1】 如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q 为PA 的中点,G 为△AOC 的重心,求证:QG ∥平面PBC .证明 (1)由AB 是圆O 的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC ,所以BC ⊥平面PAC .(2)连接OG 并延长交AC 于点M ,连接QM ,QO ,由G 为△AOC 的重心,得M 为AC 中点. 由Q 为PA 中点,得QM ∥PC , 又O 为AB 中点,得OM ∥BC .因为QM ∩MO =M ,QM ⊂平面QMO ,MO ⊂平面QMO ,BC ∩PC =C ,BC ⊂平面PBC ,PC ⊂平面PBC , 所以平面QMO ∥平面PBC .因为QG ⊂平面QMO ,所以QG ∥平面PBC . 方法二 函数与方程思想函数与方程思想是中学数学的基本思想,就是用函数和方程的观点去分析和研究数学问题中的数量关系.对立体几何中的有关最值问题,处理的方法常常是以最值为函数,选择恰当的自变量建立函数关系,通过分析函数关系性质,使问题得到解决.【例3】 如图所示,正方形ABCD ,ABEF 的边长都是1,而且平面ABCD 与平面ABEF 互相垂直,点M 在AC 上移动,点N 在BF 上移动,若CM =BN =a (0<a <2).(1)求MN 的长;(2)求a 为何值时,MN 的长最小.解 (1)如图所示,作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连接PQ ,依题意可得四边形MNQP 是平行四边形,∴MN =PQ .∵CM =BN =a ,CB =AB =BE =1,∴AC =BF =2,∴由MP ∥AB ,NQ ∥EF 得,CP1=a2,BQ 1=a 2,即CP =BQ =a2. ∴MN =PQ =BP 2+BQ 2=(1-CP )2+BQ 2=⎝ ⎛⎭⎪⎫1-a 22+⎝ ⎛⎭⎪⎫a 22=⎝⎛⎭⎪⎫a -222+12(0<a <2).(2)由(1)得MN =⎝⎛⎭⎪⎫a -222+12,又0<a <2, 所以,当a =22时,MN min =22.故M ,N 分别移动到AC ,BF 的中点时,MN 的长最小,最小值为22. 【训练2】 三棱锥有五条棱长为2,当第六条棱长为多少时,四面体的体积最大?并求其最大值.解 如图,不妨设AB =BC =AC =CD =BD =2,取BC 的中点E ,连接AE ,DE , 则BC ⊥平面ADE ,且AE =ED = 3. 在△ADE 中,设AD =x ,则AD 边上的高h =3-x 24,∴S △ADE =12x ·3-x 24(0<x <23),∴V A -BCD =V B -ADE +V C -ADE =13BE ·S △ADE +13EC ·S △ADE=13BC ·S △ADE =133x 2-x 44=13-14(x 2-6)2+9. 故当x 2=6,即x =6时,V max =1.方法三 分类讨论思想分类讨论的思想方法是指在研究和解决数学问题时,根据数学对象的本质属性的相同点和不同点,将对象区分为不同种类,然后分类进行研究和解决,从而达到研究和解决全部问题的目的. 【例4】 已知平面α∥平面β,AB ,CD 是夹在平面α和平面β间的两条线段,点E ,F 分别在AB ,CD 上,且AE EB =CF FD =mn.求证:EF ∥α∥β.证明 ①若AB 与CD 共面,设AB 与CD 确定平面γ,则α∩γ=AC ,β∩γ=BD . ∵α∥β,∴AC ∥BD .又∵AE EB =CF FD =m n,∴EF ∥AC ∥BD .又∵EF ⊄α,EF ⊄β,AC ⊂α,BD ⊂β,∴EF ∥α∥β. ②若AB 与CD 异面,过点A 作AA ′∥CD ,在AA ′截一点O ,使AO OA ′=AE EB =CF FD =mn,∴EO ∥BA ′,OF ∥A ′D .又∵EO ⊄α,EO ⊄β,BA ′⊂β,α∥β,∴EO ∥α,EO ∥β. 同理OF ∥α,OF ∥β.∵EO ∩OF =O ,∴平面EOF ∥α∥β. 又∵EF ⊂平面EOF ,∴EF ∥α∥β.综上所述,无论AB 与CD 是异面还是共面,都有EF ∥α∥β.【训练3】 如图所示,矩形ABCD 中,AB =1,BC =a (a >0),PA ⊥平面AC ,且PA =1,问BC 边上是否存在点Q ,使得PQ ⊥QD ,并说明理由.解 连接AQ ,因为PA ⊥平面AC ,QD ⊂平面AC ,所以PA ⊥QD . 又因为PQ ⊥QD ,PA ∩PQ =P ,所以QD ⊥平面PAQ .所以AQ ⊥QD .(1)当0<a <2时,由四边形ABCD 是矩形且AB =1知,以AD 为直径的圆与BC 无交点,即对BC 上任一点Q ,都有∠AQD <90°,此时BC 边上不存在点Q ,使PQ ⊥QD .(2)当a =2时,以AD 为直径的圆与BC 相切于BC 的中点Q ,此时∠AQD =90°,所以BC 边上存在一点Q ,使PQ ⊥QD .(3)当a >2时,以AD 为直径的圆与BC 相交于点Q 1、Q 2,此时∠AQ 1D =∠AQ 2D =90°,故BC 边上存在两点Q (即Q 1与Q 2),使PQ ⊥QD . 方法四 探究性问题的解法解决开放问题一般用分析法,即从结论入手,分析得到该结论所需的条件或与其等价的条件,此种类型题考查空间想象能力、推理论证能力、分析问题和解决问题的能力.【例5】 (2016·北京)如图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,AB ∥DC ,DC ⊥AC .(1)求证:DC ⊥平面PAC ; (2)求证:平面PAB ⊥平面PAC ;(3)设点E 为AB 的中点,在棱PB 上是否存在点F ,使得PA ∥平面CEF ?说明理由. (1)证明 ∵PC ⊥平面ABCD ,DC ⊂平面ABCD ,∴PC ⊥DC .又AC ⊥DC ,PC ∩AC =C ,PC ⊂平面PAC ,AC ⊂平面PAC ,∴CD ⊥平面PAC . (2)证明 ∵AB ∥CD ,CD ⊥平面PAC , ∴AB ⊥平面PAC ,AB ⊂平面PAB , ∴平面PAB ⊥平面PAC .(3)解 棱PB 上存在点F ,使得PA ∥平面CEF .证明如下:取PB 的中点F ,连接EF ,CE ,CF ,又因为E 为AB 的中点,∴EF 为△PAB 的中位线,∴EF ∥PA .又PA ⊄平面CEF ,EF ⊂平面CEF ,∴PA ∥平面CEF .【训练4】 如图所示,四边形ABCD 是平行四边形,PB ⊥平面ABCD ,MA ∥PB ,PB =2MA .在线段PB 上是否存在一点F ,使平面AFC ∥平面PMD ?若存在,请确定点F 的位置;若不存在,请说明理由.解 当点F 是PB 的中点时,平面AFC ∥平面PMD ,证明如下:如图连接AC 和BD 交于点O ,连接FO ,那么PF =12PB .∵四边形ABCD 是平行四边形,∴O 是BD 的中点.∴OF ∥PD .又OF ⊄平面PMD ,PD ⊂平面PMD ,∴OF ∥平面PMD .又MA 綉12PB ,∴PF 綉MA .∴四边形AFPM 是平行四边形.∴AF ∥PM .又AF ⊄平面PMD ,PM ⊂平面PMD .∴AF ∥平面PMD .又AF ∩OF =F ,AF ⊂平面AFC ,OF ⊂平面AFC .∴平面AFC ∥平面PMD .1.(2016·浙江高考)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n⊥β,则( ) A.m∥l B.m∥nC.n⊥l D.m⊥n解析由已知,α∩β=l,∴l⊂β,又∵n⊥β,∴n⊥l,C正确.故选C.答案 C2.(2015·浙江高考)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β( )A.若l⊥β,则α⊥βB.若α⊥β,则l⊥mC.若l∥β,则α∥βD.若α∥β,则l∥m解析选项A:∵l⊥β,l⊂α,∴α⊥β,A正确;选项B:α⊥β,l⊂α,m⊂β,l与m位置关系不确定;选项C,∵l∥β,l⊂α,∴α∥β或α与β相交.选项D:∵α∥β,l⊂α,m⊂β.此时,l与m位置关系不确定,故选A.答案 A3.(2015·福建高考)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析m垂直于平面α,当l⊂α时,也满足l⊥m,但直线l与平面α不平行,∴充分性不成立,反之,l∥α,一定有l⊥m,必要性成立.故选B.答案 B4.(2015·浙江高考)如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别是AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理求得AN=DN=CM=22,∴MK= 2. 在Rt△CKN中,CK=(2)2+12= 3.在△CKM 中,由余弦定理,得cos ∠KMC =(2)2+(22)2-(3)22×2×22=78.答案 78(2016·浙江高考)如图,在三棱台ABC -DEF 中,平面BCFE ⊥平面ABC ,∠ACB =90°,BE =EF =FC =1,BC =2,AC =3.(1)求证:BF ⊥平面ACFD ;(2)求直线BD 与平面ACFD 所成角的余弦值. (1)证明延长AD ,BE ,CF 相交于一点K ,如图所示,因为平面BCFE ⊥平面ABC ,且AC ⊥BC ,所以AC ⊥平面BCK , 因此BF ⊥AC .又因为EF ∥BC ,BE =EF =FC =1,BC =2, 所以△BCK 为等边三角形,且F 为CK 的中点,则BF ⊥CK .所以BF ⊥平面ACFD .(2)解 因为BF ⊥平面ACK ,所以∠BDF 是直线BD 与平面ACFD 所成的角. 在Rt△BFD 中,BF =3,DF =32,得cos ∠BDF =217. 所以,直线BD 与平面ACFD 所成角的余弦值为217. 6.(2015·浙江高考)如图,在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,AB =AC =2,A 1A =4,A 1在底面ABC 的射影为BC 的中点,D 为B 1C 1的中点.(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.(1)证明设E为BC的中点,连接AE,由题意得A1E⊥平面ABC,AE⊂平面ABC,所以A1E⊥AE,因为AB=AC,所以AE⊥BC.又BC∩A1E=E,故AE⊥平面A1BC.由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以AA1DE为平行四边形.于是A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(2)解作A1F⊥DE,垂足为F,连接BF.因为A1E⊥平面ABC,BC⊂平面ABC,所以BC⊥A1E.因为BC⊥AE,AE∩A1E=E,所以BC⊥平面AA1DE,又A1F⊂平面AA1DE.所以BC⊥A1F,又DE∩BC=E,∴A1F⊥平面BB1C1C.所以∠A1BF为直线A1B和平面BB1C1C所成的角.由AB=AC=2,∠CAB=90°,得EA=EB= 2.由A1E⊥平面ABC,得A1A=A1B=4,A1E=14.由DE=BB1=4.DA1=EA=2,∠DA1E=90°,得A1F=72.所以sin ∠A1BF=78.7.(2014·浙江高考)如图,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB =CD=2,DE=BE=1,AC= 2.(1)证明:AC ⊥平面BCDE ;(2)求直线AE 与平面ABC 所成的角的正切值.(1)证明 连接BD ,在直角梯形BCDE 中,由DE =BE =1,CD =2,得BD =BC =2,由AC =2,AB =2,得AB 2=AC 2+BC 2,即AC ⊥BC .又平面ABC ⊥平面BCDE ,且AC ⊂平面ABC ,平面ABC ∩平面BCDE =BC ,从而AC ⊥平面BCDE .(2)解 在直角梯形BCDE 中,由BD =BC =2,DC =2.得BD ⊥BC ,又平面ABC ⊥平面BCDE ,且BD ⊂平面BCDE ,平面ABC ∩平面BCDE =BC ,所以BD ⊥平面ABC .作EF ∥BD ,与CB 延长线交于F ,连接AF ,则EF ⊥平面ABC .所以∠EAF 是直线AE 与平面ABC 所成的角.在Rt △BEF 中,由EB =1,∠EBF =π4,得EF =22, BF =22; 在Rt △ACF 中,由AC =2,CF =322,得AF =262. 在Rt △AEF 中,由EF =22,AF =262,得tan ∠EAF =1313. 所以,直线AE 与平面ABC 所成的角的正切值是1313.。