东南大学模电实验1运算放大器的基本应用教学文案
- 格式:doc
- 大小:1.19 MB
- 文档页数:23
东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。
二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极转换速率(SlewRate)V/us运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。
极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流6mA输出电流的最大值最大电源电压3V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。
3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。
图反相输入比例运算电路 LM324 管脚图1)图中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。
运算放大器的基本应用东南大学电工电子实验中心实验报告课程名称:电子电路实践第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电一姓名:杨阳学号: 61011108实验室: 101 实验组别:同组人员:实验时间:2019年3月26日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、带宽的测量方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念;5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。
二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
2、设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)仿真原理图(2)参数选择计算Au要求|AV|=10且为反向比例放大电路,即u0RF10uiR1,又因为Ri>10KΩ,则选择R1=20kΩ,RF=200kΩ,RL=200kΩ,RP=20k//200kΩ。
信号源输入频率为1kHz,峰峰值为10V的方波信号。
A通道为输出信号,B通道为输入信号。
(3)仿真结果由波形图可知,输入Ui=10V,输出Uo=-100V,Au=Uo/Ui=-10,满足设计要求。
3、设计一个电路满足运算关系UO= -2Ui1 + 3Ui2 (1)仿真原理图(2)参数选择计算根据题目要求UO= -2Ui1 + 3Ui2 ,参数选择如上图所示,则有3u3ui2R1202ui2 ui210303032ui122ui22ui13ui2 15ui120u3u0u46ui16u3R4R5(3)仿真结果三、实验内容: 1、基本要求:内容一:反相输入比例运算电路(I) 图1.3中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。
东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。
二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
2.设计一个反相比例放大器,要求:|AV|=10,Ri>10K?,RF=100 k?,并用multisim 仿真。
其中分压电路由100k?的电位器提供,与之串联的510?电阻起限流的作用。
3.设计一个同相比例放大器,要求:|AV|=11,Ri>10K?,RF=100 k?,并用multisim 仿真。
三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。
图 1.1 反相输入比例运算电路 LM324 管脚图1)图 1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。
按图连接电路,输入直流信号 Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。
运算放大器的基本应用运算放大器的基本应用加法器在多路信号的混合上有着很多的应用。
反相放大器,在单管放大电路上也有一样的用法。
下面是小编带来的运算放大器的基本应用,希望对你有帮助。
实验报告课程名称:第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化姓名:号:实验室: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、带宽的测量方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、了解运放调零和相位补偿的基本概念;5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。
二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
2、设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)仿真原理图(2)参数选择计算因为要求|Av|=10,即|V0/Vi|= |-Rf/R1|=10,故取Rf=10R1,.又电阻应尽量大些,故取:R1=10kΩ,Rk=100 kΩ, RL=10 kΩ (3)仿真结果图中红色波形表示输入,另一波形为输出,通过仿真可知|V0/Vi|=9.77≈10,仿真正确。
3、设计一个电路满足运算关系UO= -2Ui1 + 3Ui2(1)仿真原理图(2)参数选择计算利用反向求和构成减法电路,故可取R1=10kΩ,RF1=30kΩ,R3=10kΩ,R2=RF2=20kΩ (3)仿真结果输入Ui2为振幅等于2V的方波,Ui1为振幅等于1V的方波,因为输出为振幅等于4V的方波,故可知仿真正确。
东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第一次实验实验名称:运算放大器的基本应用院(系):自动化学院专业:自动化姓名:某某学号:*****实验室: 101实验组别:同组人员:无实验时间:2017年3月29日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、熟练掌握运算放大电路的增益、幅频特性传输曲线测量方法。
二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
参数转换速率S R TYP0.5V/μS该参数指输出电压的变化量与发生这个变化所需的时间之比极限参数最大差模输入电压U IOR±30V反向和同相输入端能承受的最大电压值。
超过这个电压值运放的功能会受到影响。
最大共模输入电压U ICRTYP±13VNIN±12V同相端与反相输入端承受的最大共模信号电压值。
超过这个值运放的共模抑制比会显著下降,放大功能会受到影响。
最大输出电流I OSTYP±30mA;MAX±40 mA运放所能输出的电流峰值。
最大电源电压U SR±22V 运放最大电源电压。
2、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,R L=100 KΩ,并用Multisim仿真;(1)仿真原理图(2)参数选择计算因为要求|A v|=10,即|V0/V i|= |-R F/R1|=10,故取R F=10R1,输入电阻尽量大些,取:R1=15kΩ,R F=150 kΩ, R L=100 kΩ(3)仿真结果当输入电压为427.083mV时,输出电压为4.263V,放大倍数为9.982,与理论值10接近。
东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第 1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。
二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。
3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。
图1.1 反相输入比例运算电路LM324 管脚图1)图1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。
按图连接电路,输入直流信号Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同Ui 时的Uo 值,列表计算Au 并和理论值相比较。
东南大学电工电子实验中心实验报告课程名称:电子电路实验第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化姓名:周晓慧学号:********实验室: 105实验组别:同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:实验一运算放大器的基本应用一、实验目的:1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法;2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、带宽的测量方法;3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念;4、了解运放调零和相位补偿的基本概念;5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。
二、预习思考:1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
参数转换速率S R0.25-0.5V/μs指输出电压量变化与其所需要的时间的比值极限参数最大差模输入电压U IOR±15V同相、反相端所能承受的最大的差模输入电压。
最大共模输入电压U ICR±13V同相、反相端所能输入的最大的共模信号,超过这个值,会有一定的共模放大作用影响。
最大输出电流I OS25-40mA 运放所能输出的电流峰值。
最大电源电压U SR±18V 运放所加电源的最大值。
2、设计一个反相比例放大器,要求:|A V|=10,Ri>10KΩ,将设计过程记录在预习报告上;(1)仿真原理图(2)参数选择计算因为要求|A v|=10,即|V0/V i|= |-R f/R1|=10,故取R f=10R1,.又电阻应尽量大些,故取:R1=10kΩ,Rk=100 kΩ, R L=10 kΩ(3)仿真结果图中红色波形表示输入,另一波形为输出,通过仿真可知|V0/V i|=9.77≈10,仿真正确。
东南大学电工电子实验中心实验报告课程名称:电路与电子线路实验Ⅱ第一次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:工科试验班姓名:学号:实验室: 电工电子中心103实验组别:同组人员:实验时间:2019年4月11 日评定成绩:审阅教师:了解运放的基本特性,以运放构成的同相比例放大电路为例,研究运算放大器的转换速率和增益带宽积性能。
二、 实验原理1. 实验一 同相比例放大电路根据运算放大器基本原理及性质,可得00u u i i +-+-====11o F i u R u R =+ 2. 实验二 减法电路的设计3211231(1)F F o R R Ru u u R R R R =+-+ 3. 实验三 波形转换电路的设计1O i u u dt RC=-⎰1.实验内容(补充实验):(1)设计一个同相输入比例运算电路,放大倍数为11,且 RF=100 kΩ。
输入信号保持Ui=0.1Vpp不变,改变输入信号的频率,在输出不失真的情况下,并记录此时的输入输出波形,测量两者的相位差,并做简单测出上限频率fH分析。
/°图像14.032.042.647.9(b )(c )实验结果分析: 由上表可得,当*0.1*110.778O U AuU V === 时,输出波形已经失真,此时fH=78.86kHz ,φ=47.9°,可以看出相位差与理论值45°存在较小差距,基本吻合。
(2)输入信号为占空比为50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。
(a )双踪显示输入输出波形图(c ) 实验结果分析:7.84/0.501/1/(32*2)dV SR V s V s dt μμ===由SR 的计算公式可得SR ≈0.5V/μs ,与理论值近似(3)将输入正弦交流信号频率调到前面测得的fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不像正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。
《模拟电子技术》教案:掌握集成运放电路在电子系统中的应用一、教学内容简介本教案的教学内容主要是模拟电子技术中的集成运放电路,在电子系统中的应用。
在本教案中,我们将会学习到集成运放电路的基本概念、基本特性、设计原理等相关知识,以及在电子系统中对它的应用。
二、教学目标1.了解集成运放电路的基本概念和基本特性,包括差动放大器、同相放大器、反相放大器、比较器等。
2.了解集成运放电路的设计原理,包括运放电路的放大器设计、滤波器设计、波形整形电路设计等。
3.学会集成运放电路在电子系统中的应用,掌握电压跟随器、积分器、微分器、信号放大器、信号滤波器等电子系统中的常见应用。
4.培养学生理论知识与实践技能相结合的能力,提升实际操作能力和综合素质。
三、教学重点和难点本教案的教学重点主要是集成运放电路的设计原理以及在电子系统中的应用。
难点则是如何将理论知识与实践技能相结合,达到理论与实践的统一。
四、教学方法1.理论讲授法:通过讲解集成运放电路的原理、结构、特性、设计、应用等理论知识,让同学掌握相关知识。
2.实验演示法:通过实验演示,让同学深入了解集成运放电路的应用,并掌握操作技能。
3.案例分析法:通过分析实际案例,让同学深入理解集成运放电路在电子系统中的应用。
五、教学内容1.集成运放电路的基本概念和基本特性(1)集成运放电路的概念和基本原理。
(2)集成运放电路的放大器特性,包括增益、带宽、偏置电流、输入阻抗、输出阻抗等。
(3)运放电路的电源电压范围和输入电压范围,以及运放电路的输入和输出特性。
2.集成运放电路的设计原理(1)运放电路的放大器设计原理,包括电路的电路分析和设计实例等。
(2)运放电路的滤波器设计原理,包括低通滤波器、高通滤波器、带通/阻带滤波器等。
(3)集成运放电路的波形整形电路设计原理,包括纹波电压降低电路、削波电路、比较器电路等。
3.集成运放电路在电子系统中的应用(1)电压跟随器:这是一种电路,可以将电路输出的电压与输入电压保持一致,控制输出电压跟随和输出电流跟随。
东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号:610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。
二、预习思考1.查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。
增益带宽积(GBW) 1.2MHz 增益带宽积是用来简单衡量放大器的性能的一个参数。
这个参数表示增益和带宽的乘积。
转换速率(Slew Rate)0.5V/us 运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。
极限参数最大差模输入电压32V差模输入电压的最大值最大共模输入电压28V共模输入电压的最大值最大输出电流60mA输出电流的最大值最大电源电压30V电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。
3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用multisim 仿真。
三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。
2016东南大学模电实验1运算放大器的基本应用东南大学电工电子实验中心实验报告课程名称:模拟电子电路实验第1 次实验实验名称:运算放大器的基本应用院(系):吴健雄学院专业:电类强化班姓名:学号: 610142实验室:实验组别:同组人员:实验时间:2016年4月10日评定成绩:审阅教师:一、实验目的1.熟练掌握反相比例、同相比例、加法、减法等电路的设计方法;2.熟练掌握运算放大电路的故障检查和排除方法;3.了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(大差模输入电压、大共模输入电压、大输出电流、大电源电压等)的基本概念;4.熟练掌握运算放大电路的增益、幅频特性、传输特性曲线的测量方法;5.掌握搭接放大器的方法及使用示波器测量输出波形。
二、预习思考1.查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,最大共模输入电压28 V 共模输入电压的最大值最大输出电流60 mA 输出电流的最大值最大电源电压30 V 电源电压的最大值2.设计一个反相比例放大器,要求:|AV|=10,Ri>10KΩ,RF=100 kΩ,并用 multisim 仿真。
其中分压电路由100kΩ的电位器提供,与之串联的510Ω电阻起限流的作用。
3.设计一个同相比例放大器,要求:|AV|=11,Ri>10KΩ,RF=100 kΩ,并用 multisim 仿真。
三、实验内容1.基本要求内容一:反相输入比例运算电路各项参数测量实验(预习时,查阅 LM324 运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义)。
图 1.1 反相输入比例运算电路 LM324 管脚图1)图 1.1 中电源电压±15V,R1=10kΩ,RF=100 kΩ,RL=100 kΩ,RP=10k//100kΩ。
按图连接电路,输入直流信号 Ui 分别为-2V、-0.5V、0.5V、2V,用万用表测量对应不同 Ui 时的 Uo 值,列表计算 Au 并和理论值相比较。
其中 Ui 通过电阻分压电路产生。
Ui/V Uo/VAu测量值理论值-2 13.365 -6.6825 \-0.5 5.06 -10.12 -100.5 -4.92 -9.84 -102 -13.964 -6.982 \分析:根据数据表格可知,当Ui小于1.5V时,放大倍数与理论值10倍基本一致;当超过1.5V时,如表格中的2V,其放大后的理论值Uo应为-20V,但是由于电源电压为+15V和-15V,根据放大器的性质,不能提供比电源电压更高的电压,所以最大也只能在13-14V,比电源电压略小1-2V。
2)Ui 输入 0.2V(有效值)、 1kHz 的正弦交流信号,在双踪示波器上观察并记录输入输出波形,在输出不失真的情况下测量交流电压增益,并和理论值相比较。
注意此时不需要接电阻分压电路。
可以看到,此时输入电压有效值为215mV,输出电压有效值为2.01V,放大倍数基本上与理论值10倍相符,而且可以看到,此时输出与输入波形相位相反,符合反向放大比例电路的作用。
3)输入信号频率为 1kHz 的正弦交流信号,增加输入信号的幅度,测量最大不失真输出电压值。
此时输入电压的有效值为1.01V,输出电压的有效值为10.0V,仍满足10倍的放大倍数。
但可以看到,输出电压的波峰部分已开始变形,变得较平,说明已经达到了最大不失真的电压值,而随后增大输入电压,观察到输出电压的放大倍数也渐渐小于10倍,说明输出电压有效值为10V时为最大不失真电压。
4)用示波器 X-Y 方式,测量电路电压的传输特性曲线(教师当堂验收),计算传输特性的斜率和转折点值。
注:由于拍摄时使用的是1kHz,所以图像右下角有重影的部分,事实是当调整为100-500Hz时,图像会很清晰,但数据仍然不变,特此说明。
由图可知,输出电压当达到转折点上限13.30V和下限-13.80V时,电压便不再变化,呈现出水平的直线,这表明了最大输出电压需满足低于电源电压1-2V的条件。
同时可以观察到在当输入电压在-1.270V到1.510V之间时,X-Y图像呈现为斜线,通过计算得到斜率为-9.748,这与理论的放大倍数-10十分接近。
5)电源电压改为±12V,重复(3)、(4),并对实验结果进行分析比较。
当电源电压改为正负12V时,理论上最大不失真电压将相应的减小,而X-Y图像中的转折点上下限电压也会相应减小,斜率将会不变,而事实也的确是这样。
此时输入电压的有效值为821mV,输出电压的有效值为8.08V,略微小于10倍的放大倍数。
但可以看到,输出电压的波峰部分已开始变形,变得较平,说明已经达到了最大不失真的电压值,而随后增大输入电压,观察到输出电压的放大倍数也渐渐小于10倍,说明输出电压有效值为8.08V时为最大不失真电压。
注:此时已调整为100Hz,图像很清晰,而且无重影,与之前1kHz的图像形成鲜明对比。
由图可知,输出电压当达到转折点上限10.90V和下限-11.50V时,电压便不再变化,呈现出水平的直线,这表明了最大输出电压需满足低于电源电压1-2V的条件。
同时可以观察到在当输入电压在-1.030V到1.150V之间时,X-Y图像呈现为斜线,通过计算得到斜率为-10.275,这与理论的放大倍数-10十分接近。
斜率基本不变。
6)重新加负载(减小负载电阻 RL),使 RL=220Ω,测量最大不失真输出电压,并和RL=100 kΩ数据进行比较,分析数据不同的原因。
(提示:考虑运算放大器的最大输出电流)。
当RL=220Ω时,此时电源电压为正负15V,测量出来的最大不失真电压有效值为5.58V,比RL=100kΩ的最大不失真电压值10.0V小了将近5V。
原因分析:由于输出电压是通过运放的输出电流乘以负载得到的,但运放是有最大输出电流的限制,这也就意味着当负载很小的时候,运放输出电流达到最大值后,输出电压将会受限。
由LM324的数据表知最大输出电流为60mA,通过计算可知理论上的最大值为13.2V,小于100kΩ时的最大值15V(电源电压),所以实际上也会小于100kΩ时的10.0V。
注:实际使用220Ω的电阻作为负载时,电路工作一段时间后,此电阻产热很大,消耗的功率也很大,比较直观的表示为烫手。
内容二:1)设计一个同相输入比例运算电路,放大倍数为 21,且 RF=100 kΩ。
输入信号保持Ui=0.1Vpp 不变,改变输入信号的频率,在输出不失真的情况下,测出上限频率 fH 并记录此时的输入输出波形,测量两者的相位差,并做简单分析。
此时的输入电压峰峰值为112mV,输出电压峰峰值为2.32V,放大倍数为20.71,与要求的21倍基本一致。
此时的频率为1kHz,下面开始提高频率,测量上限截止频率。
可以看到,当频率提高到71kHz时,输入电压峰峰值为106mV,基本不变;输出电压峰峰值为1.64V,放大倍数为15.5倍,与上限截止频率要求的放大倍数基本一致,而利用multisim仿真中扫频仪可得,上限截止频率大约为50kHz,考虑到理论与实际的误差,结果基本相符。
调整时基旋钮使波形尽可能展开便于测量,通过光标读数和计算可知,相位差为滞后相位由扫频仪的相频曲线仿真可知:理论值为58.921°,与实际测量的结果59.32°非常接近。
2)输入信号为占空比为 50%的双极性方波信号,调整信号频率和幅度,直至输出波形正好变成三角波,记录该点输出电压和频率值,根据转换速率的定义对此进行计算和分析(这是较常用的测量转换速率的方法)。
由转换速率的计算公式得:与数据表上的0.5基本一致。
3)将输入正弦交流信号频率调到前面测得的 fH,逐步增加输入信号幅度,观察输出波形,直到输出波形开始变形(看起来不象正弦波了),记录该点的输入、输出电压值,根据转换速率的定义对此进行计算和分析,并和手册上的转换速率值进行比较。
此时频率为上限截止频率71kHz,输出波形波峰部分较尖,已经不太像正弦波了由转换速率的计算公式得:与数据表上的0.5基本一致。
4)RF 改为 10 kΩ,注意调整 RP 的阻值,重复内容二(1)(2)。
列表比较前后两组数据的差别,从同相比例放大器增益计算、增益带宽积等角度对之进行分析。
并总结在高频应用中该如何综合考虑增益带宽积和转换速率对电路性能的影响。
由计算可知此时放大倍数为3倍。
同上,可以计算出此时的相位差为滞后137.8°。
由转换速率的计算公式得:与数据表上的0.5基本一致。
列表比较电阻RF 上限截止频率fH 相位差(滞后)转换速率100kΩ71kHz 59.32°0.328V/us10kΩ602.4kHz 137.8°0.454V/us可以看出,当电阻为10kΩ时,上限截止频率、相位差和转换速率都比电阻为100 kΩ时大。
由于LM324的增益带宽积为1.2MHz,这也就意味着增益和带宽的乘积的最大值为1.2MHz,放大倍数越小,增益带宽越大。
如果超过该数值,增益的倍数就会相应减小。
通过计算得到的增益带宽积基本与1.2MHz一致。
内容三:设计电路满足以下加法运算关系(预习时设计好电路图,并用Multisim软件仿真) :Ui1接入方波信号,方波信号从示波器的校准信号获取(模拟示波器的校准信号为1KHz、1V(峰峰值)的方波信号,数字示波器的校准信号为1KHz、5V (峰峰值)的方波信号),Ui2 接入5kHz,0.1V(峰峰值)的正弦信号,用示波器观察输出电压Uo的波形,画出波形图并与理论值比较。
实验中如波形不稳定,可微调Ui2的频率。
通过仿真可得:通过示波器显示为:通过比较,数据基本一致,并且符合题意。
2.提高要求设计一个运算电路,满足运算公式1)写出具体的设计过程,比例、积分、微分的系数可以有所不同,请考虑不同的系数对设计输出有何影响?考虑到PID各波形幅度对整体波形的影响,此处调整了PID的系数,调整为2)分别观察比例-积分,比例-微分,积分-微分,比例-积分-微分运算电路的波形,并进行分析比较,各算式系数对波形的影响。
比例-积分(PI)比例-微分(PD)积分-微分(ID)比例-积分-微分(PID)PID各部分影响:比例:使波形呈现双极性方波形态积分:使波形呈现三角波形态微分:使波形呈现上下振荡衰减且频率高的三角波形态四、实验总结1.模电第一个实验,从着手设计到现在完成报告,前前后后花了两周时间,也从这里面学到不少。
2.以上所有内容均为原创,包括设计的模板,照着老师的PDF实验要求,依葫芦画瓢,一条一条排版,从这里面也自学到了不少word方面排版的知识。