行测数算八大类数列及变式总结
- 格式:doc
- 大小:208.50 KB
- 文档页数:5
数字推理:八大类数列及变式总结数字推理:八大类数列及变式总结数字推理的题目通常状况下是给出一个数列,但整个数列中缺少一个项,要求仔细观察这个数列各项之间的关系,判断其中的规律。
解题关键:1、培养数字、数列敏感度是应对数字推理的关键。
2、熟练掌握各类基本数列。
3、熟练掌握八大类数列,并深刻理解“变式”的概念。
4、进行大量的习题训练,自己总结,再练习。
下面是八大类数列及变式概念。
例题是帮助大家更好的理解概念,掌握概念。
虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。
最后跟大家说,做再多的题,没有总结,那样是不行的。
只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。
一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。
例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。
例题1:9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1:0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2:20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
数列的分类与变形数列是离散数学中一种基本的数学对象,指由一组按照一定的规律排列的数构成的序列。
数列的分类与变形是数学中非常重要的一部分,它能够帮助我们更加深入地认识数列以及数学本身,并且为我们解决一些实际问题提供了很好的思路和方法。
一、数列的分类数列可以根据其规律和性质进行分类。
其中,最基本的分类方法就是按照数列的公式进行划分。
按照这种方法,数列可以分为等差数列、等比数列、等差几何数列等。
1. 等差数列等差数列是指数列中每一项与前一项之间的差值都相等的数列。
其中,相等的差值称为等差数列的公差,用d表示。
等差数列的通项公式为:an = a1 + (n-1)d其中,a1表示等差数列的首项,n表示等差数列的项数。
2. 等比数列等比数列是指数列中每一项与前一项之间的比值都相等的数列。
其中,相等的比值称为等比数列的公比,用q表示。
等比数列的通项公式为:an = a1 * q^(n-1)其中,a1表示等比数列的首项,n表示等比数列的项数。
3. 等差几何数列等差几何数列是指数列中既是等差数列,又是等比数列的特殊数列。
等差几何数列的通项公式为:an = a1 + (n-1)d*q^(n-1)其中,a1表示等差几何数列的首项,d表示等差数列的公差,q 表示等比数列的公比,n表示等差几何数列的项数。
二、数列的变形数列的变形指的是利用某些数学方法,对数列进行转化,得到一个新的数列。
下面,我们介绍几种常见的数列变形:1. 数列求和数列求和是将数列中所有项的和求出来的过程。
其中,通常将数列的和记作Sn。
对于等差数列而言,Sn = n * (a1+an)/2对于等比数列而言,当q≠1时,Sn = a1 * (1-q^n)/(1-q)当q=1时,Sn = n * a1对于一些特殊的数列,由于其求和公式具有明显的规律性,我们可以利用这些规律性的数学方法,求出数列的和。
2. 数列求导数列求导是对数列进行求导的过程。
通过对数列求导,我们可以获取数列中各项的增长率,以及数列中某些特定数值的变化趋势等。
常用数学公式汇总一、基础代数公式1. 平方差公式:(a +b )·(a -b )=a 2-b 22. 完全平方公式:(a±b )2=a 2±2ab +b23. 完全立方公式:(a ±b)3=(a±b)(a 2 ab+b 2)4. 立方和差公式:a 3+b 3=(a ±b)(a 2+ ab+b 2) 5. a m·a n=a m +na m ÷a n =a m -n (a m )n =a mn (ab)n =a n ·b n二、等差数列 (1)s n =2)(1n a a n +⨯=na 1+21n(n-1)d ;(2)a n =a 1+(n -1)d ;(3)项数n =da a n 1-+1; (4)若a,A,b 成等差数列,则:2A =a+b ; (5)若m+n=k+i ,则:a m +a n =a k +a i ;(6)前n 个奇数:1,3,5,7,9,…(2n —1)之和为n 2(其中:n 为项数,a 1为首项,a n 为末项,d 为公差,s n 为等差数列前n 项的和) 三、等比数列 (1)a n =a 1qn -1;(2)s n =qq a n -11 ·1)-((q ≠1)(3)若a,G,b 成等比数列,则:G 2=ab ; (4)若m+n=k+i ,则:a m ·a n =a k ·a i ; (5)a m -a n =(m-n)d (6)nma a =q (m-n) (其中:n 为项数,a 1为首项,a n 为末项,q 为公比,s n 为等比数列前n 项的和) 四、不等式(1)一元二次方程求根公式:ax 2+bx+c=a(x-x 1)(x-x 2)其中:x 1=a ac b b 242-+-;x 2=aac b b 242---(b 2-4ac ≥0)根与系数的关系:x 1+x 2=-a b ,x 1·x 2=a c(2)ab b a 2≥+ ab b a ≥+2)2( ab b a 222≥+ abc c b a ≥++3)3( (3)abc c b a 3222≥++ abc c b a 33≥++推广:n n n x x x n x x x x ......21321≥++++(4)一阶导为零法:连续可导函数,在其内部取得最大值或最小值时,其导数为零。
省考数字推理⼋⼤类数列及变式2⼀、数字推理题型的7种类型28种形式数字推理由题⼲和选项两部分组成,题⼲是⼀个有某种规律的数列,但其中缺少⼀项,要求考⽣仔细观察这个数列各数字之间的关系,找出其中的规律,然后从四个供选择的答案中选出你认为最合适、最合理的⼀个,使之符合数列的排列规律。
其不同于其他形式的推理,题⽬中全部是数字,没有⽂字可供应试者理解题意,真实地考查了应试者的抽象思维能⼒。
第⼀种情形----等差数列:是指相邻之间的差值相等,整个数字序列依次递增或递减的⼀组数。
1、等差数列的常规公式。
设等差数列的⾸项为a1,公差为d ,则等差数列的通项公式为an=a1+(n-1)d (n为⾃然数)。
[例1]1,3,5,7,9,() A.7 B.8 C.11 D.13[解析] 这是⼀种很简单的排列⽅式:其特征是相邻两个数字之间的差是⼀个常数。
从该题中我们很容易发现相邻两个数字的差均为2,所以括号内的数字应为11。
故选C。
2、⼆级等差数列。
是指等差数列的变式,相邻两项之差之间有着明显的规律性,往往构成等差数列.[例2] 2, 5, 10, 17, 26, ( ), 50 A.35 B.33 C.37 D.36[解析] 相邻两位数之差分别为3, 5, 7, 9,是⼀个差值为2的等差数列,所以括号内的数与26的差值应为11,即括号内的数为26+11=37.故选C。
3、分⼦分母的等差数列。
是指⼀组分数中,分⼦或分母、分⼦和分母分别呈现等差数列的规律性。
[例3] 2/3,3/4,4/5,5/6,6/7,()A、8/9B、9/10C、9/11D、7/8[解析] 数列分母依次为3,4,5,6,7;分⼦依次为2,3,4,5,6,故括号应为7/8。
故选D。
4、混合等差数列。
是指⼀组数中,相邻的奇数项与相邻的偶数项呈现等差数列。
[例4] 1,3,3,5,7,9,13,15,,(),()。
A、19 21B、19 23C、21 23D、27 30[解析] 相邻奇数项之间的差是以2为⾸项,公差为2的等差数列,相邻偶数项之间的差是以2为⾸项,公差为2的等差数列。
公务员考试:八大类数列及变式总结一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。
例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。
例题1:9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1:0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2:20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1:1,9,18,29,43,61,()解析:9-1=8,18-9=9,29-18=11,43-29=14,61-43=18,……二级特征不明显9-8=1,11-9=2,14-11=3,18-14=4,……三级为公差为1的等差数列例题2.:1,4,8,14,24,42,()解析:4-1=3,8-4=4,14-8=6,24-14=10,42-24=18,……二级特征不明显4-3=1,6-4=2,10-6=4,18-10=8,……三级为等比数列例题3:(),40,23,14,9,6解析:40-23=17,23-14=9,14-9=5,9-6=3,……二级特征不明显17-9=8,9-5=4,5-3=2,……三级为等比数列三、等比数列1,等比数列:后一项与前一项的比为固定的值叫做等比数列例题:36,24,()32/3,64/9解析:公比为2/3的等比数列。
行政能力测试数字推理小结数字推理考察的是对数字的理解和对数字之间关系的洞察力。
现总结规律如下:1、混二级等差数列:一般不会考最简单的等差数列,而是考前后项的和、差、积、商成等差数列,在这里我称之为混二级等差数列。
例如:2,4,12,48,(240),又如:1,1,2,6,(24)。
此数列的后项除以前项的商成等差数列。
2、三级等差数列:数列前后项的差算第一级,相邻差的差算第二级,相邻差的差的差算第三级,第三级的数列成等差,就算三级等差数列了。
这类数列有点难度,光看是看不出来的。
这样的数列一般给出的项也比较多,6个左右。
例如:1,3,6,12,25,51,(98)。
再加上点变化,那就更难了。
3、和数列的变式:和数列也叫斐波那契数列,就是数列的某项是前几项的和。
基于这类数列的特征,所以给出的项一般在6个以上。
例如:0,1,1,2,4,7,13,(24)。
这个数列的第四项就是前3项的和。
另一种变式就是这样的,例如:1,2,5,12,29,70,(1 69)。
这个数列的第三项就是第二项的2倍+第一项。
4、幂数列:这类数列的特征比较明显:基于幂函数的特点,给出的项比较少,一般4个,数列项的大小变化幅度有突越。
例如:0,3,26,255,(3124)。
N的N次-1,就是这个数列的通项了。
5、质数数列:这类数列比较简单,就是给出的项都是质数,选项中只有一个质数满足条件。
例如:2,3,7,11,17,(41)。
6、分项函数:这类函数特点也比较明显,一般给出的项比较多,需要2项一组,3项一组分开考虑,故取名分项函数。
例如:2,3,5,4,5,9,6,9,15,3,17,(20)。
也有变式的,例如:1,4,3,5,2,6,4,7,(3)。
这个数列的第2、4、6、8项分别是其前后项的和。
7、奇偶数列:这类数列给出的数较多,需填两空,奇偶需分别对待。
例如:1,3,3,5,7,9,13,15,(21),(23)。
8、多层组合数列:由简单的数列多层组合的复杂数列。
行测数量关系知识点汇总一、数字推理。
1. 基础数列。
- 等差数列:相邻两项的差值相等,例如:1,3,5,7,9,…,公差为2。
- 等比数列:相邻两项的比值相等,例如:2,4,8,16,32,…,公比为2。
- 质数数列:由质数组成的数列,如2,3,5,7,11,13,…- 合数数列:由合数组成的数列,如4,6,8,9,10,12,…- 周期数列:数列中的数字按照一定的周期重复出现,例如:1,2,1,2,1,2,…- 简单递推数列。
- 递推和数列:如1,2,3,5,8,13,…,从第三项起,每一项等于前两项之和。
- 递推差数列:如5,3,2,1,1,0,…,从第三项起,每一项等于前两项之差。
- 递推积数列:如1,2,2,4,8,32,…,从第三项起,每一项等于前两项之积。
- 递推商数列:如100,50,2,25,1/12.5,…,从第三项起,每一项等于前两项之商。
2. 多级数列。
- 做差多级数列。
- 对于数列不具有明显规律时,可先尝试做差。
例如数列:5,7,10,14,19,…,相邻两项做差得到2,3,4,5,…,是一个公差为1的等差数列。
- 做商多级数列。
- 当数列各项之间有明显的倍数关系时,可尝试做商。
如数列:2,4,12,48,240,…,相邻两项做商得到2,3,4,5,…,是一个公差为1的等差数列。
- 做和多级数列。
- 有些数列做和后会呈现出规律。
例如数列:1,2,3,4,7,11,…,相邻两项做和得到3,5,7,11,18,…,得到的新数列可能是质数数列或者其他有规律的数列。
- 做积多级数列。
- 数列中相邻项之间有乘积关系时适用。
比如数列:1,2,2,4,8,32,…,相邻两项做积得到2,4,8,32,256,…,做积后得到的数列可能有自身规律。
3. 幂次数列。
- 基础幂次数列。
- 要牢记常见的幂次数:1^2 = 1,2^2=4,3^2 = 9,4^2=16,5^2 = 25,6^2=36,7^2 = 49,8^2=64,9^2 = 81,10^2 = 100;1^3=1,2^3 = 8,3^3=27,4^3 = 64,5^3=125,6^3 = 216,7^3=343,8^3 = 512,9^3 = 729,10^3=1000等。
等差数列及其变式一、基本等差数列【例】1,4,7,10,l 3,l 6,19,22,25,…【例1】(2007黑龙江,第8题)11,12,15,20,27,( ) A.32 B.34 C.36 D.38【答案】C【解题关键点】【例2】(2002国家,B类,第3题)32,27,23,20,18,( ) A.14 B.15 C.16 D.1 7【答案】D【解题关键点】【例3】(2002国家,B类,第5题)-2,1,7,16,( ),43 A.25 B.28 C.31 D.35【答案】B【解题关键点】【例】3,6,11,( ),27A.15 B.18 C.19 D.24【答案】 B【解题关键点】二级等差数列。
(1)相邻两项之差是等比数列【例】0,3,9,21,( ),93A.40 B.45 C. 36 D.38【答案】B【解题关键点】二级等差数列变式(2)相邻两项之差是连续质数【例】11,13,16,21,28,( )A.37 B.39 C.41 D.47【答案】B【解题关键点】二级等差数列变式(3)相邻两项之差是平方数列、立方数列【例】1,2,6,15,()A.19B.24C.31D.27【答案】C【解题关键点】数列特征明显单调且倍数关系不明显,优先做差。
得到平方数列。
如图所示,因此,选C(4)相邻两项之差是和数列【例】2, 1, 5, 8, 15, 25, ( )A.41B.42C.43D.44【答案】B【解题关键点】相邻两项之差是和数列(5)相邻两项之差是循环数列【例】1,4,8,13,16,20,( )A. 20B. 25C. 27D. 28【答案】B【解题关键点】该数列相邻两数的差成3,4,5一组循环的规律,所以空缺项应为20+5=25,故选B。
【结束】【例】(2009年中央机关及其直属机构公务员录用考试行测真题)1,9,35,91,189,( ) A.361 B.341 C.321 D.301【答案】B【解题关键点】原数列后项减前项构成数列8,26,56,98,( ),新数列后项减前项构成数列18,30,42,(54),该数列是公差为12的等差数列,接下来一项为54,反推回去,可得原数列的空缺项为54+98+189=341,故选B。
数列总结数列形式:等差数列、等比数列、和数列、积数列、多次方数列、(及其变式)、分式数列、组合数列、整数拆分数列、创新数列。
一、等差数列1、定义:前后项之差等于常数。
,,二级等差数列:一次作差。
三级等差数列:两次作差。
2、变式:持续作差,含减法运算的递推数列;两项分别变换后相减得第三项;两项变换后相减得第三项。
3、特征:数列中出现质数、含0、单调增减或增减交替。
二、等比数列1、定义:相邻项作商后呈规律。
,二级等比数列: 一次作商。
三级等比数列:二次作商。
2、数列变式:二级等比数列变式。
前项倍数+常数(基本数列)=后项。
3、特征:良好的整除性,单调递增(减)、先增后减。
三、和数列1、定义:项与项间作和,寻求规律。
两项和数列:前两项之和等于第三项。
三项和数列:前三项之和等于第四项。
2、数列变式:(第一项+第二项)×常数(基本数列)=第三项。
第一项+第二项+常数(基本数列)=第三项。
第一项×常数+第二项×常数=第三项。
3、特征:数项偏小,数列整体趋势不明,非单调。
四、积数列1、定义:项与项之间作积,寻求规律。
两项积数列:前两项乘积等于第三项。
三项积数列:前三项乘积等于第四项。
2、变式:相邻项作积后变化得后项。
两项积+常数(基本数列)=第三项。
两项积构成基本数列。
3、特征:两项积数列:1,A,A〃〃〃〃,数列递增(减)明显。
五、多次方数列1、定义:数列呈多次方数,底数、指数各具规律。
平方数列:数列逐项可改为平方数,底数呈规律。
立方数列:数列逐项可改为立方数,底数呈规律。
多次方数列:数列各项可以改为指数、底数均不同的数列,底数、指数分别具有规律。
2、变式:多次方数+常数。
多次方数×常数(基本数列),通常会有0。
第一项的平方(立方)±第二项=第三项。
要点:对各项进行多次方改写,并加入常数后运算得原数列。
数字1为非零数的0次方,分数可写成-1次方3、特征:数列增幅明显、选项数字大。
行测数算八大类数列及变式总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-八大类数列及变式总结数字推理的题目通常状况下是给出一个数列,但整个数列中缺少一个项,要求仔细观察这个数列各项之间的关系,判断其中的规律。
解题关键:1,培养数字、数列敏感度是应对数字推理的关键。
2,熟练掌握各类基本数列。
3,熟练掌握八大类数列,并深刻理解“变式”的概念。
4,进行大量的习题训练,自己总结,再练习。
下面是八大类数列及变式概念。
例题是帮助大家更好的理解概念,掌握概念。
虽然这些理论概念是从教材里得到,但是希望能帮助那些没有买到教材,那些只做大量习题而不总结的朋友。
最后跟大家说,做再多的题,没有总结,那样是不行的。
只有多做题,多总结,然后把别人的理论转化成自己的理论,那样做任何的题目都不怕了。
谢谢!一、简单数列自然数列:1,2,3,4,5,6,7,……奇数列:1,3,5,7,9,……偶数列:2,4,6,8,10,……自然数平方数列:1,4,9,16,25,36,……自然数立方数列:1,8,27,64,125,216,……等差数列:1,6,11,16,21,26,……等比数列:1,3,9,27,81,243,……二、等差数列1,等差数列:后一项减去前一项形成一个常数数列。
例题:12,17,22,27,(),37解析:17-12=5,22-17=5,……2,二级等差数列:后一项减去前一项形成一个新的数列是一个等差数列。
例题1: 9,13,18,24,31,()解析:13-9=4,18-13=5,24-18=6,31-24=7,……例题2.:66,83,102,123,()解析:83-66=17,102-83=19,123-102=21,……3,二级等差数列变化:后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1: 0,1,4,13,40,()解析:1-0=1,4-1=3,13-4=9,40-13=27,……公比为3的等比数列例题2: 20,22,25,30,37,()解析:22-20=2,25-22=3,30-25=5,37-30=7,…….二级为质数列4,三级等差数列及变化:后一项减去前一项形成一个新的数列,再在这个新的数列中,后一项减去前一项形成一个新的数列,这个新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1: 1,9,18,29,43,61,()解析:9-1=8,18-9=9,29-18=11,43-29=14,61-43=18,……二级特征不明显9-8=1,11-9=2,14-11=3,18-14=4,……三级为公差为1的等差数列例题2.:1,4,8,14,24,42,()解析:4-1=3,8-4=4,14-8=6,24-14=10,42-24=18,……二级特征不明显4-3=1,6-4=2,10-6=4,18-10=8,……三级为等比数列例题3:(),40,23,14,9,6解析:40-23=17,23-14=9,14-9=5,9-6=3,……二级特征不明显17-9=8,9-5=4,5-3=2,……三级为等比数列三、等比数列1,等比数列:后一项与前一项的比为固定的值叫做等比数列例题:36,24,()32/3,64/9解析:公比为2/3的等比数列。
2,二级等比数列变化:后一项与前一项的比所得的新的数列可能是自然数列、等比数列、平方数列、立方数列、或者与加减“1”、“2”的形式有关。
例题1:1,6,30,(),360解析:6/1=6,30/6=5,()/30=4,360/()=3,……二级为等差数列例题2:10,9,17,50,()解析:1*10-1=9,2*9-1=18,3*17-1=50,……例题3:16,8,8,12,24,60,()解析:8/16=,8/8=1,12/8=,24/12=2,60*24=,……二级为等差数列例题4:60,30,20,15,12,()解析:60/30=2/1,30/20=3/2,20/15=4/3,15/12=5/4,……重点:等差数列与等比数列是最基本、最典型、最常见的数字推理题型。
必须熟练掌握其基本形式及其变式。
四、和数列1,典型(两项求和)和数列:前两项的加和得到第三项。
例题1:85,52,(),19,14解析:85=52+(),52=()+19,()=19+14,……例题2:17,10,(),3,4,-1解析:17-10=7,10-7=3,7-3=4,3-4=-1,……例题3:1/3,1/6,1/2,2/3,()解析:前两项的加和得到第三项。
2,典型(两项求和)和数列变式:前两项的和,经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者是每两项的和与项数之间具有某种关系。
例题1:22,35,56,90,(),234解析:前两项相加和再减1得到第三项。
例题2:4,12,8,10,()解析:前两项相加和再除2得到第三项。
例题3:2,1,9,30,117,441,()解析:前两项相加和再乘3得到第三项。
3,三项和数列变式:前三项的和,经过变化之后得到第四项,这种变化可能是加、减、乘、除某一常数;或者是每两项的和与项数之间具有某种关系。
例题1:1,1,1,2,3,5,9,()解析:前三项相加和再减1得到第四项。
例题2:2,3,4,9,12,25,22,()解析:前三项相加和得到自然数平方数列。
例题:-4/9,10/9,4/3,7/9,1/9,()解析:前三项相加和得到第四项。
五、积数列1,典型(两项求积)积数列:前两项相乘得到第三项。
例题:1,2,2,4,(),32解析:前两项相乘得到第三项。
2,积数列变式:前两项相乘经过变化之后得到第三项,这种变化可能是加、减、乘、除某一常数;或者是每两项的乘与项数之间具有某种关系。
例题1:3/2,2/3,3/4,1/3,3/8,()解析:两项相乘得到1,1/2,1/4,1/8,……例题2:1,2,3,35,()解析:前两项的积的平方减1得到第三项。
例题3:2,3,9,30,273,()解析:前两项的积加3得到第三项。
六、平方数列1,典型平方数列(递增或递减)例题:196,169,144,(),100解析:14立方,13立方,……2,平方数列变式:这一数列特点不是简单的平方或立方数列,而是在此基础上进行“加减乘除”的变化。
例题1:0,5,8,17,(),37解析:0=12-1,5=22+1,8=32-1,17=42+1,()=52-1,37=62+1例题2:3,2,11,14,27,()解析:12+2,22-2,32+2,42-2,52+2,……例题3:,2,9/2,8,()解析:等同于1/2,4/2,9/2,16/2,分子为12,22,32,42,……例题4:17,27,39,(),69解析:17=42+1,27=52+2,39=62+3,……3,平方数列最新变化------二级平方数列例题1:1,4,16,49,121,()解析:12,22,42,72,112,……二级不看平方1,2,3,4,……三级为自然数列例题2:9,16,36,100,()解析:32,42,62,102,……二级不看平方1,2,4,……三级为等比数列]七、立方数列1,典型立方数列(递增或递减):不写例题了。
2,立方数列变化:这一数列特点不是简单的立方数列,而是在此基础上进行“加减乘除”的变化。
例题1:0,9,26,65,124,()解析:项数的立方加减1的数列。
例题2:1/8,1/9,9/64,(),3/8解析:各项分母可变化为2,3,4,5,6的立方,分之可变化为1,3,9,27,81例题3:4,11,30,67,()解析:各项分别为立方数列加3的形式。
例题4:11,33,73,(),231解析:各项分别为立方数列加3,6,9,12,15的形式。
例题5:-26,-6,2,4,6,()解析:(-3)3+1,(-2)3+2,(-1)3+3,(0)3+4,(1)3+5,……八、组合数列1,数列间隔组合:两个数列(七种基本数列的任何一种或两种)进行分隔组合。
例题1:1,3,3,5,7,9,13,15,(),()解析:二级等差数列1,3,7,13,……和二级等差数列3,5,9,15,……的间隔组合。
例题2:2/3,1/2,2/5,1/3,2/7,()解析:数列2/3,2/5,2/7和数列1/2,1/3,……的间隔组合。
2,数列分段组合:例题1:6,12,19,27,33,(),48解析: 6 7 8 6 () 8例题2:243,217,206,197,171,(),151解析: 26 11 9 26 () 9特殊组合数列:例题1:,,,,()解析:整数部分为和数列1,2,3,5,……小数部分为等比数列,,,……九、其他数列1,质数列及其变式:质数列是一个非常重要的数列,质数即只能被1和本身整除的数。
例题1:4,6,10,14,22,()解析:各项除2得到质数列2,3,5,7,11,……例题2:31,37,41,43,(),53解析:这是个质数列。
2,合数列:例题:4,6,8,9,10,12,()解析:和质数列相对的即合数列,除去质数列剩下的不含1的自然数为合数列。
3,分式最简式:例题1:133/57,119/51,91/39,49/21,(),7/3解析:各项约分最简分式的形式为7/3。
例题2:105/60,98/56,91/52,84/48,(),21/12解析:各项约分最简分式的形式为7/4。