一次函数的性质
- 格式:docx
- 大小:107.54 KB
- 文档页数:4
一次函数图像的性质
一次函数图像的性质是什么?
答:一次函数图像性质总结如下:
1、y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线):当k>0时,直线必通过一、三象限,y随x的增大而增大。
当k<0时,直线必通过二、四象限,y随x的增大而减小。
2、y=kx+b(k,b为常数,k≠0)时:
当k>0,b>0,这时此函数的图象经过一、二、三象限。
当k>0,b<0,这时此函数的图象经过一、三、四象限。
当k<0,b>0,这时此函数的图象经过一、二、四象限。
当k<0,b<0,这时此函数的图象经过二、三、四象限。
当b>0时,直线必通过一、二象限。
当b<0时,直线必通过三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。
当k<0时,直线只通过二、四象限,不会通过一、三象限。
3、直线y=kx+b中k、b的关系:
k>0,b>0:经过第一、二、三象限。
k>0,b<0:经过第一、三、四象限。
k>0,b=0:经过第一、三象限(经过原点)。
结论:k>0时,图象从左到右上升,y随x的增大而增大。
k<0,b>0:经过第一、二、四象限。
k<0,b<0:经过第二、三、四象限。
k<0,b=0:经过第二、四象限(经过原点)。
结论:k<0时,图象从左到右下降,y随x的增大而减小。
一次函数的图象和性质【知识要点】1.一次函数的概念:函数y=kx +b (k ,b 为常数,k ≠0)叫做x 的一次函数。
学习这个定义应明确下面几点:函数y=kx +b (k ≠0)中b 可以为任意常数,当b=0时,一次函数y=kx +b 就成y=kx (k 为常数,且(k ≠0)),这时y 叫做x 的正比例函数,也可以说y 与x 成正比例,常数k 叫做因变量y 与自变量x 的比例系数.因此正比例函数是一次函数的特例,但一次函数不一定是正比例函数。
2.一次函数的图像:一次函数y =kx +b (k ≠0)的图像是一条与坐标轴斜交的直线。
因此,只需求出直线y =kx +b 上的两点,就可得到它。
一般,作正比例函数y =kx 的图像常取点(0,0)和(1,k );作一次函数)0(≠+=b b kx y 的图像常取(b ,0)和(0,k b-)两点,这两点是直线与坐标轴的交点。
3.一次函数的性质:(1)参数k 、b 的意义和对一次函数y =kx +b 的图像与性质的影响。
当k>0时,图像一定过一、三象限,y 随x 的增大而增大,这时函数的图像从左到右呈上升趋势;当k<0时,图像一定过二、四象限,y 随x 的增大而减小,这时函数的图像从左到右呈下降趋势;(因此,k 的符号与直线的方向、函数的增减性是相互决定的。
)(2)b 是一次函数y =kx +b 中,当x =0时所对应的函数值,因此直线y =kx +b 与y 轴交于点(0,b ),b 是直线y =kx +b 与y 轴上的交点的纵坐标,所以,b 的符号和直线与y 轴交点位置是相互对应的。
(3)k 、b 的符号对直线位置的影响:【小试牛刀】 1、一个正比例函数y kx=的图象经过点A (-2,4),写出这个正比例函数的表达式 .2、一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( ) A.摩托车比汽车晚到1 h B. A , B 。
一次函数的性质一次函数y=kx+b (k≠0) k>0,b>0,则图象过1,2,3象限k>0,b<0,则图象过1,3,4象限k<0,b>0,则图象过1,2,4象限k<0,b<0,则图象过2,3,4象限当k>0时,y随x的增大而增大;图像经过一、三象限当k<0时,y随x的增大而减小;图像经过二、四象限二次函数y=ax^2+bx+ca>0开口向上a<0开口向下a,b同号,对称轴在y轴左侧,反之,再y轴右侧|x1-x2|=根号下b^2-4ac除以|a|与y轴交点为(0,c)b^2-4ac>0,ax^2+bx+c=0有两个不相等的实根b^2-4ac<0,ax^2+bx+c=0无实根b^2-4ac=0,ax^2+bx+c=0有两个相等的实根对称轴x=-b/2a顶点(-b/2a,(4ac-b^2)/4a)顶点式y=a(x+b/2a)^2+(4ac-b^2)/4a函数向左移动d(d>0)个单位,解析式为y=a(x+b/2a+d)^2+(4ac-b^2)/4a,向右就是减函数向上移动d(d>0)个单位,解析式为y=a(x+b/2a)^2+(4ac-b^2)/4a+d,向下就是减正比例函数与反比例函数形如y=kx(k为常数,且k不等于0),y就叫做x的正比例函数.图象做法:1.带定系数2.描点3.连线图象是一条直线,一定经过坐标轴的原点性质:当k>0时,图象经过一,三象限,y随x的增大而增大当k<0时,图象经过二,四象限,y随x的增大而减小形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。
它可以无限地接近坐标轴,但永不相交.性质:当k>0时,图象在一,三象限,在每个象限内,y随x的增大而减小,当k<0时,图象在二,四象限,在每个象限内,y随x的增大而增大.一次函数是有规律的:一、定义:如果y=kx+b(k、b是常数且k不等于0),那么y叫做x 的一次函数。
一次函数的基本概念与性质解析一次函数,也称为线性函数,是数学中的基础概念之一。
它是一个关于自变量x的一次多项式的函数,通常可以表示为f(x) = ax + b,其中a和b是常数。
在本文中,我们将通过分析一次函数的基本概念和性质来深入了解它的特点和应用。
一、一次函数的定义一次函数是指函数的最高次数为1的多项式函数。
它的一般形式为f(x) = ax + b。
其中,a称为斜率,代表了函数图像的斜率大小和方向;b称为截距,代表了函数图像与y轴交点的位置。
二、一次函数的图像特征1. 直线特征:一次函数的图像通常是一条直线,斜率a决定了直线的斜率大小和方向,当a>0时,图像呈正斜率(向上);当a<0时,图像呈负斜率(向下);当a=0时,图像平行于x轴。
2. 截距特征:截距b决定了直线与y轴的交点,也就是函数图像在y轴上的纵坐标。
3. 增减性特征:当斜率a>0时,随着自变量x的增加,函数值f(x)也随之增加;当斜率a<0时,随着自变量x的增加,函数值f(x)则减小。
三、一次函数的性质1. 直线的斜率:一次函数的斜率a可以通过直线上两点的纵坐标之差与横坐标之差的比值计算得到。
2. 直线与坐标轴的交点:斜率为a,截距为b的直线与x轴的交点为(-b/a, 0),与y轴的交点为(0, b)。
3. 直线的平行与垂直关系:两条直线平行的条件是它们的斜率相等;两条直线垂直的条件是它们的斜率的乘积为-1。
4. 自变量与函数值之间的关系:对于一次函数,自变量x的取值决定了函数值f(x)的取值,可以通过给定x的值来推算出对应的函数值。
5. 零点的求解:一次函数的零点即为满足f(x) = 0的x值,通常可以通过解方程ax + b = 0来求解。
四、一次函数的应用一次函数在实际应用中具有广泛的用途,例如经济学中的成本函数和收入函数、物理学中的速度和位移关系、工程学中的线性拟合等。
通过对一次函数的分析和运用,可以帮助我们处理和解决实际问题。
数学知识点一次函数的定义和性质一次函数的定义和性质一次函数是数学中常见的函数形式,其定义和性质对于数学学习和实际应用有着重要的意义。
本文将重点介绍一次函数的定义、图像特点、斜率和截距等方面的性质。
一、定义一次函数,又被称为线性函数,是指函数的最高次幂项为一次幂的函数。
一次函数的一般形式为:f(x) = ax + b,其中,a和b是常数,a为函数的斜率,b为函数的截距。
二、图像特点一次函数的图像呈现为一条直线,具有以下特点:1. 直线的斜率决定了直线的倾斜程度,斜率为正值表示直线向右上方倾斜,斜率为负值表示直线向右下方倾斜,斜率为零表示直线水平。
2. 直线的截距表示了直线和y轴的交点位置,当截距为正值时,直线在y轴的上方,当截距为负值时,直线在y轴的下方,截距为零时,直线经过原点(0,0)。
三、斜率的性质一次函数的斜率是函数的重要属性,具有以下性质:1. 斜率为正表示函数图像呈现上升趋势,斜率越大,上升趋势越陡峭;斜率为负表示函数图像呈现下降趋势,斜率越小,下降趋势越陡峭。
2. 斜率为零表示函数图像是水平的,此时函数的增减性为不变,图像在横轴上水平延伸。
3. 两条平行直线的斜率相等。
四、截距的性质一次函数的截距也是其重要的性质,具有以下特点:1. y轴截距表示函数图像和y轴的交点位置,当截距为正值时,直线在y轴的上方,当截距为负值时,直线在y轴的下方,截距为零时,直线经过原点(0,0)。
2. x轴截距表示函数图像和x轴的交点位置,即当f(x)=0时,解得的x值。
五、一次函数的应用一次函数的应用非常广泛,特别是在实际问题中,如直线运动、成本、利润等方面。
通过建立一次函数模型,可以帮助我们分析和解决问题。
六、总结通过对一次函数的定义和性质的介绍,我们了解到一次函数是以一次幂为最高幂的函数形式,其图像是一条直线。
函数的斜率决定了直线的倾斜程度,而截距则表示了直线与坐标轴的交点位置。
一次函数在数学学习和实际应用中起着重要的作用。
15一次函数的图像与性质1.图像特点:一次函数的图像是一条直线,它经过原点(0,0)。
直线的斜率k可以表示函数的性质,决定了直线的倾斜程度和方向。
当k大于0时,直线向右上方倾斜;当k小于0时,直线向右下方倾斜;当k等于0时,直线平行于x轴。
2.变化趋势:一次函数的变化趋势与自变量x的变化直接相关。
当x变大时,若k大于0,则y也会增大;若k小于0,则y会减小。
反之,当x变小时,则y的变化情况也相应地相反。
由此可见,一次函数的图像呈现出一个直线,且变化趋势具有确定性。
3.斜率性质:斜率k是一次函数的重要性质,它表示了函数图像的倾斜程度和方向。
一次函数的斜率有以下几个关键性质:-当k大于0时,函数图像是向上倾斜的,即从左下向右上。
斜率越大,直线越陡峭。
-当k小于0时,函数图像是向下倾斜的,即从左上向右下。
斜率越小,直线越平缓。
-当k等于0时,函数图像是平行于x轴的水平直线。
4.截距性质:一次函数还有一个重要的性质是截距。
截距表示了一条直线与y轴的交点,记作(0,b)。
对于一次函数y=kx来说,截距b等于函数在x=0处的取值,即b=k*0=0。
因此,一次函数经过原点(0,0),并且与y轴没有交点。
5.定比关系:一次函数的数值关系具有一种特殊的定比关系。
对于一次函数y=kx来说,当x增大或减小时,y的值与x的比值始终保持不变,即y/x=k。
这称为一次函数的定比关系,可以用来解决一些实际问题,如单位换算、速度、密度等概念的计算。
6.定义域和值域:一次函数的定义域为所有实数集R,即函数在实数范围内都有定义。
值域则取决于斜率k的正负。
当k大于0时,一次函数的值域是(0,+∞);当k小于0时,值域是(-∞,0)。
由于一次函数的图像是直线,所以图像在纵轴方向上没有上下界限。
7.相关性质:一次函数的图像与直线的性质有密切关联,因为一次函数的图像就是一根直线。
因此,一次函数也具有直线的一些基本性质,如:-一次函数的斜率等于直线的斜率。
书山有路勤为径;学海无涯苦作舟
今天的努力是为了明天的幸福一次函数的性质
【编者按】快乐学习尽在初中频道(点点试试)函数性质:
1.y 的变化值与对应的x 的变化值成正比例,比值为k.K 为常数.
即:y=kx+b(k,b 为常数,k≠0),
∵当x 增加m,k(x+m)+b=y+km,km/m=k。
2.当x=0 时,b 为函数在y 轴上的点,坐标为(0,b)。
3 当b=0 时(即y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数。
4.在两个一次函数表达式中:
当两一次函数表达式中的k 相同,b 也相同时,两一次函数图像重合;
当两一次函数表达式中的k 相同,b 不相同时,两一次函数图像平行;
当两一次函数表达式中的k 不相同,b 不相同时,两一次函数图像相交;
当两一次函数表达式中的k 不相同,b 相同时,两一次函数图像交于y 轴上的同一点(0,b)。
若两个变量x,y 间的关系式可以表示成y=kx+b(k,b 为常数,k 不等于0)则称y 是x 的一次函数
图像性质
1.作法与图形:通过如下3 个步骤:
(1)列表.
(2)描点;[一般取两个点,根据两点确定一条直线”的道理,也可叫两点法”。
一般的y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点画直线即可。
正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和。
一次函数的性质一次函数是数学中一种基本的函数类型,也称为线性函数。
它的特点是函数图像为一条直线,表现出一种简单而直接的变化规律。
一次函数通常以 y = ax + b 的形式表示,其中 a 和 b 都是常数。
一次函数的性质有很多,接下来我们将逐一介绍。
1. 变化趋势:一次函数的图像为一条斜率恒定的直线,斜率的值决定了函数图像的变化趋势。
当斜率 a > 0 时,函数图像为上升的直线;当斜率 a < 0 时,函数图像为下降的直线;当斜率 a = 0 时,函数图像为水平直线。
2. 截距:一次函数的图像在 x 轴上与 y 轴相交的点分别称为 x 轴截距和 y 轴截距。
x 轴截距为负数的情况下,函数的图像位于 y 轴的左侧;x 轴截距为正数的情况下,函数的图像位于 y 轴的右侧。
3. 定义域和值域:一次函数的定义域是所有实数,即该函数对于任意实数值的 x 都有定义。
一次函数的值域是所有实数,即该函数可以取到任意实数值的 y。
4. 求解交点:一次函数与 x 轴的交点称为根,也就是函数图像与 x轴的交点;与 y 轴的交点称为解,也就是函数图像与 y 轴的交点。
求解根的方法是令 y = 0,并解出 x 的值;求解解的方法是令 x = 0,并解出 y 的值。
5. 判断与关系:对于两个不同的一次函数 f(x) = ax + b 和 g(x) = cx + d,若 a = c 且 b = d,则两个函数是相等的;若 a = c 且b ≠ d,则两个函数是平行的,它们的图像永远不会相交;若a ≠ c,则两个函数是相交的,它们会有一个交点。
6. 性质推广:一次函数的性质可以推广到更高维度的情况。
对于二维空间中的直线,它可以表示为三个一次函数形式的方程组,其中每个方程都有两个变量。
对于三维空间中的平面,它可以表示为三个一次函数形式的方程组,其中每个方程都有三个变量。
在实际应用中,一次函数常常被用于描述变化的趋势和规律。
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数及其概念(12)
知识梳理:
1、一般地,形如y=kx+b(k,b 是常数,k ≠0)的函数,叫做一次函数。
当b ≠0时,y=kx+b 即y=kx ,所以说正比例函数是一种特殊的一次函数。
2、比较一次函数y=kx+b(k ≠0)和正比例函数y=kx (k ≠0)解析式:
一次函数y=kx+b(k ≠0)的图像可以由直线y=kx 平移│b │个单位长度得到(当b >0时,向上平移;当b <0时,向下平移)。
一次函数y=kx+b(k ≠0)的图像也是一条直线,我们称它为直线y=kx+b
一、回顾旧知
1. 形如的函数,叫正比例函数,其中叫比例系数.
2. 正比例函数图象的形状是一条经过和的直线.
3. 下列四组点中,可以在同一个正比例函数图象上的一组点是()
A.(2,-3)、(-4,6)
B.(-2,3)、(4,6)
C.(-2,-3)、(4,-6)
D.(2,3)、(-4,6)
4. 已知函数32)2(-+=m x m y 是正比例函数,则m =_____,其图象经过________象限.
5. 已知y -1与x +1成正比例,且当x =-2时,y =-1,则y 关于x 的函数解析式为 .
6. 下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?
(1)某登山队大本营所在地的气温为15℃,海拔每升高1km 气温下降6℃.登山队员由大本营向上登高xkm 时,他们所处位置的气温是y ℃,则y •与x 的函数关系式为 .
(2)有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C 与温度t (℃)有关,即C •的值约是t 的7倍与35的差.函数解析式为:.
(3)一种计算成年人标准体重G (kg )的方法是,以厘米为单位量出身高值h 减常数105,所得差是G 的值.函数解析式为:.
(4)某城市的市内电话的月收费额y (元)包括:月租费22元,拨打电话x 分的计时费(按0.10元/分收取).函数解析式为:.
(5)把一个长10cm ,宽5cm 的矩形的长减少xcm ,宽不变,矩形面积y (cm 2)随x 的值而变化,函数解析式为:.
观察上面五个函数解析式,它们的共同特点:函数的形式都是的k 倍与的和的形式.即y =kx +b (k ≠0)
7、一般地,形如的函数,叫做一次函数.当b =0时,y =kx +b
即.所以正比例函数也是一次函..........
数,它是的特例. 二、典型例题:
1.下列函数中哪些是一次函数,哪些又是正比例函数?
(1)x y 8-=(2)x y 8-=
(3)652+=x y (4)x y 5.01-= (5)12-=x y (6)13-=x
y (7))4(2-=x y (8)28-=x y 解:是一次函数;又是正比例函数.
2.已知一次函数y =kx +b ,当x =1时,y =5;当x =-1时,y =1,求k 、b 的值.
3. 某电信公司的一种通话收费标准是:不管通话时间多长,•每部手机每月必须缴月租费10元,另外,每通话1分缴费0.18元.
(1)写出每月应缴费用y (元)与通话时间x (分)之间的函数关系式.
(2)某用户本月通话100分钟,他的费用是多少元?
(3)若某用户本月预交了64元,那么该用户本月最多可以通话多长时间?
三、当堂练习
1. 下列函数中,是一次函数但不是正比例函数的是()
A.x y 2=
B.21+=x y
C. x y 2
131-= D.132-=x y 2. 若4)2(1--=-n x n y 是一次函数,则此函数的解析式为()
A.x y 4=
B.44+-=x y
C. 44-=x y
D.44--=x y
3. 若一次函数y =kx +b ,当x 的值减小1时,y 的值减小2,则当x 的值增加2时,y 的值()
A.增加4
B. 减小4
C. 增加2
D.减小2
4. 4)2(1-+-=-m x m y m 为一次函数,则m =________.
5. 已知一次函数3+=kx y ,当x =5时,y = -12,则当x = -2时,y =________.
6.已知函数y =(m -2)x + 2m +1.
(1)当m 为何值时,它是一次函数?(2)当m 为何值时,它是正比例函数
7.已知y -3与x 成正比例,且x =2时,y =7.
(1)求y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系?(3)计算y =-4时, x 的值.
四、跟踪辅导
一、选择题
1. 下列说法正确的是()
A. 正比例函数是一次函数
B. 一次函数是正比例函数
C. 正比例函数不是一次函数
D. 不是正比例函数就不是一次函数
2. 下列函数中,y 是x 的一次函数的是()
A. 53+-=x y
B. 23x y -=
C. x y 1=
D. x y 2= 3. 若函数2)2(1-++=-m x m y m 为一次函数,则m 的值为()
A. 2
B. -2
C. 2±
D. 0
4. 若2y +1与x -5成正比例,则y 是x 的()
A. 正比例函数
B. 一次函数
C. 没有函数关系
D. 以上答案均不对
5. 已知等腰三角形的周长为cm 20,将底边)(cm y 表示成腰长)(cm x 的函数关系式是:
x y 220-=,则其自变量的取值范围是()
A .100<<x
B .105<<x
C .0>x
D .全体实数
6. 一次函数y =kx +b 满足x =0时,y = -1;x =1时,y =1,则这个一次函数是()
A .y =2x +1
B .y = -2x +1
C .y =2x -1
D .y =-2x -1
二、填空题
1. 下列函数中,一次函数有___________________;正比例函数有________.
①x y =;②x
y 1=;③15.0+-x y =;④x y +-1=;⑤()112+-x y =;⑥13=+y x ;
2. 已知函数1)1(2-+-=k x k y ,当k _____时,它是一次函数,当k ______时,它是正比例函数.
3. 若一次函数b x y +=的图象经过点A (1,-1),则b =________.
4. 已知函数y =4x +5,(1)当x =-3时,y =_______;(2)当x =_______时,y =1
5.
5. 已知等腰三角形的周长为20cm ,底边长y (cm )与腰长x (cm )的函数关系式是.
6. 一个弹簧挂上重物后伸长的长度与所挂重物的质量成正比.若挂上1kg 的物体后,弹簧的长度为14cm ;若挂上3.5kg 的物体后,弹簧的长度为19cm ,则弹簧总长y (cm )随所挂物体质量x (kg )变化的函数关系式为_____.
三、解答题:
1.仓库内原有粉笔420盒.如果每个星期领出30盒,求仓库内余下的粉笔盒数Q 与星期数t 之间的函数关系.
2.已知y 与3-x 成正比例,且当4=x 时,y =3.
(1)求y 与x 之间的函数关系式;(2)y 与x 之间是什么函数关系;(3)求5.2=x 时,y 的值.
3.甲市到乙市的包裹邮资为每千克0.9元,每件另加手续费0.2元,求总邮资y (元)与包裹重量x (千克)之间的函数解析式,并计算5千克重的包裹的邮资.
4. 已知21y y y +=,其中1y 与x 成正比例,2y 与x -1成比例.当x =-1时,y =2;当x =2时,y =5求当x =3时y 的值.
5. A 、B 两城相距600km ,甲、乙两车同时从A 城出发驶向B 城,甲车到达B 城后立即返回.如图是它们离A 城的距离y (km )与行驶时间x (h )之间的函数图象.
(1)求甲车行驶过程中y 与x 之间的函数解析式,并写出自变量x 的取值范围;
(2)当它们行驶了7h 时,两车相遇,求乙车速度.。