当前位置:文档之家› 振动测量与计算

振动测量与计算

振动测量与计算
振动测量与计算

振动测量与计算

1、常用的振动测量参数有振幅、振动速度(振速)、振动加速度。对应单位表示为:mm、mm/s、mm/(s2)。

振幅是表象,定义为在波动或振动中距离平衡位置或静止位置的最大位移。振幅在数值上等于最大位移的大小。振幅是标量,单位用米或厘米表示。它描述了物体振动幅度的大小和振动的强弱。系统振动中最大动态位移,称为振幅。

在下图中,位移y表示波的振幅。

速度和加速度是转子激振力的程度。

2、三者的区别:位移、速度、加速度都是振动测量的度量参数。就

概念而言,位移的测量能够直接反映轴承/固定螺栓和其它固定件上的应力状况。例如:通过分析汽轮机上滑动轴承的位移,可以知道其轴承内轴杆的位置和摩擦情况。速度反映轴承及其它相关结构所承受的疲劳应力。而这正是导致旋转设备故障的重要原因。加速度则反映设备内部各种力的综合作用。表达上三者均为正弦曲线,分别有90度,180度的相位差。现场应用上,对于低速设备(转速小于1000rpm)来说,位移是最好的测量方法。而那些加速度很小,其位移较大的设备,一般采用折衷的方法,即采用速度测量,对于高速度或高频设备,有时尽管位移很小,速度也适中,但其加速度却可能很高的设备采用加速度测量是非常重要的手段。

3、现场一般选用原则如下:

mm振动位移:与频率f无关,特别适合低频振动(<10Hz))选用,一般用于低转速机械的振动评定

mm/s振动速度:速度V=Xω,与频率f成正比,通常推荐选用

一般用于中速转动机械(或中频振动(10~1000Hz))的振动评定

mm/(s2)振动加速度:A=Vω=Xω2与频率f 2成正比,特别适合高频振动选用;一般用于高速转动机械(或高频振动(>1000Hz))的振动评定。

其中:ω=2πf

4、工程上对于大多数机器来说,最佳诊断参数是速度(速度的有效值),因为它是反映诊断强度的理想参数,表征的是振动的能量;所以国际上许多振动诊断标准都是采用速度有效值作为判别参数。振幅相同的设备,它的振动状态可能不同,所以引入了振速。

加速度是用的峰值,表征振动中冲击力的大小。

5、振速与位移换算

S p-p=2√2 V f/ω

其中角速度ω=2πf,f为频率。

S p-p=2√2 V f/ω=2√2 V f/2πf=√2 V f/πf=0.45 V f/f即:

S p-p =0.45* V f /f

振幅A=0.225* V f /f

同理,V f=4.44*Af=0.074*An

其中:S p-p:振动位移峰峰值,mm

V f:振速,mm/s

A:振幅,mm

f:风机(振动)频率,Hz

n:风机转速,r/min

当f=50Hz时,振速与振动位移对应值见下表:

6、相关振动标准

轴承振动标准

6.1附属机械轴承振动标准

附属机械轴承振动标准

6.2机组轴振动标准

大型汽轮发电机组轴振参考标准(双振幅,um)

6.3轴承振动标准

轴承振动标准(双振幅,mm)

6.4国标-ISO 3945<旋转电机振动测定方法及限值>振动标准

6.5(国际电工委员会)IEC振动标准(双振幅,um)

轴承振动75 50 40 25 21 12 6 轴振动150 100 80 50 42 24 12

7、我国现行的汽轮机振动标准规定:

1)汽轮机转速在1500r/min时,振动双振幅50um以下为良好,70um 以下为合格;汽轮机转速在3000r/min时,振动双振幅25um以下为良好,50um以下为合格。

2)标准还规定新装机组的轴承振动不宜大于30um。

3)标准规定的数值,适用于额定转速和任何负荷稳定工况。

4)标准对轴承的垂直、水平、轴向三个方向的振动测量进行了规定。在进行振动测量时,每次测量的位置都应保持一致,否则将会带来很大的测量误差。

5)在三个方向的任何一个方向的振动幅值超过了规定的数值,则认为该机组的振动状况是不合格的,应当采取措施来消除振动。

6)紧停措施还规定汽轮机运行中振动突然增加50um应立即打闸停机。同时还规定临界转速的振动最大不超过100um。

机械振动的测量方法

振动的测量方法 摘要 本文主要介绍了振动的测量方法与分类,并简要说明了各测量方法的原理及优缺点,以及在测量过程中所使用的传感器。并且详细的介绍了加速度传感器与磁电式速度传感器的工作原理。简要介绍了振动量测量系统的原理框图 关键词:加速度传感器、振动、磁电式速度传感器

1引言 机械振动是自然界、工程技术和日常生活中普遍存在的物理现象。各种机器、仪器和设备在其运行时,由于诸如回转件的不平衡、负载的不均匀、结构刚度的各向异性、润滑状况的不良及间隙等原因而引起力的变化、各部件之间的碰撞和冲击,以及由于使用、运输和外界环境条件下能量的传递、存储和释放等都会诱发或激励机械振动。 2振动概述 2.1振动测量方法分类 振动测量方法按振动信号转换的方式可分为电测法、机械法和光学法。各测量方法的原理及优缺点见表1. 表1振动测量方法分类 2.2振动测试的内容: 1. 振动基本参数的测量。 测量振动物体上某点的位移、速度、加速度、频率和相位。其目的是了解被测对象的振动状态、评定振动量级和寻找振源,以及进行监测、诊断和评估。 2. 结构或部件的动态特性测量。 以某种激振力作用在被测件上,对其受迫振动进行测试,以便求得被测对象

的振动力学参量或动态性能,如固有频率、阻尼、阻抗、响应和模态等。这类测试又可分为振动环境模拟试验、机械阻抗试验和频率响应试验等。 2.3振动测量的基本原理与方法 振动检测按测量原理可分为相对式与绝对式(惯性式)两类。振动检测按测量方法可分为接触式与非接触式两类。 2.3.1相对式振动测量 相对式振动测量是将振动变换器安装在被测振动体之外的基础上,它的测头与被测振动体采用接触或非接触的测量。所以它测出的是被测振体相对于参考点的振动量 图1 相对式测振仪的原理 1测量针与笔 2 被测物体 3 走动纸 2.3.2绝对式振动测量 采用弹簧—质量系统的惯性型传感器(或拾振器),把它固定在振动体上进行测量,所以测出的是被测振动体相对于大地或惯性空间的绝对运动。 图2 绝对式测振仪原理 1质量块 2 弹簧 3 阻尼器 4 壳体机座 5 振动体

化学计算与测量实验之实验4分子振动

实验4 分子振动 实验目的 (1)完成H2O分子、CO2分子、氯代环丙烷分子、正丁酸分子的计算,掌握红外光谱的吸收图的绘制和每个振动的模式的分子图;找出实验的数据进行对比 (2)从理论上剖析振动光谱、简振模式,以及简振模式与振动光谱的对应关系。 (3)掌握红外光谱与Raman光谱的识别,掌握谱图中峰的辨认 计算方法 用密度泛函的B3LYP方法,在含有弥散函数的AUG-cc-pVDZ基组水平上,对分子做对称性限制的优化。在优化构型的基础上,进行简振频率、IR强度、Raman活性和简振模式的计算。计算使用Gaussian98程序包。 这是一个关于有机分子振动光谱的实验,涉及简振频率、红外光谱、拉曼光谱以及简振模式的计算。主要分析讨论简振模式的振动方式与分类、简振模与振动光谱的对应关系等。振动分析的结果会给出分子的全部振动模式。分子中的各个原子被放在一个称为标准取向的笛卡尔直角坐标系中。各个原子的振动则在该点的一个平行子坐标系中给出其在各轴上的分量。Chemcraft程序则可以直接转换成矢量形式,并动态模拟各个模式的振动。其频率值和振动的红外和拉曼强度也同时给出。注意要分析两种不同振动光谱产生的原因以及强度与振动的关系。 本实验依旧使用Schr?dinger equation与The Born-Oppenheimer Approximation,公式如下: 双原子分子振动能量: 当v=0时,能量最低,即在绝对零度时,振动能量为1/2。该能量也被称为零点能。

红外光谱红外光谱法是一种根据分子对特定频率的波的吸收来确定物质分子结构和鉴别化合物的分析方法。 物质产生红外吸收光谱必须满足两个条件: ①电磁波能量与分子两能级差相等,这决定了吸收峰出现的位置。 ②分子振动时其偶极矩必须发生变化。 拉曼光谱是一种散射光谱。拉曼光谱分析法是与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。 分子振动的过程中,极化率的变化导致拉曼光谱的产生,化学键的伸缩对极化率影响较大,而键角的变化影响则较小。 计算结果 (1)H2O 偶极矩Tot=2.1261 振动模式

实验一 DHVTC振动测试与控制学生实验系统的

实验一 DHVTC振动测试与控制学生实验系统的 组成与使用方法 一、实验目的 1、了解振动测试与控制实验系统的组成、安装和调整方法。 2、学会激振器、传感器与数采分析仪的操作、使用方法。 图1-1 二、DHVTC振动测试与控制学生实验系统的组成 图1-1 DHVTC振动测试与控制学生实验系统示意图 (1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振系统(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁性表座(17)单自由度系统 如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。 1、振动与控制实验台 振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振用的空气阻尼减震器、单式动

力吸振器、复式动力吸振器等组成。可完成振动与振动控制等20多个实验的试验平台。 2、激振系统与测振系统 (1) 激振系统 激振系统包括: DH1301正弦扫频信号源 JZ-1型接触式激振器 JZF-1型非接触式激振器 偏心电动机、调压器 力锤(包括测力传感器) (2) 测振系统 动态采集分析仪 MT-3T型磁电式振动速度传感器 DH130压电式加速度传感器 WD302电涡流位移传感器 测力传感器 (3) 动态采集分析系统 信号调理器 数据采集仪 计算机系统(或笔记本电脑) 控制与基本分析软件 模态分析软件 三、DHVTC-59型仪器的使用方法 1、激振系统的使用方法 DH1301型正弦扫频信号源 DH1301型正弦扫频信号源是配有功率放大后的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接触式激振器。 A、技术指标:频率范围0.1~9999.99Hz 谐波失真<1% 最大输出功率5w 输出电流0~500 m A 功耗20w

振动测试系统

一、振动测试系统 1.主要功能 DASP V10振动测试系统包括信号采集和实时分析软硬件。DASP V10 是一套运行在Windows95/98/Me/NT/2000/Xp平台上的多通道信号采集和实时分析软件,通过和东方所的不同硬件配合使用,即可构成一个可进行多种动静态试验的试验室。DASP V10 软件既具有多类型视窗的多模块功能高度集成特性,具有操作便捷的特点。基于东方所在各种工程应用领域的长期经验,DASP-V10对各种功能模块重新进行整合,成为一套功能更加全面、操作更加便捷、界面更加美观、性能继续保持领先的动静态信号测试分析系统。DASP V10 软件的每一个模块中均包含了非常多的功能,各种功能可交错使用,在测试和分析的功能和性能上突破了以往信号分析仪的种种限制,与INV系列采集仪配合形成的系统的各项指标均可达到或超过国家高级仪器的标准。DASP V10 软件的所有测试分析结果都可以多种方式输出,包括图形的复制、存盘、打印,数据导出为TXT、CSV、Excel电子表格和Access数据库格式,并可轻松输出图文并茂的Word格式或者Html格式的分析报告。基于DASP V10 的平台上,还可以运行专业模态和动力学分析系统、虚拟仪器库、信号发生器以及针对声学、旋转机械、路桥土木、计量检定等行业的多种软件系统,满足各方面各层次的测试和分析需求。

3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:魏德华 二、ANSYS/CFD流体分析软件 1.主要功能 FLUENT、CFX是目前国际上比较流行的商用CFD软件包,国际市场占有率达70%。凡跟流体、热传递及化学反应等有关的领域均可使用。它具有丰富的物理模型、先进的数值方法以及强大的前后处理功能,在航空航天、汽车设计、石油天然气、涡轮机设计等方面都有着广泛应用,包括管路、渠道、流体机械、燃烧、环境分析、油气消散/聚积、喷射控制、多相流等方面的流动计算分析。 2.主要设备 3.隶属 (1)实验室:水机测控实验室(B01-205/207) (2)负责人:石祥钟

机械振动实验报告

机械振动实验报告

《机械振动基础》实验报告(2015年春季学期)

专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1. 实验报告统一用该模板撰写,必须包含以下内容: (1) 实验名称 (2) 实验器材 (3) 实验原理 (4) 实验过程 (5) 实验结果及分析 (6) 认识体会、意见与建议等 2. 正文格式:四号字体,行距为1.25倍行距; 3. 用A4纸单面打印;左侧装订; 4. 报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统 一发送至:Iiuyingxiang868@hit .edu .cn 5. 此页不得删除。 评语: 实验一报告正文 实验名称:机械振动的压电传感器测量及分析 教师签名: 年

二、实验器材 1、机械振动综台实验装置(压电悬臂梁)一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 & NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。

设备振动标准

“刚性连接”中,相对的连接件之间不得有位移,在大多数的紧固中都是这样的连接。 “挠性连接”中,相对的连接件既有约束或传递动力的关系,又可以有一定程度的相对位移。 如常见的联轴器,刚性联轴器将两个部分用螺栓紧固,这样的安装要求同心度极高,稍有误差,机械就会震动,而且寿命不长。 挠性联轴器就有措施,在联轴器的两部分之间,使用滑块、弹性柱销、木销或万向节等,即传递了动力,也满足了设备的使用要求。 刚性联轴器不具有补偿被联两轴轴线相对偏移的能力,也不具有缓冲减震性能;但结构简单,价格便宜。只有在载荷平稳,转速稳定,能保证被联 两轴轴线相对偏移极小的情况下,才可选用刚性联轴器。属于刚性联轴器的 有套筒联轴器、夹壳联轴器和凸缘联轴器等。其它联轴器都是挠性联轴器了. 企业设备振动故障诊断 相对标准的建立及应用 陈兆虎李兰儒张红 摘要本文结合克拉玛依石化厂实际情况,从安全性、经济性出发,叙述建立适合现代企业设备管理维修的动设备振动故障诊断相对标准的方法,以及相对标准应用效果。 一、设备振动故障诊断标准 1.标准的类型及理论依据 标准有绝对标准和相对标准两大类型。绝对标准就是人们常说的国际标准。各种转动机械的振源主要来自结构设计,制造、安装质量,调试情况和环境本身。振动的存在必然不同程度引起设备自身及其附属管线的结构疲劳和损伤。美国齿轮制造协会(AGMA)提出在低频域(10Hz以下),以位移作为振动标准;中频域(10Hz~1kHz),以速度作为振动标准;而高频域(1kHz以上)则以加速度作为标准。 理论已经证明,振动部件的疲劳与振动速度成正比,振动所产生的能量与振动速度的平方成正比,能量传递的结果必然造成磨损或其它缺陷。因此,在振动判断标准中,无论从疲劳损伤还是磨损等缺陷来说,以振动速度标准最为适宜。 )标准mm/s 表1 电动机器振动(v rms

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 ?监测点选择、图形标注、现场标注。 ?振动监测参数的选择:做一些调整:长度、频率范围 ?状态判断标准和报警的设置 1 设备振动测点的选择与标注 1.1监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择

图6-2在机器壳体上测量振动时,振动传感器定位的示意图 1.2 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注 图6-4 振动监测点的标注

图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 1.3 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 3.1 振动监测参数的选择

2016年《振动测试实验》综合练习题 (2)

2016年《振动测试实验》综合练习题 1、关于振动传感器,请回答以下问题: 1)振动传感器主要有那些类型?哪种传感器目前使用最广泛? 答:①振动传感器按所测机械量分为位移传感器、速度传感器、加速度传感器、力传感器、应变传感器、扭振传感器、扭矩传感器。 ②目前使用最广泛的是加速度传感器。 2)加速度传感器安装方式有哪些?对于飞机空中振动环境测试,你认为哪几种安装方式较合适? 答:①加速度传感器安装方式:刚螺栓连接、胶合螺栓、石蜡粘接、双面胶、永久磁铁。 ②对于飞机空中振动环境测试,用刚螺栓连接、胶合螺栓较合适。 3)加速度传感器和力传感器的主要技术指标? 答:(1)灵敏度:电信号输出与被测运动输入之比。加速度传感器的灵敏度通常为V/g或PC/ms-2、V/ms-2。力传感器的灵敏度通常为V/N。(2)频率响应特性(包括幅频特性和相频特性)。(3)动态范围:可测量的最大振动量与最小振动量之比。下限取决于连接电缆和测量电路的电噪声,上限取决于传感器的结构强度。(4)横向灵敏度:垂直于主轴的横向振动也会使传感器产山输出信号。该信号与主轴灵敏度的百分比为横向灵敏度。(5)幅值线性度:实际传感器的输出信号只在一定幅值范围内与被测振动成正比(即保持线性特性)。在规定线性度内可测幅值范围称为线性范围。 4)一般振动数据采集设备最大输入电压为10伏。测量一结构加速度响应,加速度最大值预估约为20g,现有加速度传感器甲(灵敏度:50mv/g)、乙(灵敏度:500mv/g)各一只,选用哪一个传感器?请说明理由。 答:灵敏度等于输入电压除以加速度为10V/20g = 500 mv/g,所以选择乙传感器。 2、关于激振器,请回答以下问题: 1)常用的激振器安装方式有哪两种?两种安装方式的分别有何技术要求? 答:①常用的激振器安装方式:刚性支承、柔性悬挂。 ②刚性支承安装要求:垂直向、横向、纵向支承刚度足够大。 支承系统(激振器+支架)的最低阶固有频率>试验件最高阶固有频率。 柔性悬挂安装要求:垂直向、横向、纵向支承刚度足够小。

振动测试必须知道的27个基本常识59388

振动测试必须知道的27个基本常识 (2015-12-16 10:52:39) 转载▼ 标签: 杂谈 1、什么是振动 振动是机械系统中运动量(位移,速度和加速度)的振荡现象。 2、振动实验的目的 振动试验的目的是模拟一连串振动现象,测试产品在寿命周期中,是否能承受运输或使用过程的振动环境的考验,也能确定产品设计和功能的要求标准。振动试验的精义在于确认产品的可靠性及提前将不良品在出厂前筛检出来,并评估其不良品的失效分析使其成为高水平,高可靠性的产品。 3、振动分几种 振动分确定性振动和随机振动两种。 4、什么是正弦振动 能用一项正弦函数表达式表达其运动规律的周期运动。例如凡是旋转、脉动、振荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动均是正弦振动。 5、正弦振动的目的 正弦振动试验的目的是在试验室内模拟电工电子产品在运输、储存、使用过程中所遭受的振动及其影响,并考核其适应性。 6、正弦振动的试验条件 正弦振动试验的验条件(严酷等级)由振动频率范围、振动量、试验持续时间(次数)共同确定。 7、什么是振动频率范围 振动频率范围表示振动试验由某个频率点到某个频率点进行往复扫频。例如:试验频率范围5-50Hz,表示由5Hz到50Hz进行往复扫频。 8、什么是频率 频率:每秒振动的次数.单位:Hz。 9、什么是振动量

振动量:通常通过加速度、速度和位移来表示。加速度:表示速度对时间倒数的矢量。加速度单位:g或m/s2速度:在数值上等于单位时间内通过的路程位移:表示物体相对于某参考系位置变化的矢量。位移单位:mm 10、什么是试验持续时间 振动时间表示整个试验所需时间,次数表示整个试验所需扫频循环次数。 11、什么是扫频循环 扫频循环:在规定的频率范围内往返扫描一次:例如:5Hz→50Hz→5Hz,从5Hz 扫描到50Hz后再扫描到5Hz。 12、什么是重力加速度 重力加速度:物体在地球表面由于重力作用所产生的加速度。1gn=10m/s2(GB/T 2422-1995 电工电子产品环境试验术语) 13、扫描方式分几种 线性扫描:是线性的,即单位时间扫过多少赫兹,单位是Hz/s或Hz/min,这种扫描用于细找共振频率的试验。对数扫描:频率变化按对数变化,扫描率可以是oct/min ,对数扫描的意思是相同的时间扫过的频率倍频程数是相同的。 14、什么是扫描速度 扫描速度(sweep speed):指从最低频率扫描到最高频率的速度。有以下几种:1)oct/min:多少倍频程每分钟。例:1oct/min,5Hz到10Hz需1分钟,10Hz到20Hz需1分钟。2)min/sweep:多少分钟每次扫频。例:5-500Hz,扫描速度:1分钟/sweep,表示从5Hz到500Hz需1分钟。3)Hz/s:多少Hz每秒。例:5-10Hz,扫描速度:1Hz/s,表示5Hz到6Hz需1秒,6Hz到7Hz需1秒。 15、振动试验中有几个方向 除有关规范另有规定外,应在产品的三个互相垂直方向上进行振动试验。一般定义产品长边为X轴向,短边为Y轴向,产品正常摆放上下为Z轴向。 16、什么是交越频率 交越频率:在振动试验中由一种振动特性量变为另一种振动特性量的频率。如交越频率由等位移——频率关系变为等加速度——频率关系时的频率。 17、为什么要共振搜寻 一般待测物上有各种零组件,而每一个不同的零组件,皆有其不同的共振频率,同时会因形状、重量、固定方式不同而在振动发生时产生不同的共振频率及放大

振动量的常用测量方法三种

振动量的常用测量方法三种: 1.机械式测量方法:主要用杠杆放大原理或惯性原理加上杠杆放大原理。 2.电测法:将振动参量(位移、速度、加速度)转换成电信号,经电子系统 放大后进行测量记录的方法。 3.光测法:把振动参量转换成光信号,经光学系统放大后,加以测量和记 录。 直接为震动试验提供振动源的设备是激振设备,包括:振动台和激振器两类;有机械式、电动式、电动液压式、压电式。 1.机械式振动台的工作原理: (1)离心式:利用偏心块绕定轴转动,产生离心力。质量为m,偏心 距r的质量块,以角速度3绕0转动,产生离心力 F x F cos t mr 2 cos t 2 F y F sin t mr sin t 为了产生单一方向激振力,将其设计成双轴式结构,即把两偏 心块对称地安装在两轴上,并使偏心块作反向同角速度的旋转。水平 分力相互抵消,只剩下按正弦规律变化的垂直激振力 通常偏心质量块由活动扇形块与固定扇形块构成

的角度,则可以改变激振力值,也就是台面的振幅值。当180时, 离心力为最大,此时激振力为: 当°,台面的振幅不随激振频率改变, 同偏心质量、偏心距成正 F 2mr sin t 振动台的运动方程:My ky F 台面的振幅:A2m r 22 M( 2o) m每组偏心块的质量;r偏心距;M 0 为振台的固有频率; 运动部分的总质量 2mr M (2.)凸轮式振动台: 台面振幅由偏心距r决定:y rsin t ,频率由直流电机的转速决定。为了调节振幅,常用同轴的双凸轮装置。通过调节内外两凸轮的相对位置调节凸轮的偏心距,即调节了振幅。 机械式振动台的特点: 简单、可靠,承载力较大。由于旋转机构的惯性大,所以工作的频率不高,低于50~60H N另外,机件之间存在加工间隙,工作时会引起碰撞,影响台面波形。用于中小型模型试验,也用于对产品作环境实验 2.电磁式振动台: 电磁式振动台是把交变的电量变为交变的机械量的装置。利用带 电导线在磁场里受到安培力的作用,使得导线产生运动的原理制成 F 0.102BLI 10

振动测试实验

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

转子实验报告测量和分析参数: 通道数: 4 ; 采样频率: 2048Hz ; dt: 0.488281ms 数字跟踪滤波设置:不滤波 通道参数 表1: 通道参数 结果图形:

小结 本次实验为DASP(柔性转子实验),实验的目的是为了:①了解轴系挠度曲线与转 子转速变化关系;②观察转子在临界速度时的振动现象,振动幅值的变化情况;③测出临界 转速下柔性转子的一阶振型。 本次实验的变量为柔性转子不同转数500r/min、1000r/min、1500r/min,其余为不 变量。通过实验所生成的图表,可以直观明了的看到,随着转数的增加,柔性转子的轴心轨 迹由橄榄形(500r/min)→蝌蚪形(1000r/min)→包子形(1500r/min)。而其水平、垂直 位移的波形曲线也变的紧促、光滑和圆润。 通过本次实验,可以为摩托车发动机轴系结构的振动问题的研究,提供一定事实依据。也为我们研究此类问题做了一个很好的铺垫。 本次实验的实验仪器和设备为重庆科技学院提供,来源于东方振动和噪声技术研究所INV1612型(多功能柔性转子实验系统)。 小结 本次实验为单通道频谱分析,实验的目的是为了研究不同频率段的简支梁的振动情况。同时,测出此简支梁的共振点。 本次实验的变量为不同频率40Hz、45Hz、50Hz,其余为不变量。实验中,主要测得 了在不同频率的振动下的加速度、速度、位移,从而直观的反应出不同频率下的振动的能量 的大小。从实验的图形结果分析,可知在不同频段下的振幅表现为正态分布的特点。在梁的 共振频率段的振幅表现的最为强烈,而在低于或高于共振频率段的振动能量呈现出衰减的事态。 通过本次实验,可以为摩托车车架结构的振动问题的研究,提供一定事实依据。也为 我们研究此类问题做了一个很好的铺垫。 本次实验的实验仪器和设备为重庆科技学院提供,来源于东方振动和噪声技术研究所INV1601型(振动与控制教学实验系统)。

振动试验系统现状与发展

振动试验系统现状与发展 振动试验的目的在于确定所设计、制造的机器、构件在运输和使用过程中承受外来振动或者自身产生的振动而不至破坏,并发挥其性能、达到预定寿命的可靠性。随着对产品,尤其是航空航天产品可靠性要求的提高,作为可靠性试验关键设备的振动试验系统的发展显得越来越重要。 60年代,702所为满足航天产品振动试验的需要,开始了振动试验系统的研制,包括推力10N至100kN的振动台及各种振动测量仪表和传感器。目前,702所的振动试验设备不仅在航天领域而且在其他行业发挥着作用,成为该所的一项重要民品。用于振动试验的振动台系统从其激振方式上可分为三类:机械式振动台、电液式振动台和电动式振动台。从振动台的激振方向,即工作台面的运动轨迹来分,可分为单向(单自由度)和多向(多自由度)振动台系统。从振动台的功能来分,可分为单一的正弦振动试验台和可完成正弦、随机、正弦加随机等振动试验和冲击试验的振动台系统。以下笔者对各种振动台,主要对电动振动台,及其辅助设备的结构、性能和成本的现状及发展等进行简单的论述。 1.机械式振动台 机械式振动台可分为不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低,但只能在约 5Hz~100Hz的频率范围工作,最大位移为 6mm峰-峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低频域内,激振力大时,可以实现很大的位移,如100mm。但这种振动台工作频率仅限于低频,上限频率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 机械式振动台由于其性能的局限,今后用量会越来越小。 2.电液式振动台 电液式振动台的工作方式是用小的电动振动台驱动可控制的伺服阀,通过油压使传动装置产生振动。这种振动台能产生很大的激振力和位移,如激振力可高达104kN,位移可达2. 5m,而且在很低的频率下可得到很大的激振力。大激振力的液压台比相同推力的电动式振动台价格便宜。电液台的局限性在于其高频性能较差,上限工作频率低,波形失真较大。虽然可以做随机振动,但随机振动激振力的rms额定值只能为正弦额定值的1/3以下。这种振动台因其大推力、大位移可以弥补电动振动台的不足,在未来的振动试验中仍将发挥作用,尤其是在船舶和汽车行业会有一定市场。 3.电动式振动台

DHVTC-5901振动测试与控制实验系统组成与使用方法

实验一DHVTC-5901振动测试与控制实验系统组成与使用方法 一、实验目的 1、了解振动测试与控制实验系统的组成、安装和调整方法。 2、学会激振器、传感器与动态分析仪的操作、使用方法。 二、DHVTC振动测试与控制实验系统的组成 图1-1DHVTC振动测试与控制学生实验系统示意图 (1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振空气阻尼器(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁力表座 如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。 1、振动与控制实验台 振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振及动力吸振用的空气阻尼减震

器、单式动力吸振器、复式动力吸振器等组成。是完成振动与振动控制等近30个实验的试验平台。 2、激振系统与测振系统 (1)激振系统 激振系统包括: DH1301正弦扫频信号源 JZ-1型接触式激振器 JZF-1型非接式触激振器 偏心电动机、调压器 力锤(包括测力传感器) (2)测振系统 动态采集分析仪 ZG-1型磁电式振动速度传感器 压电式加速度传感器 WD302电涡流位移传感器 测力传感器 (3)动态采集分析系统 信号调理器 数据采集仪 计算机系统(或笔记本电脑) 控制与基本分析软件 模态分析软件 三、DHVTC-59型仪器的使用方法 1、激振系统的使用方法 DH1301型正弦扫频信号源是配有功率放大器的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接式触激振器。 A、技术指标:频率范围10-1000Hz 谐波失真〈1% 最大输出功率5ω 输出电流0~500 m A 功耗20ω

振动测量仪器知识

振动测量仪器知识 一、概述 (一)用途 振动测量仪器是一种测量物体机械振动的测量仪器。测量的基本量是振动的加速度、速度和位移等,可以测量机械振动和冲击振动的有效值、峰值等,频率范围从零点几赫兹?几千赫兹。外部联接或内部设置带通滤波器,可以进行噪声的频谱分析。随着电子技术尤其是大规模集成电路和计算机技术的发展,振动测量仪器的许多功能都通过 数字信号处理技术代替模拟电路来实现。这不仅使得电路更加简化,动态范围更宽,而且功能和稳定性也大大提高,尤其是可以实现实时频谱分析,使振动测量仪器的用途更加广泛。 (二)分类与特点 振动测量仪器按功能来分:分为工作测振仪、振动烈度计、振动分析仪、激振器 (或振动台)、振动激励控制器、振动校准器测量机械振动,具有频谱分析功能的称为频谱分析仪,具有实时频谱分析功能的称为实时频谱分析仪或实时信号分析仪,具有多路测量功能的多通道声学分析仪。 振动测量仪器按采用技术来分:分为模拟振动计、数字化振动计和多通道实时信号分析仪。 振动测量仪器按测量对象来分:分为测量机械振动的通用振动计,测量振动对人体影响的人体(响应)振动计、测量环境振动的环境振动仪和振动激励控制器。 工作测振仪特点 通常是手持式,操作简单、价格便宜,只测量并显示振动的加速度、速度和位移等。以前用电表显示测量值,现在都是用数字显示。通常不带数据储存和打印功能,用于一般振动测量。振动烈度计是指专用于测量振动烈度(10 Hz?1000 Hz 频率范围的速度有效值)的振动测量仪器。 实时信号分析仪特点 实时信号分析仪是一种数字频率分析仪,它采用数字信号处理技术代替模拟电路来 进行振动的测量和频谱分析。当模拟信号通过采样及A/D转换成数字信号后,进入数字计算机进行运算,实现各种测量和分析功能。实时信号分析仪可同时测量加速度、速度和位移,均方根、峰值(Peak、峰-峰值(Peak-Peak检波可并行工作。不仅分析速度快,而且也能分析瞬态信号,在显示器上实时显示出频谱变化,还可将分析得到的数据输出并记录下来。 动态信号测试和分析系统特点 包含多路高性能数据采集、多功能信号发生、基本信号分析,还可以选择高级信号分析;以及模态分析、故障分析等应用。尤其适合振动、噪声、冲击、应变、温度等信号的采集和分析。 人体(响应、振动计特点 主要用于测量和分析振动对人体的影响。人体振动又分为人体全身振动和手 传振动,测量计权振动加速度有效值。仪器性能应符合GB/T 23716-2009《人体对 振动的响应一一测量仪器》的要求,对于全身振动(频率计权W c、W d、W e、W j、W k、)和用于进行轨道车辆舒适度评价的全身振动(频率计权W b)频率范围为0.5 Hz?80 Hz,对于建筑物内连续与冲击引起的振动(频率计权W m)频率范围为1 Hz?80 Hz,

振动量的常用测量方法三种

振动量的常用测量方法三种: 1. 机械式测量方法:主要用杠杆放大原理或惯性原理加上杠杆放大原理。 2. 电测法:将振动参量(位移、速度、加速度)转换成电信号,经电子系统放大后进行测 量记录的方法。 3. 光测法:把振动参量转换成光信号,经光学系统放大后,加以测量和记录。 直接为震动试验提供振动源的设备是激振设备,包括:振动台和激振器两类;有机械式、电动式、电动液压式、压电式。 1. 机械式振动台的工作原理: (1) 离心式:利用偏心块绕定轴转动,产生离心力。质量为m,偏心距r 的质量块,以角 速度ω绕O 转动,产生离心力 t m r t F F t m r t F F y x ωωωωωωsin sin cos cos 22==== 为了产生单一方向激振力,将其设计成双轴式结构,即把两偏心块对称地安装在两轴上,并使偏心块作反向同角速度的旋转。水平分力相互抵消,只剩下按正弦规律变化的垂直激振力。 通常偏心质量块由活动扇形块与固定扇形块构成。若改变活动扇形块的角度α ,则可以改变激振力值,也就是台面的振幅值。当 180=α时,离心力为最大,此时激振力为: t mr F ωωsin 22= 振动台的运动方程: F ky y M -=+ 台面的振幅: ) (22022 ωωω-=M mr A M k =0ω为振台的固有频率;m 每组偏心块的质量;r 偏心距;M 运动部分的总质量 当0ωω>>,台面的振幅不随激振频率改变,同偏心质量、偏心距成正比M mr A 2= 。

(2.)凸轮式振动台: 台面振幅由偏心距r 决定:t r y ωsin =,频率由直流电机的转速决定。为了调节振幅,常用同轴的双凸轮装置。通过调节内外两凸轮的相对位置调节凸轮的偏心距,即调节了振幅。 机械式振动台的特点: 简单、可靠,承载力较大。由于旋转机构的惯性大,所以工作的频率不高,低于50~60Hz 。另外,机件之间存在加工间隙,工作时会引起碰撞,影响台面波形。用于中小型模型试验,也用于对产品作环境实验。 2. 电磁式振动台: 电磁式振动台是把交变的电量变为交变的机械量的装置。利用带电导线在磁场里受到安培力的作用,使得导线产生运动的原理制成的。 410102.0-?=BLI F B ——磁场强度 L ——导线有效长度 I ——导线内电流强度 改变磁力线圈中电流的频率及强度,就能改变振动台振动的频率及幅值。 3. 电气液压式振动台 工作过程:电信号转化为大功率液压信号,液压油进入激振器,激振器带动台面按照输入电信号的规律振动。 4. 大型模拟地震振动台 地震荷载是因地面运动而引起的一种惯性力,仅用激振器所产生的集中力来模拟地震力是不确切的。大型模拟地震振动台可以模拟地震运动,具有大振幅、大出力、多方向震动及频率低的特点。

振动系统固有频率的测量

一、实验目的 1、了解和熟悉共振前后利萨如图形的变化规律和特点; 2、学习用“共振法”测试机械振动系统的固有频率(幅值判别法和相位判别法); 3、学习用“锤击法”测试机械振动系统的固有频率(传函判别法); 4、学习用“自由衰减振动波形自谱分析法”测试振动系统的固有频率(自谱分析法)。 二、实验装置框图 图1 实验装置框图 三、实验原理 对于振动系统,经常要测定其固有频率,最常用的方法就是用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。另一种方法是锤击法,用冲击力激振,通过输入的力信号和输出的响应信号进行传函分析,得到各阶固有频率。以下对这两种方法加以说明: 1、简谐力激振 简谐力作用下的强迫振动,其运动方程为: 方程式的解由这两部分组成: 式中常数由初始条件决定:

, 其中: 代表阻尼自由振动基,代表阻尼强迫振动项。 自由振动周期:,强迫振动项周期: 由于阻尼的存在,自由振动基随时间不断得衰减消失。最后,只剩下后两项,也就是通常讲的定常强动,即强迫振动部分: 通过变换可写成: 式中: , 设频率比代入公式 则振幅:,滞后相位角: 因为为弹簧受干扰力峰值作用引起的静位移,所以振幅A可写成:

其中称为动力放大系数: 动力放大系数β是强迫振动时的动力系数即动幅值与静幅值之比。这个数值对拾振器和单自由度体系的振动的研究都是很重要的。 当,即强迫振动频率和系统固有频率相等时,动力系数迅速增加,引起系统共振,由式: 可知,共振时振幅和相位都有明显变化,通过对这两个参数进行测量,我们可以判别系统是否达到共振动点,从而确定出系统的各阶振动频率。 (一)幅值判别法 在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过示波器,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有频率。这种方法简单易行,但在阻尼较大的情况下,不同的测量方法的出的共振动频率稍有差别,不同类型的振动量对振幅变化敏感程度不一样,这样对于一种类型的传感器在某阶频率时不够敏感。 (二)相位判别法 相位判别是根据共振时特殊的相位值以及共振前后相位变化规律所提出来的一种共振判别法。在简谐力激振的情况下,用相位法来判定共振是一种较为敏感的方法,而且共振是的频率就是系统的无阻尼固有频率,可以排除阻尼因素的影响。 激振信号为: 位移信号为: 速度信号为: 加速度信号为: (三)位移判别法 将激振动信号输入到采集仪的第一通道(即x轴),位移传感器输出信号或通过ZJT-601A型振动教学仪积分档输出量为位移的信号输入第二通道(即y轴),此时两通道的信号分别为: 激振信号为: 位移信号为: 共振时,,x轴信号和y轴信号的相位差为π/2,根据利萨如图原理可知,屏幕上的图象将是一个正椭圆。当ω略大于ωn或略小于ωn时,图象都将由正椭圆变为斜椭圆,其变化过程如下图所示。因此图象由斜椭圆变为正椭圆的频率就是振动体的固有频率。

振动平台系列设计试验

机械振动平台 设计性实验讲义(草) 编写:封玲 物理教学实验中心 2011.3.

机械振动平台系列设计实验 振动是声学、地震学、建筑力学、机械原理、造船等所必需的基础知识,也是光学、电学、交流电工学、无线电技术以及原子物理学所不可缺少的基础,这是因为除机械振动外,自然界中还存在很多类似于机械振动的现象。在不同的振动现象中最基本最简单的振动是简谐振动,一切复杂的振动都可以分解为一系列不同频率的简谐振动组合而成,这样的分解在数学上的依据是傅立叶级数或傅立叶积分的理论。让我们从研究最基础的简谐振动开始进行振动的研究吧。 平台仪器 转动传感器(CI-6538):它的核心是一个光学编码器,每转(360°)最多可采集1440个数据点。通过数据采集与处理软件可以设置每转采集数据点的个数,有360个数据点和1440个数据点(即分辨率为1°或360°)两种设置,旋转的方向同样可被感知。转动传感器最常用于测量物体的转动角度与转动位置。 光电门(ME-94F98A ):光电门也称为光电开关,利用狭窄的红外光束和快速的下降时间为计时提供精确的信号。当光门的光被挡住时,与光门相连的数字通道为0电压状态;光门透光时,与光门相连的数字通道为5V 电压状态。光门传感器相当于一个数字毫秒计,它通过测量固定挡光宽度(S )和挡光时间(t),从而可以得到该物体经过光门时的运动速度 (t S v / )。 机械振荡驱动器(ME-8750):用于驱动低频(0.3-3 Hz )、高转矩、正弦振荡设备,它由DC 电机、位移驱动臂、装配支架组成。驱动臂通过拉动细线,带动振荡设备进行正弦振荡。 功率放大器 II (CI-6552A ):是PASCO 计算机接口的附件。它放大从电脑输出的信 号,可以作为一个可控的DC 电源或AC 函数发生器。在DA TA STUDIO 软件控制下,可以生成正弦波sine 、方波square 、三角波triangle 和锯齿波sawtooth 。这意味着电脑现在可被用作DC 或AC 信号发生器给外电路供电。 直流电源(GPS —1850D ):18V/5A 。 受迫振动组合仪:该仪器是上述各仪器散件的组装,专用以测量研究受迫振动和受迫阻尼振动的运动规律。组装仪器主要包括:转动传感器(CI-6538)2个、金属圆盘1个、阻尼磁铁1个、弹簧2个、机械振荡驱动器(ME-8750)1个、A 型大支架1个等。

机械振动测试系统综述

机械振动测试系统综述 翟 慧 强 张 金 萍 于 玲 王 丹 (沈阳化工大学 机械工程学院,辽宁 沈阳 110142) 摘 要:机械振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的机械振动测试系统便成为测试技术的重要内容。本文首先概述了机械振动测试系统的发展历程。总结和分析了发展机械振动 测试系统的基本组成和应用理论。根据不同原理列举了几种机械振动测试系统的类型并对不同的机械振动 测试系统进行分析,探讨了他们的优点和不足。最后在此基础上分析了机械振动测试系统的几个发展趋势和 系统建设中仍然要注意的抗干扰问题和故障诊断问题。 关键词:机械振动测试系统;测试技术;抗干扰;故障诊断 1 引言 振动问题广泛存在于热门的生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试系统应运而生。 振动测试系统有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2]。无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,机械振动测试在理论方面也有了长足的发展,1656年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2机械振动测试系统的基本理论与组成 机械振动测试就是利用现代一些测试手段,对所研究物体的机械振动进行测量,并对测得的信号进行更细致的分析,以期获得在各种工作状态下物体的机械振动特性,从而判断物体的机械振动特性是否符合要求。 振动测试系统主要由传感器、信号调节部分、数模转换器、信号处理部分和数据记录部分、反馈部分等组成。传感器是将被测量转换成某种电信号的部件。是整个测试系统最重要的组成部分。信号调节部分是把传感器的输出信号转换成适合于进一步传输和处理的形式。经过加工处理使得原始信号更加便于分析和处理。这种信号的转换多数是电信号直接的转换。信号处理部分是对来自信号调节环节的信号进行各种运算和分析。这也是测试的核心意义所在,包括对时域和频域的分析,已得到各种参数。数模转换器是采用计算机等进行测试、控制系统时进行模拟信号与数字信号的相互转换的环节。测试系统的主要作用是更加便捷易懂的将初试信号转换成某种信号进行提取分析。因此最重要的是信号不能失真,不出现扰动。这就对测试系统提出了较为严格的要求[3]。 3.振动测试系统的分类 近几年来,振动测试理论与方法都有了很大的发展。目前振动测试方法按其原理不同可以分为四类。直观类、光学类、机械类和电测类。直观法操作简便,不受各种器材的限制。

相关主题
文本预览
相关文档 最新文档