中国古代数学中的算法案例(上课)
- 格式:ppt
- 大小:1.29 MB
- 文档页数:35
示范教案错误!教学分析在学生学习了算法的初步知识,理解了表示算法的算法步骤、程序框图和程序三种不同方式以后,再结合典型算法案例,让学生经历设计算法解决问题的全过程,体验算法在解决问题中的重要作用,体会算法的基本思想,提高逻辑思维能力,发展有条理地思考与数学表达能力.三维目标1.理解算法案例的算法步骤和程序框图,进一步体会算法的思想.2.引导学生得出自己设计的算法程序,提高分析问题和解决问题的能力.重点难点教学重点:引导学生得出自己设计案例的算法步骤、程序框图和算法程序.教学难点:编写算法案例的程序.课时安排2课时错误!第1课时求两个正整数最大公约数的算法导入新课思路1(情境导入).大家喜欢打乒乓球吧,由于东、西方文化及身体条件的不同,西方人喜欢横握拍打球,东方人喜欢直握拍打球,对于同一个问题,东、西方人处理问题方式是有所不同的.在小学,我们学过求两个正整数的最大公约数的方法:先用两个数公有的质因数连续去除,一直除到所得的商是互质数为止,然后把所有的除数连乘起来。
当两个数公有的质因数较大时(如8 251与6 105),使用上述方法求最大公约数就比较困难.教师点出课题.思路2(直接导入).前面我们学习了算法步骤、程序框图和算法语句.今天我们将通过“更相减损之术”来进一步体会算法的思想.推进新课错误!错误!错误!讨论结果:(1)如果整数a能被整数b整除,则b称为a的一个约数.(2)两个整数m与n的公约数中的最大值称为m与n的最大公约数.(3)求两个整数a与b的最大公约数,“更相减损之术”的算法步骤:对于给定的两个数,以两数中较大数减去较小的数,然后将差和较小数构成一对新数,再用较大数减去较小的数,反复执行此步骤,直到差数和较小的数相等,此时相等的两数便为原两数的最大公约数.程序如下:错误!错误!思路1例求78和36的最大公约数.分析:用(a,b)形写出求解过程.解:(78,36)→(42,36)→(6,36)→(6,30)→(6,24)→(6,18)→(6,12)→(6,6).即78和36的最大公约数是6.点评:这种算法,只做简单的减法,操作方便、易懂,也完全符合算法的要求,它完全是机械的运算,据此很容易编出程序,在计算机上运算.思路2求294与84的最大公约数.分析:由于这两个数都是偶数,同除以2后再用“更相减损之术".解:∵294÷2=147,84÷2=42,∴取147与42的最大公约数后再乘2.(147,42)→(105,42)→(63,42)→(21,42)→(21,21).∴294与84的最大公约数为21×2=42.点评:当m与n均为偶数时,可以同除以2后再求解。
《中国古代数学中的算法案例》教案教学目标1.理解更相减损术、割圆术以及秦九韶算法中蕴含的数学原理,并能根据这些原理进行算法分析.2.基本能根据算法语句与Scilab并写出算法程序.3.在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,以及理解割圆术与秦九韶算法的原理与应用.教学重难点重点:更相减损术求最大公约数的方法,割圆术的理解,秦九韶算法的运用.难点:割圆术的理解,秦九韶算法的算法理解与运用.教学设计在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数.1.更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术.更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损,求其等也,以等数约之。
翻译出来为:第一步:任意给出两个正数;判断它们是否都是偶数.若是,用2约简;若不是,执行第二步.第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数.继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.例1用更相减损术求98与63的最大公约数.解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=3563-35=28 35-28=7 28-7=21 21-7=14 14-7=7 98与63的最大公约数是7.练习:用更相减损术求两个正数84与72的最大公约数.(答案:12)2.割圆术我国魏晋时期的数学家刘徽,他在注《九章算术》中采用正多边形面积逐渐逼近圆面积的算法计算圆周率π,用刘徽自己的原话就是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体而无所失矣.”他的思想后来又得到祖冲之的推进和发展,计算出圆周率的近似值在世界上很长时间里处于领先地位.刘徽从圆内正接六边形开始,让边数逐渐加倍,逐个算出这些圆内正多边形的面积,从而得到一系列逐渐递增的数值,来一步一步逼近圆面积,最后求出圆周率的近似值.第一,从半径为1的圆内接正六边形开始,计算它的面积S 6;第二,逐步加倍圆内接正多边形的边数,分别计算圆内接正十二边形,正二十四边形,正四十八边形,…的面积,到一定的边数(设为2m )为止,得到一列递增的数,S 6,S 12,S 24,S 48,…,S 2m .第三,S 2m 近似等于圆面积.下面的关键是找出正n 边形的面积与正2n 边形的面积之间的关系,以便递推. 设圆的半径为1,正n 边形的边长AB 为xn ,弦心距OG 为h n ;面积为S n ,根据勾股定理,得:容易知道x 6=1,正2n 边形的面积等于正n 边形的面积加上n 个等腰三角形的面积,即正2n 边形的边长为于是由66S =⨯求得S 12=3;S 24≈3.105828;……例2 用Scilab 表示圆内正六边形求π的不足近似值.3.秦九韶算法我们已经学过了多项式的计算,下面我们计算一下多项式1)(2345+++++=x x x x x x f 当5=x 时的值,并统计所做的计算的种类及计算次数.根据我们的计算统计可以得出我们共需要10次乘法运算,5次加法运算.我们把多项式变形为:1)))1(1(1()(2+++++=x x x x x x f 再统计一下计算当5=x 时的值时需要的计算次数,可以得出仅需4次乘法和5次加法运算即可得出结果.显然少了6次乘法运算.这种算法就叫秦九韶算法.1.秦九韶计算多项式的方法2(6)n n h x n ==≥21...(1)2n n n n S S n x h =+-2n x =1210123120132211012211)))((())(()()(a a x a x a x a a x a x a x a x a a x a x a x a x a a x a x a x a x a x f n n n n n n n n n n n n n n n n n n n +++++==+++++=+++++=+++++=--------------例3已知一个5次多项式为8.07.16.25.325)(2345-+-++=x x x x x x f 用秦九韶算法求这个多项式当5=x 时的值.练习设计利用秦九韶算法计算5次多项式 0122334455)(a x a x a x a x a x a x f +++++=当0x x =时的值的程序框图. 课程小结1、熟悉更相减损术、割圆术以及秦九韶算法的原理.2、能熟练运用它们的原理进行一些运算.。
高中数学教案:中国古代数学中的算法案例一、教学目标:1. 了解中国古代数学中的算法案例,理解其背后的数学原理。
2. 通过对古代数学算法的学习,提高学生的逻辑思维能力和解决问题的能力。
3. 增强学生对中国古代数学文化的认识,培养学生对中国传统文化的兴趣和尊重。
二、教学内容:第一课时:算法的概念及中国古代数学算法简介1. 引入算法概念,让学生了解算法的定义和特点。
2. 介绍中国古代数学算法的基本概念和发展历程。
第二课时:分解质因数算法案例1. 讲解分解质因数的概念和意义。
2. 通过具体案例,引导学生掌握分解质因数的方法和步骤。
第三课时:秦九韶算法案例1. 介绍秦九韶算法的原理和应用。
2. 通过具体案例,让学生学会使用秦九韶算法计算多项式的值。
第四课时:孙子定理算法案例1. 讲解孙子定理的背景和意义。
2. 通过具体案例,让学生掌握孙子定理的应用方法和步骤。
第五课时:中国剩余定理算法案例1. 介绍中国剩余定理的定义和性质。
2. 通过具体案例,引导学生理解和运用中国剩余定理。
三、教学方法:1. 采用讲授法,讲解算法的基本概念和原理。
2. 运用案例教学法,让学生通过具体案例理解和掌握算法的应用。
3. 鼓励学生进行分组讨论和合作交流,提高学生的动手能力和团队协作能力。
四、教学评价:1. 课后作业:布置有关古代数学算法案例的练习题,检验学生对知识的掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评估学生的学习态度和效果。
3. 小组讨论:评估学生在分组讨论中的表现,包括逻辑思维、合作交流等方面。
五、教学资源:1. 教材:《高中数学》相关章节。
2. PPT课件:制作与教学内容相关的PPT课件,辅助讲解和展示。
3. 练习题库:收集和整理有关古代数学算法的练习题,供课后作业使用。
4. 参考资料:提供一些关于中国古代数学算法的参考书籍和文章,供有兴趣深入了解的学生查阅。
六、教学步骤:1. 引入新课:回顾上节课的内容,引出本节课的学习主题——中国古代数学中的算法案例。
1.3中国古代数学中的算法案例一、教学目标:1、了解中国古代数学中求两个正整数的最大公约数的算法、割圆术算法及秦九韶算法2、通过对三种算法的学习,更好的理解将要解决的问题算法化的思维方式,并注意理解推导割圆术的操作步骤二、教学重点和难点:教学重点:了解“更相减损术”、“割圆术”算法及秦九韶算法教学难点:体会算法案例中蕴含的算法思想,利用它解决具体问题三、教学方法和手段:教师指导学生学习,以学生自学为主四、教学过程:1、引导学生对学过的知识进行回顾,使学生理清知识网络,并指明中国古代数学的发展“寓理于算”,不同于西方数学,有自己的鲜明特色2、求两个正整数的最大公约数的算法——辗转相除法,更相减损之术(等值算法)例1求78和36的最大公约数法一辗转相除法步骤:计算出78÷36的余数为6,再将前面的余数36作为新的被除数,36÷6=6余数为0,则此时除数6即为78和36的最大公约数理论依据:a=nb+r→r=a-nb,得a、b与b、r有相同的公约数即(78,36)→(6,36),36能被6整除,余数为0。
法二更相减损之术(等值算法)指导学生阅读书p27-28页,总结步骤,归纳出算法:S1输入两个正整数a、b(a)b);S2如果a≠b,执行S3,否则执行S5;S3将a-b赋予r;S4若b〉r,则把b赋予a,把r赋予b,否则把r赋予a,重新执行S2;S5输出最大公约数b。
程序:a=input(“a=”);b=input(“b=”);while a<>bif a>b;a=a-b;elseb=b-a;endendprint(%io(2),a,b)总结:辗转相除法步骤较少;更相减损之术(等值算法)虽然有些步骤较长,但运算简单,易懂。
练习:用等值算法求下列两数的最大公约数,并用辗转相除法验证3、割圆术——估计圆周率的近似值阅读书p28-29页步骤:第一,从半径为l的圆内接正六边形开始,计算它的面积S6;第二,逐步加倍圆内接正多边形的边数,分别计算圆内接正十二边形,正二十四边形,正四十八边形。
第一课时1.3.1 辗转相除法与更相减损术(1)教学目标(a)知识与技能1.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
2.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
(b)过程与方法在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
(c)情态与价值1.通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
2.在学习古代数学家解决数学问题的方法的过程中培养严谨的逻辑思维能力,在利用算法解决数学问题的过程中培养理性的精神和动手实践的能力。
(2)教学重难点重点:理解辗转相除法与更相减损术求最大公约数的方法。
难点:把辗转相除法与更相减损术的方法转换成程序框图与程序语言。
(3)学法与教学用具学法:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。
教学用具:电脑,计算器,图形计算器(4)教学设想(一)创设情景,揭示课题1.教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?2.接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。
(二)研探新知1.辗转相除法例1 求两个正数8251和6105的最大公约数。
(分析:8251与6105两数都比较大,而且没有明显的公约数,如能把它们都变小一点,根据已有的知识即可求出最大公约数)解:8251=6105×1+2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。