遗传算法基本理论及实例
- 格式:doc
- 大小:304.50 KB
- 文档页数:20
遗传算法例题详解遗传算法是一种模拟自然选择和遗传机制的优化方法,它模拟了生物进化的过程,通过模拟种群的遗传变异和适应度选择,寻找最优解。
下面我们以一个简单的例题来详细解释遗传算法的原理和应用。
假设我们要解决一个简单的优化问题,找到函数 f(x) = x^23x + 4 的最小值,其中 x 的取值范围在 [0, 5] 之间。
首先,我们需要定义遗传算法的基本要素:1. 个体表示,在这个例子中,个体可以用一个实数来表示,即x 的取值。
2. 适应度函数,即要优化的目标函数,对于这个例子就是 f(x) = x^2 3x + 4。
3. 遗传操作,包括选择、交叉和变异。
接下来,我们用遗传算法来解决这个优化问题:1. 初始化种群,随机生成一定数量的个体作为初始种群。
2. 评估适应度,计算每个个体的适应度,即计算函数 f(x) 的值。
3. 选择操作,根据个体的适应度来选择父代个体,适应度越高的个体被选中的概率越大。
4. 交叉操作,对选中的父代个体进行交叉操作,生成新的个体。
5. 变异操作,对新生成的个体进行变异操作,引入一定的随机性。
6. 重复步骤2-5,直到满足停止条件(如达到迭代次数或找到满意的解)。
通过不断地迭代选择、交叉和变异操作,种群中的个体将不断进化,最终找到函数的最小值对应的 x 值。
在上述例题中,遗传算法通过模拟自然选择和遗传机制,不断优化种群中个体的适应度,最终找到了函数 f(x) = x^2 3x + 4 的最小值对应的 x 值。
这个例子展示了遗传算法在优化问题中的应用,它能够有效地搜索解空间,找到全局最优解或者接近最优解的解。
遗传算法在实际应用中有着广泛的应用,如工程优化、机器学习、数据挖掘等领域。
第七章遗传算法应用举例遗传算法是一种模拟自然选择和遗传机制的计算方法,它可以用来解决很多实际问题。
以下是几个遗传算法应用的实例。
1.旅行商问题(TSP):旅行商问题是一个经典的组合优化问题,目标是找到最短路径来访问一系列城市并返回原始城市。
遗传算法可以通过编码城市序列,并使用交叉、变异和选择操作进行优化。
通过进行迭代,遗传算法可以更优的路径,并得到近似最优的解。
2.机器学习特征选择:在机器学习中,特征选择是一种减少特征集合维度的方法,以提高模型的性能和泛化能力。
遗传算法可以用来选择最佳的特征子集,通过优化目标函数(例如分类准确率或回归误差)来评估子集的优劣,并通过交叉和变异操作不断改进。
3.组合优化问题:遗传算法也广泛应用于组合优化问题,如背包问题、任务调度、物流路径规划等。
通过定义适应度函数和优化目标,遗传算法可以最优的组合并提供近似解。
4.神经网络训练:神经网络是一种模拟人脑神经元相互连接和传递信息的计算模型。
训练神经网络需要调整网络权重和参数,以最小化损失函数。
遗传算法可以用作优化算法,通过定义染色体编码网络参数,并通过交叉和变异操作对网络进行进化,以找到更好的网络结构和参数。
5.机器调参:机器学习算法通常包含许多超参数需要调优,例如决策树的深度、神经网络的学习率等。
遗传算法可以用来超参数的最佳组合,并通过交叉和变异操作对超参数进行优化。
6.图像处理:遗传算法被广泛应用于图像处理领域,如图像增强、目标检测、图像分割等。
通过定义适应度函数和优化目标,遗传算法可以优化图像处理算法的参数和参数组合,以提高图像质量和算法效果。
7.电力系统优化:电力系统优化包括电力负荷优化、电力设备配置优化、电力网路规划等。
遗传算法可以用来优化电力系统的各种参数和变量,以提高电力系统的效率和可靠性。
总之,遗传算法是一种强大而灵活的优化算法,在许多领域都可以应用。
它通过模拟生物进化过程,通过选择、交叉和变异操作,问题的解空间,并找到最优或近似最优的解。
遗传算法经典实例遗传算法是一种从若干可能的解决方案中自动搜索最优解的算法,它可以用来解决各种复杂的优化问题,是进化计算的一种。
它的基本过程是:对初始种群的每个个体都估计一个适应度值,并从中选择出最优的个体来作为新一代的父本,从而实现进化的自然演化,经过几代的迭代最终得到最优的解。
在许多复杂的优化问题中,遗传算法能产生比其它方法更优的解。
下面,我们将列出几个典型的遗传算法经典实例,以供参考。
1.包问题背包问题可以分解为:在一定的物品中选择出最优的物品组合需求,在有限的背包中装入最大价值的物品组合。
针对这个问题,我们可以使用遗传算法来求解。
具体而言,首先,需要构建一个描述染色体的数据结构,以及每个染色体的适应度评估函数。
染色体的基本单元是每个物品,使用0-1二进制编码表示该物品是否被选取。
然后,需要构建一个初始种群,可以使用随机生成的方式,也可以使用经典进化方法中的锦标赛选择、轮盘赌选择或者较优概率选择等方法生成。
最后,使用遗传算法的基本方法进行迭代,直至得出最优解。
2.着色问题图着色问题是一个比较复杂的问题,它涉及到一个无向图的节点和边的颜色的分配。
其目的是为了使相邻的节点具有不同的颜色,从而尽可能减少图上边的总数。
此问题中每种可能的颜色可以看作一个个体。
染色体中每个基因对应一条边,基因编码可以表示边上节点的着色颜色。
求解这个问题,我们可以生成一个初始群体,通过计算它们的适应度量,然后使用遗传算法的基本方法进行迭代,直至收敛于最优解。
3.舍尔旅行商问题费舍尔旅行商问题是一个求解最短旅行路径的问题,它可以分解为:从起点到终点访问给定的一组城市中的每一个城市,并且回到起点的一个最短旅行路径的搜索问题。
用遗传算法求解费舍尔旅行商问题,通常每个个体的染色体结构是一个由城市位置索引构成的序列,每个索引对应一个城市,表示在旅行路径中的一个节点,那么该路径的适应度就是城市之间的距离和,通过构建一个初始种群,然后结合遗传算法中的进化方法,如变异、交叉等进行迭代,最终得出最优解。
引言概述遗传算法是一种启发式优化算法,其灵感来源于生物进化理论,主要用于解决复杂的优化问题。
通过模拟生物进化的过程,遗传算法能够通过遗传变异和适应度选择来优秀的解决方案。
本文将通过一些实例来说明遗传算法的应用。
正文内容一、机器学习中的遗传算法应用1.基因选择:遗传算法可以用于寻找机器学习模型中最佳的特征子集,从而提高模型的性能。
2.参数优化:遗传算法可以用于搜索机器学习模型的最佳参数组合,以获得更好的模型效果。
3.模型优化:遗传算法可以用于优化机器学习模型的结构,如神经网络的拓扑结构优化。
二、车辆路径规划中的遗传算法应用1.路径优化:遗传算法可以应用于车辆路径规划中,通过遗传变异和适应度选择,寻找最短路径或者能够满足约束条件的最优路径。
2.交通流优化:遗传算法可以优化交通系统中的交通流,通过调整信号灯的时序或者车辆的路径选择,减少拥堵和行程时间。
三、物流配送中的遗传算法应用1.车辆调度:遗传算法可用于优化物流配送的车辆调度问题,通过遗传变异和适应度选择,实现车辆最优的配送路线和时间安排。
2.货物装载:遗传算法可以用于优化物流运输中的货物装载问题,通过遗传变异和适应度选择,实现货物的最优装载方式。
四、生物信息学中的遗传算法应用1.序列比对:遗传算法可以用于生物序列比对问题,通过遗传变异和适应度选择,寻找最佳的序列匹配方案。
2.基因组装:遗传算法可以用于基因组装问题,通过遗传变异和适应度选择,实现基因组的最优组装方式。
五、电力系统中的遗传算法应用1.能源调度:遗传算法可用于电力系统中的能源调度问题,通过遗传变异和适应度选择,实现电力系统的最优能源调度方案。
2.电力负荷预测:遗传算法可以用于电力负荷预测问题,通过遗传变异和适应度选择,实现对电力负荷的准确预测。
总结遗传算法在机器学习、车辆路径规划、物流配送、生物信息学和电力系统等领域都有广泛的应用。
通过遗传变异和适应度选择的策略,遗传算法能够搜索到最优解决方案,从而优化问题的求解。
遗传算法的原理及其应用实例遗传算法是一种受生物进化启发的优化算法。
它模拟了自然进化的过程,通过选择、交叉和变异等方式不断优化解决问题的方法。
遗传算法已经在很多领域得到了广泛应用,如机器学习、图像处理、数据挖掘、优化、智能控制等领域。
遗传算法的原理遗传算法的三个基本操作是选择、交叉和变异。
选择操作是基于适应度函数对个体进行评估,优秀的个体会有更大的概率被选中。
交叉操作是将两个或多个个体的部分基因进行互换,在新一代中产生更好的个体。
变异操作是根据一定的概率对个体的某些基因进行随机变异,以增加新的可能性。
遗传算法的应用实例1.优化问题遗传算法已成功应用于很多优化问题中。
例如,在工程设计领域中,遗传算法可以用来求解复杂的数学模型,以优化设计变量,如大小、材料和形状等,来满足特定的需求。
在机器学习和人工智能领域中,遗传算法被广泛用于模型优化和参数调整。
2.路径规划遗传算法还可以被用来解决复杂路径规划问题,如飞机航线规划、智能出租车路径规划等。
通过评估适应度函数,遗传算法可以找到一条最短或最优的路线,可以用于优化运输成本、提高效率等。
3.学习算法遗传算法还可用于生成人工神经网络的拓扑结构,进一步实现学习算法的优化。
遗传算法能够通过超参数的选择,使神经网络表现更好的能力,因此在很多领域中如自然语言处理、图像处理、语音识别等领域中被广泛应用。
总之,遗传算法不仅具有优化复杂问题的能力,而且还是一种可扩展,灵活,易用和高度可定制的算法。
随着计算力的增强和算法技术的提高,遗传算法在未来的发展中将会有更为广泛的应用。
基本遗传算法及应用举例遗传算法(Genetic Algorithms)是一种借鉴生物界自然选择和自然遗传机制的随机、高度并行、自适应搜索算法。
遗传算法是多学科相互结合与渗透的产物。
目前它已发展成一种自组织、自适应的多学科技术。
针对各种不同类型的问题,借鉴自然界中生物遗传与进化的机理,学者们设计了不同的编码方法来表示问题的可行解,开发出了许多不同环境下的生物遗传特征。
这样由不同的编码方法和不同的遗传操作方法就构成了各种不同的遗传算法。
但这些遗传算法有共同的特点,即通过对生物的遗传和进化过程中的选择、交叉、变异机理的模仿来完成对最优解的自适应搜索过程。
基于此共同点,人们总结出了最基本的遗传算法——基本遗传算法。
基本遗传算法只使用选择、交叉、变异三种基本遗传操作。
遗传操作的过程也比较简单、容易理解。
同时,基本遗传算法也是其他一些遗传算法的基础与雏形。
1.1.1 编码方法用遗传算法求解问题时,不是对所求解问题的实际决策变量直接进行操作,而是对表示可行解的个体编码的操作,不断搜索出适应度较高的个体,并在群体中增加其数量,最终寻找到问题的最优解或近似最优解。
因此,必须建立问题的可行解的实际表示和遗传算法的染色体位串结构之间的联系。
在遗传算法中,把一个问题的可行解从其解空间转换到遗传算法所能处理的搜索空间的转换方法称之为编码。
反之,个体从搜索空间的基因型变换到解空间的表现型的方法称之为解码方法。
编码是应用遗传算法是需要解决的首要问题,也是一个关键步骤。
迄今为止人们已经设计出了许多种不同的编码方法。
基本遗传算法使用的是二进制符号0和1所组成的二进制符号集{0,1},也就是说,把问题空间的参数表示为基于字符集{0,1}构成的染色体位串。
每个个体的染色体中所包含的数字的个数L 称为染色体的长度或称为符号串的长度。
一般染色体的长度L 为一固定的数,如X=10011100100011010100表示一个个体,该个体的染色体长度L=20。
遗传算法及几个例子遗传算法是一种模拟自然选择和遗传机制的优化算法。
它是由约翰·霍兰德(John Holland)于1975年首次提出的。
遗传算法通过模拟生物的进化过程,利用适者生存的原则来问题的最优解。
遗传算法的主要应用领域包括优化问题、机器学习、组合优化、图像处理等。
本文将介绍遗传算法的工作原理及几个应用实例。
首先,遗传算法的工作原理是模拟自然界的进化过程。
它由三个基本操作组成:选择、交叉和变异。
选择操作是指根据适应度函数选择出优秀个体,将它们作为父代参与下一代的繁衍。
适应度函数是用来评估个体在问题空间中的优劣程度的函数。
交叉操作是指将两个父代个体的染色体进行交换,产生子代个体。
交叉操作可以通过染色体的交叉点位置进行分类,如一点交叉、多点交叉、均匀交叉等。
变异操作是指对个体的部分基因进行突变,以增加空间的多样性。
变异操作在遗传算法中起到"探索"新解的作用。
下面是几个遗传算法的应用实例:1. 旅行商问题(Traveling Salesman Problem,TSP)旅行商问题是指在给定的一系列城市中,找到一条路径使得旅行商遍历每个城市且每个城市仅访问一次,最终回到起点城市。
遗传算法可以通过优化路径找到满足条件的最短路径。
2.集装箱装载问题集装箱装载问题是指如何在给定的一系列货物和一些规定的集装箱中,找到一种最佳的装载方案,以使得尽可能多的货物被装载到集装箱中。
遗传算法可以通过调整货物装载顺序和集装箱布局等来解决这个问题。
3.入侵检测系统入侵检测系统(Intrusion Detection System,IDS)用于检测计算机网络中的恶意入侵行为。
遗传算法可以通过学习适应网络环境的特征和规则,以准确地识别出正常和异常的网络流量。
4.机器学习中的特征选择和参数优化在机器学习任务中,特征的选择和参数的优化对于模型性能的提升非常重要。
遗传算法可以通过优化特征子集的选择和调整模型参数的取值,来提高机器学习模型的性能。
遗传算法介绍(内含实例)现代生物遗传学中描述的生物进化理论:遗传物质的主要载体是染色体(chromsome),染色体主要由DNA和蛋白质组成。
其中DNA为最主要的遗传物质。
基因(gene)是有遗传效应的片断,它存储着遗传信息,可以准确地复制,也能发生突变,并可通过控制蛋白质的合成而控制生物的状态.生物自身通过对基因的复制(reproduction)和交叉(crossover,即基因分离,基因组合和基因连锁互换)的操作时其性状的遗传得到选择和控制。
生物的遗传特性,使生物界的物种能保持相对的稳定;生物的变异特性,使生物个体产生新的性状,以至于形成了新的物种(量变积累为质变),推动了生物的进化和发展。
遗传学算法和遗传学中的基础术语比较染色体又可以叫做基因型个体(individuals),一定数量的个体组成了群体(population),群体中个体的数量叫做群体大小。
各个个体对环境的适应程度叫做适应度(fitness)遗传算法的准备工作:1)数据转换操作,包括表现型到基因型的转换和基因型到表现型的转换。
前者是把求解空间中的参数转化成遗传空间中的染色体或者个体(encoding),后者是它的逆操作(decoding) 2)确定适应度计算函数,可以将个体值经过该函数转换为该个体的适应度,该适应度的高低要能充分反映该个体对于解得优秀程度。
非常重要的过程!遗传算法的基本步骤遗传算法是具有"生成+检测"(generate-and-test)的迭代过程的搜索算法。
基本过程为:1)编码,创建初始集团2)集团中个体适应度计算3)评估适应度4)根据适应度选择个体5)被选择个体进行交叉繁殖,6)在繁殖的过程中引入变异机制7)繁殖出新的集团,回到第二步一个简单的遗传算法的例子:求 [0,31]范围内的y=(x-10)^2的最小值1)编码算法选择为"将x转化为2进制的串",串的长度为5位。
目录_一、遗产算法的由来 (2)二、遗传算法的国内外研究现状 (3)三、遗传算法的特点 (5)四、遗传算法的流程 (7)五、遗传算法实例 (12)六、遗传算法编程 (17)七、总结 ......... 错误!未定义书签。
附录一:运行程序 (19)遗传算法基本理论与实例一、遗产算法的由来遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。
20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学与人工系统的新思想、新方法。
很多学者对关于从生物进化与遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索与研究。
John H、Holland 教授及其学生首先提出的遗传算法就就是一个重要的发展方向。
遗传算法借鉴了达尔文的进化论与孟德尔、摩根的遗传学说。
按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。
生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。
各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。
具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。
,直至消亡。
达尔文把这一过程与现象叫做“自然选择,适者生存”。
按照孟德尔与摩根的遗传学理论,遗传物质就是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。
不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交与突变可以产生对环境适应性强的后代。
经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传与变异的基本规律。
遗传算法由美国的John H、Holland教授1975年首先提出,其主要特点就是直接对结构对象进行操作,不存在求导与函数连续性的限定;具有内在的隐并行性与更好的全局寻优能力;采用概率化的寻优方法,能自动获取与指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。
遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制与人工生命等领域。
它就是现代有关智能计算中的关键技术。
二、遗传算法的国内外研究现状遗传算法的鼻祖就是美国Michigan大学的Holland教授及其学生。
她们受到生物模拟技术的启发,创造了一种基于生物遗传与进化机制的适合于复杂系统优化的自适应概率优化技术——遗传算法。
1967年,Holland的学生Bagley在其博士论文中首次提出了“遗传算法”一词,她发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用双倍体的编码方法。
Holland教授用遗传算法的思想对自然与人工自适应系统进行了研究,提出了遗传算法的基本理论——模式定理(Schema Theorem)并于1957年出版了第一本系统论述遗传算法与人工自适应系统的专著《Adaptation in Natural and Artificial Systems》。
20世纪80年代,Holland教授实现了第一个基于遗传算法的机器学习系统,开创了遗传算法的机器学习的新概念。
1975年,De Jong基于遗传算法的思想在计算机上进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,得到了一些重要且具有指导意义的结论。
1989年,Goldberg出版了《Genetic Algorithm in Search,Optimization and Machine Learning》一书,系统地总结了遗传算法的主要研究成果,全面完整的论述了遗传算法的基本原理及其应用。
1991年,David 出版了《Handbook of Genetic Algorithms》一书,介绍了遗传算法在科学计算、工程技术与社会经济中的大量实例。
1992年,Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传编程(Genetic Programming,简称GP)的概念。
在控制系统的离线设计方面遗传算法被众多的使用者证明就是有效的策略。
例如,Krishnakumar与Goldberg以及Bramlette与Gusin已证明使用遗传优化方法在太空应用中导出优异的控制器结构比使用传统方法如LQR与Powell(鲍威尔)的增音机设计所用的时间要少(功能评估)。
Porter与Mohamed展示了使用本质结构分派任务的多变量飞行控制系统的遗传设计方案。
与此同时,另一些人证明了遗传算法如何在控制器结构的选择中使用。
从遗传算法的整个发展过程来瞧,20世纪70年代就是兴起阶段,20世纪80年代就是发展阶段,20世纪90年代就是高潮阶段。
遗传算法作为一种实用、高效、鲁棒性强的优化技术,发展极为迅速,已引起国内外学者的高度重视。
近些年来,国内外很多学者在遗传算法的编码表示、适应度函数、遗传算子、参数选择、收敛性分析、欺骗问题与并行遗传算法上做出了大量的研究与改进。
还有很多学者将遗传算法与其她只能算法结合,进一步提高局部搜索能力。
在遗传算法的应用上也有很多改进。
由于遗传算法具有全局并行搜索、简单通用、鲁棒性强等优点,使得遗传算法广泛地应用于计算机科学、自动控制、人工智能、工程设计、制造业、生物工程与社会科学等领域。
针对遗传算法的一些问题,还有一些问题需要进一步的探究,将大大促进遗传算法理论与应用的发展,遗传算法必将在智能计算领域中展现出更加光明的前景。
三、遗传算法的特点遗传算法就是一种借鉴生物界自然选择与自然遗传机制的随机搜索算法。
它与传统的算法不同,大多数古典的优化算法就是基于一个单一的度量函数(评估函数)的梯度与较高次统计,以产生一个确定性的试验解序列;遗传算法不依赖梯度信息,而就是通过模拟自然进化进程来搜索最优解,它利用某种编码技术,作用于称为染色体的数字串,模拟由这些串组成的群体的进化过程。
遗传算法通过有组织的、随机的信息交换来重新组合那些适应性好的串,生成新的串的群体。
遗传算法有以下优点:(1)对可行解表示的广泛性。
遗传算法的处理对象不就是参数本身,而就是针对那些通过参数集进行编码的基因个体,此编码操作使得遗传算法可以直接对结构对象进行操作。
所谓结构对象,泛指集合、序列、矩阵、树、链、表等各种一维或二维甚至多维结构形式的对象。
这一特点使得遗传算法具有广泛的应用领域。
比如通过对连接矩阵的操作,遗传算法可用来对神经网络或自动机的结构或参数加以优化;通过对集合的操作,遗传算法可实现对规则集合与知识库的精炼而达到高质量的机器学习目的;通过对树结构的操作,用遗传算法可得到用于分类的最佳决策树;通过对任务序列的操作,遗传算法可用于任务规划,而通过对操作序列的处理,可自动构造顺序控制系统。
(2)群体搜索特性。
许多传统的搜索方法都就是单点搜索,这种点对点的搜索方法,对于多峰分布的搜索空间常常会陷于局部的某个单峰的极值点。
相反,遗传算法采用的就是同时处理群体中多个个体的方法,即同时对搜索空间中的多个解进行评估。
这一特点使遗传算法具有较好的全局搜索性能,也使得算法本身易于并行化。
(3)不需要辅助信息。
遗传算法仅用适应度函数来的数值来评估基因个体,并在此基础上尽心遗传操作。
更重要的就是,遗传算法的适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。
对适应度函数的唯一要求就是,编码必须与可行解空间对应,不能有死码。
由于限制条件的缩小,使得遗传算法的应用范围大大扩展。
(4)内在启发式随机搜索特性。
遗传算法不就是采用确定性规则,而就是采用概率的变迁规则来指导它的搜索方向。
概率不仅仅就是作为一种工具来引导其搜索过程朝着搜索空间的更优化的解区域移动的。
虽然瞧起来它就是一种盲目搜索方法,实际上它有明确的搜索方向,具有内在的并行搜索机制。
(5)遗传算法在搜索过程中不容易陷入局部最优,即时在所定义的适应度函数就是不连续的、非规则的或有噪声的情况下,也能以很大的概率找到全局最优解。
(6)遗传算法采用自然进化机制来表现复杂的现象,能够快速可靠地解决求解非常困难的问题。
(7)遗传算法具有固有的并行性与并行计算的能力。
(8)遗传算法具有可扩展性,易于同别的技术混合使用。
遗传算法作为一种优化算法,也有它自身的局限性:(1)编码不规范及编码存在表示的不准确性。
(2)单一的遗传算法编码不能全面地将优化问题的约束表示出来。
考虑约束的一个方法就就是对不可行解采用阈值,这样,计算的时间必然增加。
(3)遗传算法通常的效率比其她传统的优化方法低。
(4)遗传算法容易出现过早收敛。
(5)遗传算法对算法的精度、可信度、计算复杂性等方面,还没有有效的定量分析方法。
遗传算法的基本内容如下:个体与种群。
个体就就是模拟生物个体而对问题中的对象(一般就就是问题的解)的一种称呼,一个个体也就就是搜索空间中的一个点。
种群(population)就就是模拟生物种群而由若干个体组成的群体,它一般就是整个搜索空间的一个很小的子集。
适应度与适应度函数。
适应度(fitness)就就是借鉴生物个体对环境的适应程度,而对问题中的个体对象所设计的表征其优劣的一种测度。
适应度函数(fitness function)就就是问题中的全体个体与其适应度之间的一个对应关系。
它一般就是一个实值函数。
该函数就就是遗传算法中指导搜索的评价函数。
染色体与基因。
染色体(chromosome)就就是问题中个体的某种字符串形式的编码表示。
字符串中的字符也就称为基因(gene)。
例如个体上9,染色体的表示形式就是1001,0与1就是染色体上的基因。
遗传操作。
也称为遗传算子,就就是关于染色体的运算。
遗传算法中有三种遗传操作:选择-复制,交叉与变异。
四、遗传算法的流程遗传算法在整个进化过程中的遗传操作就是随机的,但它所呈现出的特性并不就是完全搜索,它能有效地利用历史信息来推测下一代期望性能有所提高的寻优点集。
这样一代代的不断进化,最后收敛到一个最适应环境的个体上,求得问题的最优解。
遗传算法所涉及的五大要素就是:参数编码、初始种群的设定、适应度函数的设计、遗传操作的设计与控制参数的设定。
流程如图1所示。
图1 遗传算法基本流程简单遗传算法的运行过程为一个典型的迭代过程,其必须完成的工作内容与基本步骤如下:1)选择编码策略,把参数集合X与域转换为位串结构空间S。
2)定义适应度函数。
3)确定遗传策略,包括选择群体大小n,选择、交叉、变异方法,以及确定交叉概率、变异概率等遗传参数。
4)随机初始化生成种群P。
5)计算群体中个体位串解码后的适应度值。