内燃机曲轴系统扭转振动-发动机 扭转 振动
- 格式:ppt
- 大小:1.85 MB
- 文档页数:39
浅谈内燃机振动问题内燃机是一种广泛应用的热能动力机械,在汽车、船舶等领域中,均作为主要原动力。
随着内燃机向高速、轻型、大功率方向发展,其振动问题也日益受到关注。
内燃机在工作过程中因受到多种激励的作用而产生复杂的振动,为更好地了解内燃机的振动,从而掌握内燃机的工作状况,针对内燃机部件振动、结构振动、轴系振动和整机振动的振动测试系统、信号处理技术和振动控制技术在不断地发展,其目的是能更精确地反映内燃机振动的真实情况,为内燃机的完善提供明确的指导方向。
本文旨在系统地阐述和内燃机振动相关的现有成果,分析现有方法的特点,以及展望内燃机振动问题的研究前景。
1 内燃机振动产生的机理及振动类型1.1 振动产生的机理由于内燃机的工作过程中存在着多种激振力,导致了内燃机的振动。
这些激振力可分为由于燃烧发生的直接激振力和由于发动机机械工作发生的间接激振力。
只要内燃机运动,本身就存在的激振力,称之为直接激振力,它包括:气缸内的气体压力(燃烧力)、曲柄连杆机构的重力及其惯性力。
在直接激振力作用下,而再次激发的力,称之为间接激振力,通常有活塞敲击、正时齿轮、气门系及燃油喷射系振动。
由于激振力的耦合,导致内燃机的振动具有频带宽、形态复杂、非平稳等特点。
1.2 振动类型内燃机的振动类型通常按照研究重点的不同划分为结构振动、部件振动、轴系扭转振动和整机振动。
1.2.1 结构振动和部件振动结构振动主要是指实际上具有弹性的内部结构部件,如活塞、连杆、曲轴、机体等,在燃烧气体力和惯性力作用下所激起的多种形式的弹性振动,它是诱发内燃机燃烧噪声和活塞敲击噪声的根源。
内燃机的部件很多,它们的振动形式更是多种多样,最常见的是配气系统振动和缸套振动。
前者会破坏气门的正常工作,后者将引起缸套的穴蚀。
就进排气管的气流震荡是部件振动的另一种形式,它对进排气过程乃至内燃机的整个工作性能都有较大的影响。
郭智威[1]对比了不同缸套表面处理对柴油机机体振动的影响,指出缸套表面规则凹坑处理有利于降低机体振动。
《内燃机设计》第二版课后习题答案(袁兆成主编)第一章:内燃机设计总论1-1根据公式 τ2785.0ZD v p P m me e = ,可以知道,当设计的活塞平均速度V m 增加时,可以增加有效功率,请叙述活塞平均速度增加带来的副作用有哪些?具体原因是什么? 答:①摩擦损失增加,机械效率ηm 下降,活塞组的热负荷增加,机油温度升高,机油承 载能力下降,发动机寿命降低。
②惯性力增加,导致机械负荷和机械振动加剧、机械效率降低、寿命低。
③进排气流速增加,导致进气阻力增加、充气效率ηv 下降。
1-2汽油机的主要优点是什么?柴油机主要优点是什么? 答:柴油机优点: 1)燃料经济性好。
2)因为没有点火系统,所以工作可靠性和耐久性好。
3)可以通过增压、扩缸来增加功率。
4)防火安全性好,因为柴油挥发性差。
5)CO 和HC 的排放比汽油机少。
汽油机优点:1)空气利用率高,转速高,因而升功率高。
2)因为没有柴油机喷油系统的精密偶件,所以制造成本低。
3)低温启动性好、加速性好,噪声低。
4)由于升功率高,最高燃烧压力低,所以结构轻巧,比质量小。
5)不冒黑烟,颗粒排放少。
1-3假如柴油机与汽油机的排量一样,都是非增压或者都是增压机型,哪一个升功率高?为什么?答:汽油机的升功率高,在相同进气方式的条件下, ①由PL=Pme*n/30τ可知,汽油机与柴油机的平均有效压力相差不多。
但是由于柴油机后燃较多,在缸径相同情况下,转速明显低于汽油机,因此柴油机的升功率小。
②柴油机的过量空气系数都大于1,进入气缸的空气不能全部与柴油混合,空气利用率低,在转速相同、缸径相同情况下,单位容积发出的功率小于汽油机,因此柴油机的升功率低,汽油机的升功率高。
1-4柴油机与汽油机的汽缸直径、行程都一样,假设D=90mm 、S=90mm ,是否都可以达到相同的最大设计转速(如n=6000r/min )?为什么?答:对于汽油机能达到,但是柴油机不能。
车用发动机扭转振动的分析与控制摘要:基于扭转振动的基本原理,对发动机两种类型的扭转振动减振器的设计计算做深入的陈述。
结合两款有针对性的发动机,对所要计算的基本参数及该参数所要限定的范围作了具体说明。
最后用本公司自主开发的发动机扭振分析软件对一款发动机进行模拟计算,并与试验测量结果进行对比分析,并证明计算的结果是准确可靠的。
关键词:柴油机;汽油机;曲轴;多体动力学;仿真TorsionalVibrationAnalysisAndControlforEngineonVehicleZHANGFang,WANGBi-fan,LIXian-daiKeywords:dieselengine;gasengine;crankshaft;multi-bodydynamic;simulation内燃机轴系的扭转振动是机械动力学科的一个分支,是内燃机动力学的一部分。
在热动力装置发展初期,由于当时技术水平的限制,在相当长的一段时间内,在轴系的强度设计中,是把轴系按绝对刚性处理的。
当时认为,轴系中的应力变化取决于载荷或其受力情况。
但在19世纪末,在工业发达国家内燃机的广泛应用后,由于在动力交通运输部门中所用的内燃机装置中,各种断轴事故不断发生,这使得工程设计人员认识到,将轴系作为刚体处理是不合适的,必须作为弹性体进行研究。
所以对于扭转振动的研究也逐渐深入。
曲轴扭转振动的主要危害:在曲轴上产生附加扭转应力;引起齿轮敲击产生疲劳与磨损;冲击配气系统;影响整机的振动与噪声。
所以对车用发动机而言,对扭转振动的分析就很重要。
本文主要从原理、减振器匹配所需计算的基本参数及其判据来进行探索。
1基本理论1.1激振力矩的分析内燃机的激振主要包括内燃机工作时气缸内气体压力变化,以及曲柄连杆机构的重力和惯性力所产生的激振力矩。
此激振力矩是一个比较复杂的周期性函数,但是振动现象的本质,实际上都是由简谐性的振动所组成。
为了要区别地研究各种简谐次数下的振动规律,既要研究在各种不同谐次的简谐激振力矩作用下的振动现象,又需要对由比较复杂的周期性函数所组成的激振力矩进行简谐分析。