第八章 稳恒磁场.
- 格式:doc
- 大小:2.09 MB
- 文档页数:8
大学物理第8章磁场题库2(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第八章磁场填空题(简单)1、将通有电流为I的无限长直导线折成1/4圆环形状,已知半圆环的半径为R,则圆心O点的磁感应强度大小为08IRμ。
2、磁场的高斯定理表明磁场是无源场。
3、只要有运动电荷,其周围就有磁场产生;4、(如图)无限长直导线载有电流I1,矩形回路载有电流I2,I2回路的AB边与长直导线平行。
电流I1产生的磁场作用在I2回路上的合力F的大小为01201222()I I L I I La a bμμππ-+,F的方向水平向左。
(综合)5、有一圆形线圈,通有电流I,放在均匀磁场B中,线圈平面与B垂直,则线圈上P点将受到安培力的作用,其方向为指向圆心,线圈所受合力大小为 0 。
(综合)6、∑⎰==⋅niilIl dBμ是磁场中的安培环路定理,它所反映的物理意义是在真空的稳恒磁场中,磁感强度B沿任一闭合路径的积分等于0μ乘以该闭合路径所包围的各电流的代数和。
7、磁场的高斯定理表明通过任意闭合曲面的磁通量必等于 0 。
4题图5题图10题图8、电荷在磁场中 不一定 (填一定或不一定)受磁场力的作用。
9、磁场最基本的性质是对 运动电荷、载流导线 有力的作用。
10、如图所示,在磁感强度为B 的均匀磁场中,有一半径为R 的半球面,B 与半球面轴线的夹角为α。
求通过该半球面的磁通量为2cos B R πα-。
(综合)12、一电荷以速度v 运动,它既 产生 电场,又 产生 磁场。
(填“产生”或“不产生”)13、一电荷为+q ,质量为m ,初速度为0υ的粒子垂直进入磁感应强度为B 的均匀磁场中,粒子将作 匀速圆周 运动,其回旋半径R=0m Bqυ,回旋周期T=2mBq π 。
14、把长直导线与半径为R 的半圆形铁环与圆形铁环相连接(如图a 、b 所示),若通以电流为I ,则 a 圆心O 的磁感应强度为___0__________;图b 圆心O 的磁感应强度为04IRμ。
思考题9-1 为什么不能简单地定义B 的方向就是作用在运动电荷上的磁力方向? 答:运动电荷磁力的方向不仅与磁感应强度B 的方向有关,还与电荷的运动方向、电荷的正负有关。
如果电荷运动的方向与磁场方向在同一直线上,此时电荷受力为零,因此不能定义B 的方向就是作用在运动电荷上的磁力方向。
9-2 在电子仪器中,为了减小与电源相连的两条导线的磁场,通常总是把它们扭在一起。
为什么?答:可以将扭在一起的两条通电导线看成是交织在一起的两个螺线管。
管外的磁场非常弱;因两个螺线管的通电电流大小相等、方向相反,而且匝数基本相当,管内的磁场基本上可以相互抵消。
因此,与电源相连的两条导线,扭在一起时比平行放置时产生的磁场要小得多。
9-3 长为L 的一根导线通有电流I ,在下列情况下求中心点的磁感应强度:(1)将导线弯成边长为L /4的正方形线圈;(2)将导线弯成周长为L 的圆线圈,比较哪一种情况下磁场更强。
解:在本题图 (a)中,由于正方形线圈电流沿顺时针方向,线圈的四边在中心处产生的磁场大小相等,方向都是垂直纸面向里。
所以,正方形中心点的磁感应强度为四边直导线产生得磁感应强度的叠加。
由教材例题6-1可知,其大小应为0214(sin sin )4I B r μββπ=- 将/8r L =,1/4βπ=-,2/4βπ=代入上式得()00042sin 4 3.604I I IB r L Lμμπππ=== 在图6-2(b)中,通电线圈中心处产生的磁场方向也是垂直纸面向里,大小由教材例题6-2可知为0'2I B Rμ=其中,/2R L π=。
则00' 3.14I I B L Lμμπ==比较得'B B >。
9-4 在载有电流I 的圆形回路中,回路平面内各点磁场方向是否相同?回路内各点的B 是否均匀?答:根据毕奥一萨伐尔定律,用右手螺旋关系可以判定:载流圆形回路平面(a) (b)思考题9-3内各点的磁感应强度B 方向相同,都垂直于回路平面,但回路平面内各点.B 的大小不同,即B 的分布非均匀。
练习八 磁感应强度 毕奥—萨伐尔定律(黄色阴影表示答案)一、选择题如图所示,边长为l 的正方形线圈中通有电流I: AlI πμ220.(C)lI πμ02(D) 以上均不对.1沿对角线AC 方向经A 点流入一电阻均匀分布的正方形导线框,再由D 点沿对角线BD 方向流出,经长直导线2返回电源, 如图所示. 若载流直导线1、2和正方形框在导线框中心O 点产生的磁感强度分别用B 1、B 2和B 3表示,则O(A) B = 0. 因为 B 1 = B 2 = B 3 = 0 .(B) B = 0. 因为虽然B 1 ? 0, B 2 ? 0, B 1+B 2 = 0, B 3(C) B ? 0. 因为虽然B 3 = 0, 但 B 1+B 2 ? 0(D) B ? 0. 因为虽然B 1+B 2 = 0, 但 B 3 ? 03. 如图所示,三条平行的无限长直导线,垂直通过边长为a 的正三角形顶点,每条导线中的电流都是I 的磁感强度为:B(D) B =3?0I /(3?a ) . . 如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于:C(A)R Iπμ20. (B) I 0μ.(D))11(40πμ+RI .二、填空题 如图所示,在真空中,电流由长直导线1沿切向经a 点流入一电阻均匀分布的圆环,再由b 点沿切向流出,经长直导线2返回电源.已知直导线上的电流强度为I ,圆环半径为R ,?aob =180?.则圆心O 点处的磁感强度的大小B = .0图图图图图练习九 毕奥—萨伐尔定律(续)一、选择题1. 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B 的夹角为?,如图所示. 则通过半球面S 的磁通量为:(A) ?r 2B . (B) 2?r 2B . (C) ??r 2B sin ?. (D) ??r 2B cos ?.如图,载流圆线圈(半径为R )与正方形线圈(边长为a )通有相同电流I ,若两线圈中心O 1与O 2R : a 为(A) 1:1.(B) π2:1. π2 三、计算题1.在无限长直载流导线的右侧有面积为S 1和S2的两个矩形回路, 回路旋转方向如图所示, 两个回路与长直载流导线在同一平面内, 且矩形回路的一边与长直载流导线平行. 求通过两矩形回路的磁通量及通过S 1回路的磁通量与通过S 2回路的磁通量之比. (此题作为悬赏题)练习十 安培环路定理图图 图图一、选择题2. 无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R )的磁感强度为B 1,圆柱体外(r >R )的磁感强度为B 2,则有:(A) B 1、B 2均与r 成正比. (B) B 1、B 2均与r 成反比.(C) B 1与r 成正比, B 2与r 成反比. (D) B 1与r 成反比, B 2与r 成正比.在图(a )和(b )中各有一半径相同的圆形回路L 1和L 2,圆周内有电流I 2和I 2,其分布相同,且均在真空中,但在图(b )中,L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) ⎰⋅1d L l B =⎰⋅2d Ll B , 21P P B B =.(B) ⎰⋅d L l B ?⎰⋅ d L l B , 21P P B B =.(D) ⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠.如图所示,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a 端流入而从d 端流出,则磁感强度B 沿图中闭合路径的积分⎰⋅Ll B d 等于:(A) ?0I . (B) ?0I/3. 0I /4. 2?0I /3 .如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,(B) 0 d =⋅⎰Ll B ,且环路上任意点B =0.(C) 0 d ≠⋅⎰Ll B ,且环路上任意点B ?0.(D) 0 d ≠⋅⎰Ll B ,且环路上任意点B =0.二、填空题两根长直导线通有电流I ,图所示有三种环路对于环路a , =⋅⎰aL l B d ;图图P 1 (aI 2P 2 (b图对于环路b , =⋅⎰bL l B d ;对于环路c , =⋅⎰cL l B d . ?0I , 0, 2?0I .练习十一 安培力 洛仑兹力一、选择题如图所示. 匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是:B(A) ab 边转入纸内,cd 边转出纸外. (B) ab 边转出纸外,cd 边转入纸内. (C) ad 边转入纸内,bc 边转出纸外. (D) ad 边转出纸外,cd 边转入纸内.5. 一电子以速度v 垂直地进入磁感强度为B 的均匀磁场中,此电子在磁场中运动的轨道所围的面积内的磁通量是(A) 正比于B ,反比于v 2. (B) 反比于B ,正比于v 2. (C) 正比于B ,反比于v. (D) 反比于B ,反比于v练习十三 静磁场习题课一、选择题1. 一质量为m 、电量为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场中,则粒子运动轨道所包围范围内的磁通量F m 与磁场磁感强度B 的大小的关系曲线是图中的哪一条 D图(AB OBO(DB O(CB O(B)B O(E图边长为l 的正方形线圈,分别用图所示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为:(A) B 1 = 0 . B 2 = 0.(B) B 1 = 0 . l I B πμ0222=l π1l I π02.如图, 质量均匀分布的导线框abcd 置于均匀磁场中(B 的方向竖直向上),线框可绕AA ?轴转动,导线通电转过? 角后达到稳定平衡.如果导线改用密度为原来1/2的材料做,欲保持原来的稳定平衡位置(即? 角不变),可以采用哪一种办法(A) 将磁场B 减为原来的1/2或线框中电流减为原来的1/2. (B) 将导线的bc 部分长度减小为原来的1/2. (C) 将导线ab 和cd 部分长度减小为原来的1/2. (D) 将磁场B 减少1/4,线框中电流强度减少1/4.图图l (d (。
磁场和电场一样具有能量、动量和质量,是一种特殊的物质,叫场物质。
P是矢量,电流I 的方向m穿过磁场中某一曲面的磁力线总数,称为穿过该曲面的磁通量,用符号的磁通量为 d d m m S SB S ΦΦ==⋅⎰⎰ Wb ),1Wb =12m T ⋅。
SB dS ⋅=⎰在给定点P 所产生的磁感应强度称为真空的磁导率1-⋅m H )任意形状的载流导线在给定点P 产生的磁场的方向相同,则得LB dl ⋅⎰cos B dl θ=⎰0=⎰ 2002I d πμϕπ=⎰μ= 或电流方向反过来),则 ⎰⋅L l d B=-I 0μ0=l d0L B dl μ⋅=∑⎰的电流方向与回路L 的绕行方向符合右螺旋法则时,,则为0, 是所有电流产生.),sin(B l Id BIdl dF =B l Id F d ⨯=F =⎰F d =⎰⨯B l Id 真空中两条无限长的载流平行导线单位长度间相互作用力 a I I dl dF πμ2210=线圈磁矩的方向n与磁场B的方向成ϕ角(线圈平面与磁场的方向成θ角) 1F =θsin 1BIl 导线da 受力 1F '=)sin(1θπ-BIl = 2F =2BIl 导线cd 受力 2F '=2BIl载流导线电流保持不变,磁力所做的功等于电流强度乘以磁通量的增量.ΔP在外磁场作用下分子的附加磁矩mP的电子的进动轨道磁矩为m,e。
电子进动的方向是:0d (Lμ⋅=∑⎰B l 对于磁场,引入磁场强度矢量(辅助矢量),⎰(B μ即得有磁介质时的安培环路定理i LH dl I ⋅=∑⎰- H曲线与M - H曲线相似,可见B与H不成线性关系,即铁磁质的磁导率μ不再是常数、而是与H有关。
磁滞现象与磁滞回线时、磁介质反复磁化,分子振动加剧、温度升高,产生H的电流提供的热损曲线所围的面积等于反复磁化的一个周期中单位体积的。
第八章 稳恒磁场
1.
载流线圈如图所示,求圆心O 点处的磁感应强度是多少?
2. 彼此绝缘的六根无限长载流直导线(电流均为I ),放置如图所示,图中
a 、
b 、
c 、
d 为面积相等的四个正方形,问指向纸面内磁通量最大的区域并说明。
3. 将半径为R 的单匝载流圆线圈弯成尺寸相同的双匝平面线圈,电流保持
不便,则弯曲后线圈中心的磁感应强度和线圈的磁矩分别是多少?
4. 载有一定电流的圆线圈在轴线上各点处产生的磁感应强度的大小B 与线
圈的半径和场点线圈中心的距离x 有关。
当R 增大时B 将如何变化?
5. 一磁场的磁感应强度k c j b i a B
++=,则通过磁场中一半径为R ,求开
口向OZ 轴方向的半球壳表面的磁通量。
6. 将一根无限长导线弯曲成如图所示的形状,通以电流I 后,求圆心处磁
感应强度的大小。
7.将无限长直导线弯成直角,通电流I =10A,求角平分线上距导线垂直距离为d =0.5m的点处磁感应强度的大小?
8.直螺线管半径R =0.05m,长L =0.5m,通电流I =5A,在螺线管轴线中点处产生大小为B=1.23x10-3T的磁场,试求螺线管单位长度有多少匝线圈?
9.如图所示,三个半径为R,载流为I的彼此绝缘的圆线圈a、b、c处在同一球面上,a、b、c分别在YOZ、XOZ、XOY平面内,求球心O处的磁感应强度的大小和方向(用方向余弦表示)。
10.在半径为r和R的两圆周之间,有一总匝数为N的均匀密绕平面螺线圈,通
以电流I,如图所示。
求线圈中心O点处的磁感应强度。
11. 半径为R =0.01m的无限长半圆柱形金属薄片,自上而下地通过电流I =5A,
如图所示,试求轴线上任一点P处的磁感应强度。
12.如图所示,一无限长载流薄平板宽度为d ,线电流密度(即沿板宽方向单位
长度的电流)为j ,1)求与平板共面且距平板左边为a 的一点P 的磁感应强度1B
; 2)求平板外侧且与平板中线垂直距离为b 的一点Q 的磁感应强度
2B 。
13.一矩形截面的螺线环共有N 匝线圈,通有电流I ,尺寸如图所示,求
1)环内磁感应强度的分布; 2)通过螺线环截面的磁通量。
14.如图所示,两根彼此平行的长直载流导线相距d =0.40m, 电流I 1 =I 2 =10A (方
向相反),求(1)两导线连线中点处的磁感应强度;
(2)通过图示阴影面积的磁通量,以知a =0.1m, b =0.25m 。
15.如图所示,有一带正电荷密度为λ的半圆,半径为R ,以角速度ω绕OO ’
轴匀速转动。
求(1)圆心O 点处的B
; (2) 半圆线圈产生的磁矩m μ
(本题应用积分⎰=
π
π
θθ0
22
sin d )。
16. 如图所示,一根长为L =0.1m ,均匀带电量为Q =1.0x10-10C 的细棒,以速度
V=1.0m/s 沿X 轴正向运动,当细棒运动至与Y 轴重合的位置时,细棒下端
到坐标原点O 的距离为a =0.1m ,求此时细棒在O 点产生的磁感应强度B。
17.一个内、外半径为R 1和R 2的薄圆盘均匀带电,电荷面密度为σ,绕过圆心
且垂直于圆面的轴以角速度ϖ匀速转动,求圆心处的磁感应强度的大小。
18.如图所示,正方形磁场区域是均匀的。
今有一束电子射入a 孔进入磁场区域,
若在图中b 、c 两孔有电子射出。
求两处射出的电子速度大小比V b :V c 等于多少?
19.一条载流为I 的直导线被折成150o 角的两段。
如图所示,放在均匀场B 中,
求此导线所受合力的大小。
20.彼此相距10cm 的三根平行的无限长直载流导线,通有I =10A 的同向稳恒电
流。
试求各载流导线单位长度上所受的磁场力的大小和方向(长度以米为单位)。
21.一无限长直导线通有I 1大小的电流,其右侧置一与其共面的三角形线圈,并
通过I 2的电流。
如图所示,试求电流I 1的磁场对三角形线圈的AC, BA 两边导线的作用力。
22.有一无限大载流板,电流面密度为i (单位宽度通过的电流强度)。
有一质量
为m ,带电q (q>0)的粒子,以速度v
沿垂直于板且离开板的方向运动,如图所示。
求:
(1) 带电粒子距板多远时才不至于与板相碰撞?
(2) 若略去重力的影响,需多长时间才能回到初始位置?
23.用一不可伸长的悬线将面积为S 的线圈吊在天花板上。
若加上方向如图所示
的均匀磁场B
,线圈通有电流I ,共有M 匝。
则该线圈保持平衡状态的位置
如何?设线圈的转动惯量为J ,试证明该线圈在此平衡位置处做简谐振动,并确定振动周期。
24.均匀带电的直导线,线电荷密度为λ。
可绕垂直于杆且与导线延长线相交的
轴以匀角速度旋转。
若导线距转轴的近端时,求:
(1)等效线圈的磁矩m μ
?
(2)若导线长度很小时磁矩m μ
是多少? (3)转轴与直导线斜交时的磁矩如何计算?
25.试证明:形状任意的平面线圈,当载电流I 时在均匀磁场中受合力为零,设
磁场方向沿线圈的磁矩方向。
26.如图所示,一条长直导线置于一水平平面上,另一根导线CD 长1m ,位于长
直导线的正上方,并且可沿竖直光滑的导线双轨(互相平行)自由滑动。
若
ρ,导线按图示方向通有50A的稳恒电流。
导线CD的质量密度为cm
=
.0
g/
05
则导线在重力和长直载流导线的磁场力的作用下平衡时距水平的高度如何?。