矩形的定义及性质
- 格式:pptx
- 大小:902.48 KB
- 文档页数:28
矩形中考要求知识点睛矩形的性质及判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.例题精讲模块一矩形的概念【例1】矩形的定义:__________________的平行四边形叫做矩形.【答案】有一个角是直角;【例2】矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【答案】都是直角,相等,经过对边中点的直线;【例3】矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【答案】平行四边形;对角线相等;三个角【例4】矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【解析】省略 【答案】A【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【解析】省略 【答案】2BC AB =模块二 矩形的性质【例5】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【解析】省略 【答案】15︒【例6】矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则BC =______cm ,周长为 .【答案】,【例7】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EFCAB【解析】省略【答案】∵四边形ABCD 是矩形∴90AB AD B D =∠=∠=,. 在ABE ∆和CDF ∆中, 又∵BE DF =, ∴ABE ∆≌CDF ∆.【例8】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
矩形的性质和判定【知识梳理】一、定义:有一个是直角的平行四边形是矩形。
二、性质:①矩形的四个角都是直角②矩形的对角线相互平分且相等③矩形既是中心对称图形又是轴对称图形,有两条对称轴④矩形的面积S=长×宽三、判定:①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形;④对角线相等且互相平分的四边形是矩形。
四、矩形与平行四边形的区别与联系:①相同点1、两组对边分别平行2、两组对边分别相等3、两组对角分别相等4、对角线相互平分②区别1、有一个角是直角的平行四边形矩形2、对角线相互平分且相等【例题精讲】考点1 矩形的性质【例1】已知:如图,在矩形ABCD中,BE=CF,求证:AF=DE。
【例2】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =。
求证:ABE ∆≌CDF ∆。
【例3】如图,矩形ABCD 的两条对角线相交于点O ,60AOB ∠=︒,2AB =,则矩形的对角线AC 的长是( ) A .2 B .4 C .23 D .43【变式1】下列性质中,矩形具有而平行四边形不一定具有的是( ) A 、对边相等 B 、对角相等 C 、对角线相等 D 、对边平行【变式2】矩形ABCD 的对角线AC 、BD 交于O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则边AD 的长是 。
【变式3】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠= 。
FED CBA考点2 矩形的判定【例4】如图,在△ABC 中,AB=AC ,D 为BC 中点,四边形ABDE 是平行四边形。
求证:四边形ADCE 是矩形。
【例5】如图,在平行四边形ABCD 中,E 是CD 的中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形。
ODC BAD EFCAB【变式6】如图11,已知E 是ABCD 中BC 边的中点,连接AE 并延长AE 交DC 的延长线于点F 。
矩形的性质和判定基础知识点1、矩形的性质和判定:定 义矩 形有一个内角是直角的平行四边形。
性质边对边平行,对边相等。
角 四个角相等,都是直角。
对角线互相平分,相等。
判定有一个角是直角的平行四边形是矩形。
有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
2、在直角三角形中,斜边的中线等于斜边的一半。
3、矩形是轴对称图形,对称轴是对边中点的连线所在的直线。
例题剖析例1、 已知矩形ABCD 中,AB=2BC ,点E 在边DC 上,且AE=AB ,求∠EBC 的度数.【变式练习】矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,•求证:BE=CF .【变式练习】在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长线相交于点E ,求证:△ACE 是等腰三角形.例2、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A ′位置上,折痕为DG ,AB=2,BC=1。
求AG 的长。
GA`DCBA【变式练习】如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。
EDC BAF例3、在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,•使DE=BD,连结AE,CE,求证:四边形ABCE是矩形.【变式练习】在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形。
求证:四边形ADCE是矩形。
例4、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.【变式练习】(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,当CA=CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论【变式练习】E 为□ABCD 外一点,AE ⊥CE,BE ⊥DE ,求证:□ABCD 为矩形例5、□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点, 求证:四边形EFGH 的矩形。
矩形的定义和性质
矩形的定义:有一个角是直角的平行四边形叫做矩形。
也就是长方形。
矩形的性质:
由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:
1、矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分、矩形的四个角都是直角。
2、矩形的对角线相等、具有不稳定性(易变形)。
矩形的常见判定方法:
1、有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形。
2、有三个角是直角的四边形是矩形、经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形、对角线相等且互相平分的四边形是矩形。
矩形的性质和判定※知识回顾一、矩形的性质1、矩形的定义:有一个内角是的平行四边形是矩形.注意:(1)矩形是一种特殊的平行四边形,它具有平行四边形的所有性质;(2)根据定义能判定一个四边形是否是矩形:先证明它是平行四边形,再证明它有一个内角是直角.2、矩形的性质:(1)对称性:矩形是中心对称图形,它的对称中心是对角线的交点,矩形还是轴对称图形,它的对称轴是 .(2)边:矩形的对边 .(3)角:矩形的四个内角都是 .(4)对角线:矩形的对角线 .3、矩形的面积与周长(1)矩形的面积 = 长×宽.(2)矩形的周长 =(长+宽)×2.二、矩形的判定1、定义判定法:有一个角是直角的平行四边形是矩形.2、判定定理1:有三个角是直角的四边形是矩形.3、判定定理2:对角线相等的平行四边形是矩形.4、推论:对角线相等且互相平分的四边形是矩形.※典例剖析【例1】:如图,□ABCD的四个内角的平分线别交于点E、F、G、H. 求证:四边形EFGH是矩形.【例2】求证:顺次连结矩形四条边的中点,所得的四边形的四条边相等. 【例3】如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,B CD AHEGFPE ⊥AB 于E ,PF ⊥AC 于F ,求EF 的最小值.※培优训练1、(2011•绵阳)下列关于矩形的说法,正确的是( )A .对角线相等的四边形是矩形B .对角线互相平分的四边形是矩形C .矩形的对角线互相垂直且平分D .矩形的对角线相等且互相平分 2.(2011•临沂)如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于 点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A=30°,BC=2,AF=BF , 则四边形BCDE 的面积是( )A.32B.33C.4D.343.(2013•河北区)已知下列命题中:(1)矩形是轴对称图形,且有两条对称轴;(2)两条对角线相等的四边形是矩形;(3)有两个角相等的平行四边形是矩形;(4)两条对角线相等且互相平分的四边形是矩形.其中正确的有( )A.4个B.3个C.2个D.1个4.在四边形ABCD 中,∠A=60°,AB ⊥BC ,CD ⊥AD ,AB=4cm ,CD=2cm ,求四边形ABCD 的周长( )A.3210+B.528+C.538+D. 5210+5.下列命题错误的是( )A .平行四边形的对边相等B .两组对边分别相等的四边形是平行四边形C .对角线相等的四边形是矩形D .矩形的对角线相等 6.如图,在△ABC 中,AB=8,BC=6,AC=10,D 为边AC 上一动点,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则EF 的最小值为( )A .2.4B .3C .4.8D .57.在四边形ABCD 中,∠A=60°,∠ABC=∠ADC=90°,BC=2,CD=11,自D 作DH ⊥AB 于H ,则DH 的长是( )A .7.5B .7C .6.5D .5.58.(2012•塘沽区)如图,在△ABC 中,∠ACB=90°.D 是AC 的中点,DE ⊥AC ,AE ∥BD ,若BC=4,AE=5,求四边形ACBE 的周长.9.(2010•宝安区)如图,四边形ABCD 中,对角线AC ⊥BD ,E 、F 、G 、H 分别是各边的中点,求证四边形EFGH 是矩形.10、 如图,在□ABCD 中,DE ⊥AB 于E ,点F 在DC 上,且AE=CF ,连结EF 、BD .求证:EF=BD .11、如图,已知:在△ABC 中,点D 是AB 的中点,E 是AC 上的点, EF ∥AB ,DF ∥BE , ①请猜想DF 与AE 有什么关系,并证明你的猜想.②若∠ABE=∠BAC ,猜想DF 与AE 有什么关系,并证明你的猜想.※能力拓展1.如图,矩形ABCD 中,AB >AD ,AN 平分∠DAB ,DM ⊥AN 于点 M ,CN ⊥AN 于点N ,G 为MN 的中点,GH ⊥MN 交CD 于点H ,且 DM=a ,GH=b ,则CN 的值为(用含a 、b 的代数式表示)( ). A.b a +2 B.b a 2+ C.b a + D.b a 22+2.(2013•张湾区)如图,在△ABC 中,AB=6,AC=8,BC=10,AD CBF E FE DCBAP为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是.3.如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个_________三角形;(2)如图②,在矩形ABCD中,AB=2,BC=4,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?。
矩形的概念矩形的定义是什么矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。
矩形的定义是什么?以下是店铺分享给大家的关于矩形的定义,欢迎大家前来阅读!矩形的定义在几何中,矩形的定义为四个内角相等的四边形,即是说所有内角均为直角。
从这个定义可以得出矩形两条相对的边等长,也就是说矩形是平行四边形。
正方形是矩形的一个特例,它的四个边都是等长的。
同时,正方形既是长方形,也是菱形。
非正方形的矩形通常称之为oblong。
矩形的基本简介矩形(rectangle)是一种平面图形,矩形的四个角都是直角,同时矩形的对角线相等,而且矩形所在平面内任一点到其两对角线端点的距离的平方和相等。
判定1.一个角是直角的平行四边形是矩形。
2.对角线相等的平行四边形是矩形。
3.有三个内角是直角的四边形是矩形。
4.对角线相等且互相平分的四边形是矩形。
说明:长方形和正方形都是矩形。
平行四边形的定义在矩形上仍然适用。
图形学"矩形必须一组对边与x轴平行,另一组对边与y轴平行。
不满足此条件的几何学矩形在计算机图形学上视作一般四边形。
"在高等数学里只提矩形,所以也就没提长方形的长与宽。
矩形的详细释义计算公式面积:S=ab(注:a为长,b为宽)周长:C=2(a+b)=2a+2b(注:a为长,b为宽)外接圆矩形矩形外接圆半径 R=矩形对角线的一半性质1.矩形的4个内角都是直角;2.矩形的对角线相等且互相平分;3.矩形所在平面内任一点到其两对角线端点的距离的平方和相等;4.矩形既是轴对称图形,也是中心对称图形(对称轴是任何一组对边中点的连线),它至少有两条对称轴。
5.矩形具有平行四边形的所有性质6.顺次连接矩形各边中点得到的四边形是菱形黄金矩形宽与长的比是(√5-1)/2(约为0.618)的矩形叫做黄金矩形。
黄金矩形给我们一协调、匀称的美感。
E D C B A A BC D F ED C BA 矩形性质和判定一、知识要点1.定义:有一个角是直角的 叫做矩形(通常也叫长方形)。
2.性质:矩形的特有性质:(1)矩形的四个角都是 ;(2)矩形的对角线 。
规律总结:矩形的性质:(从边、角、对角线三个方面总结出矩形的性质)(1)对边平行且相等;(2)四个角都是直角;(3)对角线相等且互相平分。
矩形是轴对称图形,它有 对称轴。
3.判定:(1)定义:有一个角是直角的平行四边形是矩形。
(2)有三个角都是直角的四边形是矩形。
(3)对角线相等的平行四边形是矩形。
(也可以表述成“对角线互相平分且 的四边形是矩形”)。
4、直角三角形的性质:直角三角形斜边上的中线等于斜边的一半.直角三角形中,30︒角所对的边等于斜边的一半.二、例题讲解1.矩形的性质例1.如图所示,矩形ABCD 的两条对角线相交于点O ,图中有_______个直角三角形,•有 个等腰三角形.例2.矩形的两条邻边分别是5、2,则它的一条对角线的长是______.例3.如图所示,矩形ABCD 的两条对角线相交于点O ,若∠AOD=60°,OB=•4,•则DC=________.例4.矩形ABCD 的周长为56,对角线AC ,BD 交于点O ,△ABO 与△BCO 的周长差为4,•则AB 的长是( )A .12B .22C .16D .26例5.如图,有一矩形纸片ABCD ,106AB AD ==,,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,在将AED ∆以DE 为折痕向右折叠,AE 与BC 交于点F ,则CEF ∆的面积为例6.如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EF C A BC D B A 例7.如图所示,在矩形ABCD 中,AB=8,AD=10,将矩形沿直线AE 折叠,顶点D 恰好落在BC 边上的点F 处,求CE 的长.例8.如图所示,在矩形ABCD 中,对角线AC ,BD 交于点O ,过顶点C 作CE ∥BD ,交A•孤延长线于点E ,求证:AC=CE .例9.已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点.求证:BF DF ⊥2.矩形的判定例1.在坐标系中,A (-2,0),B (-2,3),C (3,0),若使以点A ,B ,C ,D 为顶点的四边形是矩形,则符合条件的点D 的坐标是________.例2.若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( )A .一般平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .矩形例3.如图所示,在四边形ABCD 中,∠A=∠ABC=90°,BD=CD ,E 是BC 的中点,求证:•四边形ABED 是矩形.例4.如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =,求证:四边形ABCD 是矩形.A B C E FDM C D B A NM F ED C B A 例5.如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.例6.如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线,DE ∥AB 交AF 于E ,试说明四边形ADCE 是矩形.例7.如图,在ABC ∆中,点D 是AC 边上的一个动点,过点D 作直线MN BC ∥,若MN 交BCA ∠的平分线于点E ,交BCA ∠的外角平分线于点F (1)求证:DE DF =(2)当点D 运动到何处时,四边形AECF 为矩形?请说明理由!321F E D C B A。
矩形的定义、性质一、知识要点引导1、矩形的定义: 定义的要素:(1) ,(2) .2、矩形的性质:(1)矩形是特殊的 ,具有 的一切性质.(2)矩形是轴对称图形,有 条对称轴,分别是经过 的直线;矩形也是中心对称图形,对称中心是 .(3)矩形的四个角都是 .(4)矩形的对角线 .3、直角三角形的性质:直角三角形斜边上的中线等于 .(注:条件①直角三角形,②斜边的中点.二者缺一不可.)二、例题分析例1.如图,矩形ABCD 的两条对角线AC 、BD 相交于点O,∠AOD=1200,AB=2cm.求矩形对角线的长.三、巩固练习1、如图, 矩形ABCD 的两条对角线AC 、BD 相交于点O,AB=6,OA=4.则BD= ,AD= .2、矩形ABCD 的周长是56cm,对角线AC 与BD 相交于点O,△OAB 与△ OBC 的周长差 是4cm,则矩形ABCD 的对角线长是.O D C BA3、如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为 .4、如图,在△ABC 中,∠ACB=90°,∠ABC=60°,BD 平分∠ABC ,点P 是BD 的中点.若AD=6,则CP 的长为 .5、如图,E 、F 分别是矩形ABCD 的对角线AC 和BD 上的点,且AE=DF.求证:BE=CF.6、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD 交BC 于点E , 已知∠CAE=15 °,AB=2cm ,求∠BOE 的度数和矩形的面积.7、如图,E 是矩形ABCD 的边CB 延长线上的一点,CE=CA ,F 是AE 的中点. 求证:BF ⊥FD.F E D CB A P DC BA O E D CB A F E D CB A8、如图,在矩形ABCD中,AB=3,AD=4, P是AD上不与A、D重合的一动点,PE⊥AC,PF⊥BD,E、F为垂足, 求PE+PF的值.。
矩形知识点总结归纳矩形是一种常见的几何形状,在我们的日常生活和学习中起到了重要的作用。
它具有一些独特的性质和特点,本文将对矩形的定义、性质和相关公式进行总结归纳。
以下是关于矩形的各方面知识点的介绍:一、定义矩形是一种拥有四条边长度相等且相对平行的四边形。
它是特殊的平行四边形,同时也属于特殊的四边形。
二、性质1. 对角线互相平分:矩形的两条对角线互相平分,即两条对角线的交点是对角线的中点。
2. 内角度数:矩形的四个内角度数均为90度。
3. 边长关系:矩形的相邻边相等且平行。
三、周长和面积计算1. 周长:矩形的周长等于两条长边与两条短边的和,可以用公式 C = 2(a + b) 来计算,其中 a 和 b 分别表示矩形的长和宽。
2. 面积:矩形的面积是长乘以宽,可以用公式 A = a * b 来计算,其中 a 和 b 也表示矩形的长和宽。
四、对角线长度计算1. 对角线的长度:矩形的两条对角线长度相等,可以使用勾股定理来计算。
设矩形的长边长为 a,宽边长为 b,那么对角线的长度 D 可以用公式D = √(a² + b²)来计算。
五、特殊矩形除了一般的矩形外,还存在几种特殊的矩形形式:1. 正方形:正方形是一种特殊的矩形,它的四条边长度相等,且内角均为90度。
正方形的周长和面积计算公式与矩形相同,即 C = 4a 和A = a²,其中 a 表示正方形的边长。
2. 长方形:长方形也是一种矩形,特点是两条边长度不相等。
长方形的周长和面积计算公式同样适用于一般的矩形。
六、应用矩形作为一种常见的几何形状,广泛应用于日常生活和各个领域。
以下是几个典型的应用场景:1. 建筑设计:矩形是建筑设计中常见的形状之一,例如房屋的平面布局、墙壁的设计等。
2. 地理测量:在地理测量中,矩形可以用来表示土地的边界和测量区域的大小。
3. 学术研究:矩形被广泛运用于几何学的研究中,有助于推演和证明其他几何形状的性质。
矩形的性质及判定(修改)1.矩形的定义:有一个角是直角的平行四边形是矩形(矩形是特殊的平行四边形)。
2.矩形的性质:矩形具有平行四边形的所有性质。
(1)角:四个角都是 。
(2)对角线: 且 。
(3)矩形的对称性:矩形是中心对称图形,对角线的交点是它的对称中心; 矩形是轴对称图形,对称轴有2条,是经过对角线的交点且垂直于矩形一边的直线。
(4)直角三角形斜边上的中线性质根据矩形对角线性质可得到直角三角形斜边上的中线性质:3.矩形的判定:(1)有一个角是直角的 。
(2)对角线 的平行四边形。
(3)有三个角是 的四边形。
4.矩形与平行四边形的区别与联系? 说理题:下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( )(6)对角线互相平分且相等的四边形是矩形;( )(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( )【经典例题:】1如图,在矩形ABCD 中,AB=3,AD=4,P 是AD 上一动点,PF ⊥AC 于F,PE⊥BD 于E,则PE+PF 的值为( ) A 、125B 、135C 、52D 、2例2、如图,在矩形ABCD 中,AC 、BD 相较于点O ,AE 平分BAD ∠交BC 于E ,若15CAE ∠=︒,求BOE ∠的度数。
变式:已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC=________.3、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为( ) A .5 B .6 C .7 D .84.如图,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( )A.98B.196C.280D.2845、如图,已知BD 、CE 是ABC 的两条高,M 、N 分别是BC 、DE 的中点,MN 与DE 有怎样的位置关系。
矩形的性质与特点矩形作为一种常见的几何图形,具有其独特的性质和特点。
在本文中,我们将探讨矩形的定义、特征和相关性质,并讨论其在数学和实际生活中的应用。
1. 矩形的定义和基本特征矩形是一种拥有四条边、四个角均为直角的平面图形。
它的两对相邻边长度相等,对角线相等且互为半对称线。
根据这些定义,我们可以得到矩形的一些基本特征。
2. 矩形的四个角均为直角由于矩形的定义,它的四个角均为直角。
这意味着矩形的内角和为360度,且每个角的度数都为90度。
这是矩形与其他四边形的明显区别。
3. 矩形的对边相等且平行矩形的两对相邻边长度都相等,即对边相等。
同时,这两对对边也是平行的。
这意味着当我们将矩形平移或旋转时,其形状和大小保持不变。
4. 矩形的对角线相等且互为半对称线矩形的两条对角线相等且互为半对称线。
其中,半对称线是指将矩形分为两个全等的三角形。
这个性质使得矩形的对角线成为了研究和计算矩形性质的重要工具。
5. 矩形的面积和周长计算矩形的面积可通过将矩形分为两个全等的直角三角形,并利用三角形的面积公式进行计算:面积 = 长 ×宽。
而矩形的周长则是四个边长之和。
6. 矩形的性质在数学和实际生活中的应用矩形的性质和特点在数学教学和实际生活中都有广泛的应用。
在数学中,矩形作为一个简单且易于研究的几何图形,常被用于引入面积和周长的概念,以及介绍平行四边形和其他四边形的概念。
在几何证明中,我们也可以利用矩形的性质来推导其他几何定理。
在实际生活中,我们可以发现矩形的身影随处可见。
建筑物的窗户、墙壁、地板以及家具等往往采用矩形形状,因为矩形更易于设计、制造和布局。
同时,矩形在工程测量、地图绘制、电子屏幕和平面设计等领域也得到广泛应用。
总结:矩形作为一种常见的几何图形,具有四个直角、对边相等且平行、对角线相等且互为半对称线等基本特点。
它的性质在数学教学和实际生活中有着广泛的应用。
通过深入了解和研究矩形的性质,我们能够更好地理解几何学的基础知识,并将其应用于实际问题的解决中。