矩形的定义与性质
- 格式:docx
- 大小:49.19 KB
- 文档页数:4
18.2.1矩形的定义与性质学习目标:1.理解矩形的概念,明确矩形与平行四边形的区别与联系;2.探索并证明矩形的性质,会用矩形的性质解决简单的问题;3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理.学习重点:矩形区别于一般平行四边形的性质的探索、证明和应用.教学难点:矩形的性质的灵活应用.微课自学一、微课学习:1.平行四边形的性质:①平行四边形的对边;②平行四边形的对角,邻角;③平行四边形的对角线 .2.矩形的定义:有一个角是直角的平行四边形是矩形.(矩形是特殊的平行四边形,具有平行四边形的所有性质)3.矩形是一个特殊的平行四边形,除了具有平行四边形的所有性质外,还有哪些特殊性质呢?性质①:矩形的四个角都是直角;性质②:矩形的对角线相等.证明①证明②(自己完成)4、直角三角形斜边中线的性质定理:直角三角形斜边上的中线等于斜边的一半.二、自学反馈1.下列说法错误的是( )A.矩形的对角线互相平分B.矩形的对角线相等C.有一个角是直角的四边形是矩形D.有一个角是直角的平行四边形叫做矩形2.四边形ABCD 是矩形①若已知AB=8㎝,AD=6㎝,则AC = ㎝ ,OB= ㎝ ②若已知∠CAB=40°则∠OCB= ∠OBA= ∠AOB= ∠AOD=③若已知AC =10㎝,BC=6㎝,则矩形的周长= ㎝,矩形的面积= ㎝2 ④若已知 ∠DOC=120°,AD =6㎝,则AC= ㎝3.求证:矩形的对角线相等.4.如图,矩形ABCD 的两条对角线相交于点O ,∠AOB=60°,AB=4㎝,求矩形对角线的长.C BA D C B合作探究基础篇 1.如图,在矩形ABCD 中。
对角线AC,BD 交于点O , 以下说法错误的是( ) A.∠ABC=90° B.AC=BD C.OA=OB D.OA=AD2.已知△ABC 中,∠ABC=900,BD 是斜边AC 上的中线 .(1)若BD=3㎝,则AC = ㎝(2)若∠C=30°,AB =5㎝,则AC = ㎝,BD = ㎝3. 矩形是轴对称图形吗?如果是,它有几条对称轴.4.一个矩形的一条对角线长为8,两条对角线的一个交角为120°,求这个矩形的边长(结果保留小数点后两位).5.矩形对角线组成的对顶角中,有一组是两个50°的角.对角线与个边组成的角是多少度?C B AD CB能力篇6.已知△ABC 是Rt △,∠ABC=90°,BD 是斜边AC 上的中线 (1)若BD=3㎝则AC = ㎝(2)若∠C=30°,AB =5㎝,则AC = ㎝,BD = ㎝,∠BDC =7.如图,直角三角形ABC 中,∠BAC=90°,AD ⊥BC ,AE 是BC 边上的中线,若∠C=40°,求∠DAE 的度数.提高篇8.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D,∠ACD=3∠BCD,E 是斜边AB 的中点.∠ECD 是多少度?为什么?.AB C E D C B A。
矩形中考要求知识点睛矩形的性质及判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.例题精讲模块一矩形的概念【例1】矩形的定义:__________________的平行四边形叫做矩形.【答案】有一个角是直角;【例2】矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【答案】都是直角,相等,经过对边中点的直线;【例3】矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【答案】平行四边形;对角线相等;三个角【例4】矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【解析】省略 【答案】A【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【解析】省略 【答案】2BC AB =模块二 矩形的性质【例5】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【解析】省略 【答案】15︒【例6】矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则BC =______cm ,周长为 .【答案】,【例7】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EFCAB【解析】省略【答案】∵四边形ABCD 是矩形∴90AB AD B D =∠=∠=,. 在ABE ∆和CDF ∆中, 又∵BE DF =, ∴ABE ∆≌CDF ∆.【例8】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
矩形的性质和判定基础知识点1、矩形的性质和判定:定 义矩 形有一个内角是直角的平行四边形。
性质边对边平行,对边相等。
角 四个角相等,都是直角。
对角线互相平分,相等。
判定有一个角是直角的平行四边形是矩形。
有三个角是直角的四边形是矩形。
对角线相等的平行四边形是矩形。
2、在直角三角形中,斜边的中线等于斜边的一半。
3、矩形是轴对称图形,对称轴是对边中点的连线所在的直线。
例题剖析例1、 已知矩形ABCD 中,AB=2BC ,点E 在边DC 上,且AE=AB ,求∠EBC 的度数.【变式练习】矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,•求证:BE=CF .【变式练习】在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD•的平行线与AB 的延长线相交于点E ,求证:△ACE 是等腰三角形.例2、折叠矩形ABCD 纸片,先折出折痕BD ,再折叠使A 落在对角线BD 上A ′位置上,折痕为DG ,AB=2,BC=1。
求AG 的长。
GA`DCBA【变式练习】如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在F 的位置,BF 交AD 于E ,AD=8,AB=4,求△BED 的面积。
EDC BAF例3、在△ABC中,∠ABC=90°,BD是△ABC的中线,延长BD到E,•使DE=BD,连结AE,CE,求证:四边形ABCE是矩形.【变式练习】在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形。
求证:四边形ADCE是矩形。
例4、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.【变式练习】(2011•青岛)在▱ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC ,当CA=CB 时,判断四边形AECF 是什么特殊四边形?并证明你的结论【变式练习】E 为□ABCD 外一点,AE ⊥CE,BE ⊥DE ,求证:□ABCD 为矩形例5、□ABCD 中,AE 、BF 、CG 、DH 分别是各内角的平分线,E 、F 、G 、H 为它们的交点, 求证:四边形EFGH 的矩形。
矩形与正方形的认识与性质矩形和正方形是我们学习数学时常遇到的两种形状,它们在几何学中有着重要的地位。
本文将从不同角度来探讨矩形和正方形的认识和性质。
一、矩形的定义与认识矩形是一种四边形,有四个内角都是直角的多边形。
我们可以把矩形看作是一种特殊的平行四边形,因为它们的对边是平行的,且相邻边长相等。
矩形具有一些固有的性质,如对角线相等、对角线互相平分等。
1.1 矩形的定义矩形的定义是一个四边形,它的四个内角都是直角的多边形。
在数学中,通过定义我们可以清晰地了解矩形的形状特点。
1.2 矩形的性质矩形具有以下性质:1) 相邻边长度相等:矩形的相邻边相等,这是矩形与其他四边形的一个显著区别之处。
2) 对角线相等:矩形的两条对角线相等,并且互相平分。
3) 内角是直角:由于定义中明确了矩形的四个内角都是直角,所以这也是矩形的重要性质之一。
二、正方形的定义与认识正方形是一种特殊的矩形,它具有矩形所有的性质,同时还有一些独特的特点。
正方形在几何学中被广泛应用,例如建筑设计、绘图等领域。
2.1 正方形的定义正方形是一种具有四个相等边长且四个内角都是直角的四边形。
正方形可以视作是一种特殊的矩形,因此它也具有矩形的性质。
2.2 正方形的性质正方形具有以下性质:1) 边长相等:正方形的四条边都相等,因此它是对称的。
2) 内角是直角:正方形的四个内角都是直角,这也是正方形与其他四边形的一个重要区别。
3) 对角线相等:正方形的两条对角线相等,并且互相平分。
4) 对称性:正方形是一种对称图形,可以通过某条对称轴进行镜像对称。
三、矩形与正方形的区别矩形和正方形在形状上有明显的区别。
正方形可以视为一种特殊的矩形,因此矩形是一个更广义的概念,而正方形则是一种特殊情况。
3.1 形状区别矩形的相邻边可以不相等,而正方形的四条边是完全相等的。
由于矩形的性质更为广泛,我们可以将正方形看作是一种特殊的矩形。
3.2 对角线区别矩形的对角线可以不等长,而正方形的两条对角线是相等的。
矩形的性质与应用矩形是一种常见的几何图形,具有许多独特的性质和广泛的应用。
本文将围绕矩形的性质和其应用展开讨论,包括矩形的定义、特征、性质以及一些实际应用场景。
一、矩形的定义与特征矩形是一种拥有四条相等长度的边和四个90度的内角的四边形。
这使得矩形拥有以下特征:1. 边长相等:对于任意一个矩形,它的四条边都相等,这意味着矩形的周长可以通过简单的计算得到,即周长等于四倍的边长。
2. 内角度相等:矩形的四个内角都是直角(90度),这也是矩形与其他四边形的显著区别之一。
3. 对角线相等:连接矩形任意两个非相邻顶点的对角线是相等的,这是矩形的又一个独特性质。
二、矩形的性质与定理矩形的性质与定理是基于其定义和特征建立起来的,它们能够帮助我们更好地理解和应用矩形。
1. 对角线长度定理:连接矩形任意两个非相邻顶点的对角线长度相等。
2. 直角定理:矩形的四个内角都是直角(90度)。
3. 矩形面积公式:矩形的面积等于宽度乘以长度,即S = a * b。
4. 矩形周长公式:矩形的周长等于两倍的宽度加上两倍的长度,即C = 2a + 2b。
5. 矩形对角线长公式:对于一个矩形,连接它两个对角的长度可以通过勾股定理计算,即d = √(a^2 + b^2)。
三、矩形的应用矩形作为一种常见的几何图形,在很多实际应用中发挥着重要的作用。
以下是一些矩形在实际场景中常见的应用:1. 建筑设计:砖块、地板、天花板等建筑材料常常采用矩形形状,因为矩形易于制作和安装。
此外,建筑设计还会利用矩形的性质计算房间的面积和周长。
2. 室内设计:桌子、柜子、窗户、门等家具和装饰品通常都是矩形的形状,因为矩形可以提供更好的空间利用效率和美观度。
3. 生产制造:在制造过程中,矩形的性质被广泛应用。
例如,木材、纸张和金属板常常需要按照矩形的形状进行切割和成型。
4. 数学与几何学:矩形作为一个基础的几何图形,是数学和几何学研究中的重要对象。
矩形的性质和定理不仅是学生学习几何学的基础内容,而且在更高级的数学和几何学理论中也有广泛的应用。
矩形的定义和性质
矩形的定义:有一个角是直角的平行四边形叫做矩形。
也就是长方形。
矩形的性质:
由于矩形是特殊的平行四边形,故包含平行四边形的性质;矩形的性质大致总结如下:
1、矩形具有平行四边形的所有性质:对边平行且相等,对角相等,邻角互补,对角线互相平分、矩形的四个角都是直角。
2、矩形的对角线相等、具有不稳定性(易变形)。
矩形的常见判定方法:
1、有一个角是直角的平行四边形是矩形、对角线相等的平行四边形是矩形。
2、有三个角是直角的四边形是矩形、经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形、对角线相等且互相平分的四边形是矩形。
1821矩形的定义与性质(第1课时)
【教学目标】
1. 理解矩形的概念,明确矩形与平行四边形的区别与联系;
2. 探索并能证明矩形的性质;会用矩形的性质解决相关问题;
3. 理解“直角三角形斜边的中线等于斜边的一半。
”这一重要推论。
【教学重点与难点】
重点:矩形的性质 难点:矩形性质的证明及灵活应用。
【教学准备】
矩形小纸片,直尺,三角板,多媒体课件等。
【教学过程】
一、复习提问,引入新课
上一节课我们学习了平行四边形的性质和判定,下面大家看这一组画面,它反映 了平行四边形的什么性质?
说明:平行四边形具有不稳定性。
设计意图:培养同学们的观察能力以及利用数学知识解决身边问题的能力
2、拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一 个平行四边形吗?为什么?当移动到一个角是直角时停止,让学生观察这是什么图 形?(小学学过的长方形)引出本课题及矩形定义。
设计意图:在拉动的过程中四边形的两组对边仍然保持了相等,所以不管怎么拉 都是平行四边形。
让学生学会“动静结合”分析问题。
让学生体会矩形是特殊的平行四边形,体会平行四边形与矩形的包含与被包含关 系。
3、 矩形定义:有一个角是直角的平行四边形叫做矩形 (通常也叫长方形).
4、 举例:生活中有很多具有矩形形象的物品,你能举出一些例子吗?
二、探索新知
(一)探究矩形的一般性质:
1、 矩形具有哪些性质?从定义得出,矩形是平行四边形,那么,平行四边形所具 有的性质,矩形都具有。
2、 师生交流、归纳后得到矩形的一般性质:
继承性质:对边平行且相等;对角相等、邻角互补;对角线互相平分。
1、展示生
边形的实际应
门、活动衣架、
一想:这里面应
边形的什么性 活中一些四 用图片(推拉 篱笆等),想 用了平行四 质?
(二)探究矩形的特殊性质:
1、提问:作为特殊的平行四边形,矩形是否具有一般平行四边形不具有的特殊性
质?
学生活动:(探究性质)用已准备好的矩形小纸片进行分组讨论、探究、交流、猜想、小
结,最由个人汇报探究结果。
(鼓励各小组同学踊跃发言)
教师活动:组织学生动手沿对角线剪下,观察,针对学情及时启发引导,并参入学生活
动。
2、你能证明这些结论吗?
学生活动:分别证明这两个结论,结论(1)由学生在定义的基础上进行口述证明。
结论(2)的证明由学生完整书写证明过程,并邀请学生进行板演。
再由师生共同完成分析,最后
肯定了这两个结论的正确性。
同时鼓励学生尝试用不同的方法证明。
(如勾股定理等)
①已知:如图:四边形ABCD是矩形,
求证:/ A=Z C=Z D=Z B=90°o
②已知:如图:四边形ABCD是矩形, 求证:AC = BD。
3、师生共同归纳特有性质:性质1:矩形的四个角都是直角;性质2:矩形的对角线相等.
4、用几何语言表示为
1. v四边形ABCD1矩形
•••/ A=Z B=Z C=Z D=90°
2. v四边形ABCD是矩形
.・.AC=BD
(三)矩形的对称性
矩形是轴对称图形吗?如果是,它有几条对称轴?教师活动:提出问题,请学生演示。
学生活动:通过对折矩形来判断是不是轴对称图形,学生独立思考,通过动手折一折,发
现结论。
(四)师生活动:用类比的方法归纳矩形的性质。
(从边、角、对角线等方面概括)
(五)直角三角形性质的推导
在前面的学习中,我们利用平行四边形的判定和性质研究了三角形的中位线,下
面我们用矩形的性质来研究直角三角形的性质。
(展示投圈游戏)
这游戏公平吗?(公平)
(展示课件)如图,在矩形ABCD中, AC BD相交于点0,
1 1
由性质2 有A0=B0=C0=D0AC=2 BD.
C
学生活动:利用矩形的性质分析在Rt△ ABD中,A0和BD的关系,最后用文字叙述直角三角形的性质:直角三角形斜边上的中线等于斜边的一半。
三、初步应用,巩固性质
1课件展示练习,学生即时解决。
2、例题解析:
例1如图,矩形ABCD勺对角线AC,BD相交于点0,Z A0B=60,
AB=4,求矩形对角线的长.
解::四边形ABCD1矩形
••• AC与BD相等且互相平分
•••0A=0B
又/ A0B=60
0A=AB=4
••• AC=BD = 20A=8
教师活动:引导学生学习说理,做好每一步依据的提问。
学生活动:先理解题意,弄清已知和所求,在教师的引导下获取思路,进行合理的表达叙述,同组评价和补充。
四、当堂训练
五、课堂小结
1、定义:有一个角是直角的平行四边形叫做矩形。
2、矩形的继承性质:对边平行且相等;对角相等、邻角互补;对角线互相平分。
特有性质:①矩形的四个角都是直角;②矩形的对角线相等。
3、矩形是轴对称图形。
4、推论:直角三角形斜边上的中线等于斜边的一半。
六、布置作业:
教科书第53页练习第2题;
习题18.2第9题. 【板书设计】。