实验四 BGP协议实验
- 格式:ppt
- 大小:2.99 MB
- 文档页数:58
目录一、前言: (1)二、测试用例 (2)三、测试步骤 (3)3.1占用Ports (3)3.2配置IP地址 (4)3.3配置BGP (5)3.4发布BGP Route (11)3.5配置流量 (13)3.6启用BGP (16)3.7发流验证 (17)一、前言:BGP是自治系统外部路由协议,用来在AS之间传递路由信息路径矢量路由协议,从设计上避免了环路的发生其路由信息中携带了所经过的全部AS路径列表。
这样,接收该路由信息的BGP路由器可以明确的知道此路由信息是否源于自己的AS,如果是源于自己的AS,BGP就会丢弃此条路由,这样就根本的解决了AS之间产生环路的可能。
TCP承载,端口号是179天然的可靠传输机制,重传、排序等机制来保证BGP协议信息交换的可靠性。
支持CIDR和路由聚合可以将一些连续的子网聚合成较大的子网(突破了自然分类的限制),从而可以在一定程度上控制路由表的快速增长,并降低了路由查找的复杂度。
路由附带丰富的属性只发送增量路由更新在邻居关系建立后,BGP路由会将自己的全部路由信息通告给邻居,此后如果路由表发生了变化,则只将增量部分发送给邻居。
这样可以大大减少BGP传播路由所占用的带宽,以利于在Internet上传播大量的路由信息,并降低路由器CPU与内存的消耗。
路由过滤和路由策略与IGP不同的是,BGP最重要的特性是丰富的路由属性以及强大的路由过滤和路由策略。
通过路由策略等方法,来更改路由属性,或者是根据路由更新信息中的属性来实现路由过滤和路由策略,从而使BGP的使用者可以非常灵活地对路由进行选路和控制。
本文我们将为您展示使用信而泰Renix测试软件验证DUT基本的BGP功能以及验证BGP 路由的流量转发功能。
并观察验证BGP邻居能否正常建立、DUT能否学习到全部的10条Routes以及测试仪P1端口能够收到P2发送的流量,是否有丢包的三个测试项结果测试说明·测试仪P1模拟BGP,和DUT的G0/0/9之间建立BGP邻居·测试仪的P1向DUT发送10条Routes·测试仪端口P2向10条Routes发送流量,验证是否能够正常转发测试步骤·按图连接好拓扑·配置好测试仪和DUT的接口IP地址·在测试仪P1和DUT的G0/0/9之间配置BGP邻居·P1端口向DUT发送10条Routes(50.1.1.0~50.1.10.0/24)·P2向10条Routes发送100M的流量·在测试仪P1上启动BGP·在DUT上查看BGP邻居是否建立·在DUT上查看是否学习到测试仪发送的10条Routes·从测试仪端口P2向10条Routes发送100M的流量3.1占用Ports步骤1-1:添加机框机框IP地址·在机框显示屏上查看·默认为192.168.0.180步骤1-2:占用Ports 在选中的端口上做测试步骤2-1:添加Interface步骤2-2:修改Interface步骤3-1:向导创建BGP步骤3-2:选择端口选择端口·只选择需要建立BGP的端口·选择完成以后,按Next步骤3-3:封装协议封装协议·默认IPv4VLAN配置·选配·是否在Interface上加上VLAN ·本例中不需要步骤3-4:配置Interface Interface配置·是否默认学习MAC地址·配置BGP Router ID步骤3-5:配置MAC层信息MAC层信息·修改Interface的MAC地址步骤3-6:配置IP层信息配置IP信息·本端的IP地址·网关地址(DUT地址)步骤3-7:配置BGP配置BGP·配置本端AS Number ·配置对端AS Number ·配置网关地址步骤3-8:预览配置的BGP步骤3-9:查看配置的Interface步骤3-10:查看配置的BGP步骤3-11:将Interface和BGP关联Interface和BGP关联·向导创建默认关联·手工创建BGP,需要手工关联3.4发布BGP Route步骤4-1:向导添加BGP Routes步骤4-2:选择BGP接口选择需要发布的BGP步骤4-2:配置Routes配置路由·配置路由数量·起始IP步骤4-3:配置BGP默认配置步骤4-6:查看配置的BGP Routes3.5配置流量步骤5-1:Add Binding Stream配置流量步骤5-2:Wizard配置流量选择流量·单向流量·P2接口打向P1步骤5-2:配置General配置General·配置流名称·配置帧长度步骤5-3:配置Frame格式本页面不用修改步骤5-4:选择Rx端口选择流量接收端口·可选步骤5-5:查看配置的Stream3.6启用BGP步骤6-1:启动BGP方法1:启动BGP·选中·点击Start BGP方法2·右键选中·点击Start BGP步骤6-2:查看BGP状态查看状态·状态变为Running以后,表明邻居建立成功3.7发流验证步骤7-1:发流验证发流验证·选中流量·点击start步骤7-2:切换Load模式切换模式·默认基于端口·切换到基于Stream步骤7-3:修改Load值修改load值·在每个Stream上进行修改步骤7-4:切换到Stream Block统计切换统计·默认基于端口统计·切换到基于stream Block统计步骤7-5:查看统计查看统计·速率·时延·丢包·….华为三层交换机的配置interface GigabitEthernet0/0/9 undo portswitchip address30.1.1.1255.255.255.0 #interface GigabitEthernet0/0/10 undo portswitchip address40.1.1.1255.255.255.0BGP4协议测试第20页共21页#--------------------------------bgp 200peer 30.1.1.2as-number 200peer 30.1.1.2connect-interface GigabitEthernet0/0/9#ipv4-family unicastundo synchronizationpeer 30.1.1.2enable#。
BGP协议分析实验预习报告1. 写出BGP协议的基本状态的转换过程。
Idle状态:等待至出现启动事件后,初始化资源,复位Connect-Retry;发起一条TCP连接,转入Connect状态;Connect状态:若Connect-Retry超时则保持Connect,若TCP连接成功转入OpenSent状态,若TCP连接失败转入Active状态;Active状态:BGP总是试图建立TCP连接,若Connect-Retry超时则转入Connect状态,若TCP 连接成功则转入OpenSent状态,若TCP连接失败则保持Active状态;OpenSent状态:等待Open报文,验证收到的Open报文,若错误则发送出错通知报文转入Idle 状态,无错则发送KeepAlive报文,复位KeepAlive计时器,开始计时并转入OpenConfirm;OpenConfirm状态:等待KeepAlive报文,复位保持计时器,收到KeepAlive报文后转入Established状态,若TCP连接中断则转入Idle状态;Established状态:与邻居交换Update报文,复位保持计时器。
2. 写出路由聚合的原理及其作用。
原理:用路由表中一个项表示多个用于传统分类地址的路由。
作用:减少路由器必须维护的路由项数,提高网络性能;隔离部分网络的拓扑变化,保持网络的稳定性。
3. 写出1.6节步骤三的S2和R2的相关配置。
[S2] bgp 300[S2-bgp] group r2s2 external[S2-bgp] peer r2s2 as-number 200[S2-bgp] peer 2.1.1.2 group r2s2[R2] bgp 200[R2-bgp] group r2s2 external[R2-bgp] peer r2s2 as-number 300[R2-bgp] peer 2.1.1.1 group r2s24. 预习BGP报文格式,结合给出的报文填写下表:5.简述BGP的基本属性及其作用。
BGP路由协议的配置与应用一、实验目的1.理解BGP路由协议的基本工作原理;2. 掌握BGP路由协议的基本配置方法;3. 掌握IGP路由和EGP路由相互之间的重新分发。
二、实验内容1. 根据网络拓扑图,组建网络;2. 配置设备互联地址及AS内部路由;3. 两个BGP发言人上分别配置BGP路由协议;4. 两个BGP发言人上分别配置IGP和EGP之间重新分发;5. 查看BGP路由表,及测试网络的连通性。
三、实验环境1. 三层交换机1台;2. 路由器 3台;3.连接电缆 若干。
四、实验步骤1、根据网络拓扑图,组建网络。
如图所示,AS100内部使用RIP互联,AS200内部使用OSPF互联,路由器R2和R3之间使用V.35 DTE/DCE线缆进行连接模拟广域网,R2和R3之间配置BGP,4台路由器上均设置一个loopback接口用于模拟连接网络的终端主机。
2. 自治系统AS100内部互联。
1).三层交换机R1的配置#直接登陆进入用户视图,清除原有配置,并且要重新启动设备。
<H3C >undo startup saved-configuration…….yes<H3C >reboot…….yes#从登陆的用户视图进入系统视图<H3C >system-view#修改三层交换机名称[H3C]sysname R1#设置设备环回接口loopback 1的IP地址[R1]interface loopback 1[R1-Loopback1]ip address 10.1.1.1 32#创建VLAN 10,并添加以太网接口Ethernet1/0/24[R1]vlan 10[R1-vlan10]port Ethernet 1/0/24#设置VLAN 10接口的IP地址[R1]interface vlan-interface 10[R1-Vlan-interface10]ip address 10.1.2.2 255.255.255.252#配置路由器Router-ID[R1]router id 1.1.1.1#创建RIP进程1并进入RIP视图[R1]rip 1#设置RIP进程的版本号2[R1-rip-1]version 2#禁止RIP进程1的路由汇总[R1-rip-1]undo summary#指定与路由器相连的网段加入RIP协议计算[R1-rip-1]network 10.0.0.02).路由器R2的配置#从登陆的用户视图进入系统视图<H3C >system-view#修改路由器名称[H3C]sysname R2#设置设备环回接口loopback 2的IP地址[R2]interface loopback 2[R2-Loopback2]ip address 10.3.1.1 32#设置以太网接口Ethernet 0/0的IP地址[R2]interface ethernet 0/0[R2-Ethernet0/0]ip address 10.1.2.1 255.255.255.252#设置广域网的串口端Serial 1/0的IP地址[R2]interface serial 1/0[R2-serial1/0]ip address 202.1.1.1 255.255.255.252#配置路由器Router-ID[R2]router id 2.2.2.2#创建RIP进程1并进入RIP视图[R2]rip 1#设置RIP进程的版本号2[R2-rip-1]version 2#禁止RIP进程1的路由汇总[R2-rip-1]undo summary#指定与路由器相连的网段加入RIP协议计算[R2-rip-1]network 10.0.0.03. 自治系统AS200内部互联。
bgp实验报告总结
BGP实验报告总结
背景
BGP(Border Gateway Protocol)是用于在互联网中交换路由信息的协议。
它是一种路径矢量协议,用于确定最佳路径,并且能够适应网络拓扑的变化。
在本次实验中,我们对BGP进行了实验,并对实验结果进行了总结和分析。
实验过程
在实验中,我们使用了模拟器来模拟网络环境,并配置了多个路由器和主机。
我们通过配置BGP协议来模拟网络中的路由器之间的路由信息交换。
我们还模拟了网络中的故障情况,以观察BGP协议对网络拓扑变化的适应能力。
实验结果
通过实验,我们观察到BGP协议在网络拓扑变化时能够快速地重新计算最佳路径,并更新路由表。
当网络中发生故障时,BGP能够及时地发现并通知其他路由器,从而保证了网络的稳定性和可靠性。
此外,我们还观察到BGP协议在处理大规模网络时的效率和性能表现良好。
总结与分析
通过本次实验,我们对BGP协议的工作原理和性能有了更深入的了解。
BGP作为互联网中最重要的路由协议之一,具有很强的稳定性和可靠性。
它能够适应网络拓扑的变化,并且能够处理大规模网络的路由信息交换。
因此,BGP协议在互联网中扮演着至关重要的角色。
结论
通过本次实验,我们对BGP协议有了更深入的了解,并且验证了其在网络中的
稳定性和可靠性。
BGP协议的高效性和性能表现使其成为互联网中不可或缺的一部分,对于构建稳定和可靠的互联网具有重要意义。
我们将继续深入研究BGP协议,并将其应用于实际网络中,以提高网络的稳定性和可靠性。
BGP配置实验案例BGP(边界网关协议)是一个用于在互联网中交换路由信息的协议。
在本篇文章中,我们将探讨一个BGP配置实验案例,其中包括两个自治系统(AS)之间的BGP邻居关系的建立和路由的传递。
这个实验案例可以帮助读者更好地理解BGP协议的工作原理和配置步骤。
在这个实验案例中,我们有两个自治系统:AS1和AS2、AS1拥有IP 地址段192.168.0.0/24,AS2拥有IP地址段10.0.0.0/24、我们的目标是在两个自治系统之间建立BGP邻居关系,并实现路由的传递。
首先,我们需要在两个自治系统中配置BGP路由器。
在AS1中,我们选择一个路由器作为BGP路由器,并配置其Loopback接口的IP地址为192.168.0.1、在AS2中,选择另一个路由器作为BGP路由器,并配置其Loopback接口的IP地址为10.0.0.1、这些Loopback接口的IP地址将用作BGP邻居之间的通信地址。
接下来,我们开始配置BGP邻居关系。
在AS1中,我们需要告诉BGP 路由器与AS2的BGP路由器建立邻居关系。
假设AS2的BGP路由器的IP 地址为10.0.0.2,我们将在AS1的BGP路由器上执行以下命令:``````同样地,在AS2的BGP路由器上,我们需要告诉其与AS1的BGP路由器建立邻居关系。
假设AS1的BGP路由器的IP地址为192.168.0.1,我们将在AS2的BGP路由器上执行以下命令:``````配置完BGP邻居关系后,我们可以开始传递路由信息。
在AS1中,我们希望将本地的IP地址段192.168.0.0/24传输给AS2、我们需要在AS1的BGP路由器上执行以下命令:```network 192.168.0.0 mask 255.255.255.0```这些命令告诉AS1的BGP路由器将地址段192.168.0.0/24传输给BGP邻居。
同样地,在AS2中,我们希望将本地的IP地址段10.0.0.0/24传输给AS1、我们需要在AS2的BGP路由器上执行以下命令:```network 10.0.0.0 mask 255.255.255.0```这些命令告诉AS2的BGP路由器将地址段10.0.0.0/24传输给BGP邻居。
bgp实训报告总结BGP(Border Gateway Protocol)是一种用于在互联网中实现路由选择的协议。
本文旨在总结我所参与的BGP实训报告,通过对实训内容的详细描述和分析,展示实训过程中所获得的经验和成果。
二、实训内容1. 实训目标本次BGP实训的目标是学习和掌握BGP协议的基本原理、配置以及故障排查等技能,并通过实际操作加深对BGP协议的理解。
2. 实训环境在实训过程中,我们使用了模拟环境搭建了一个小型的互联网拓扑结构,其中包括了多个自治系统(AS),使用BGP协议实现了各个AS之间的路由选择。
3. 实训步骤实训中,我们按照以下步骤进行了BGP配置和故障排查:- 搭建拓扑结构并配置基本网络参数,确保物理连接正常。
- 配置BGP协议,包括自治系统编号、BGP对等体间的互联、路由策略等。
- 检查BGP邻居关系的建立情况,确保各个AS之间的BGP会话正常。
- 配置各个AS的路由策略,并进行路由表的更新与监控。
- 模拟故障情况,排查并修复BGP邻居关系中出现的问题。
- 总结实训经验并提出改进建议。
三、实训经验与成果在本次实训中,我们获得了以下经验和成果:1. 理解了BGP协议的工作原理,掌握了BGP的配置方法和命令。
2. 学会了如何搭建模拟环境进行BGP实验,在拓扑结构的搭建和配置方面取得了实质性的进展。
3. 掌握了BGP邻居关系的建立与维护技巧,能够及时发现和解决邻居关系中的问题。
4. 能够有效地进行路由策略的配置和路由表的管理,实现了基本的路由选择功能。
5. 在故障排查方面积累了一定经验,能够快速准确定位并解决BGP故障。
四、改进建议基于本次实训的经验和总结,我提出以下改进建议:1. 加强对BGP协议工作原理的学习和理解,为更深入的实验和应用打下基础。
2. 扩大拓扑结构规模,增加实验的复杂性,提升对BGP协议的应用能力。
3. 提供更多实际案例和故障模拟,让学员能够更好地应对复杂的BGP网络环境。
网络工程综合实验实验报告课程名称网络工程综合实验实验名称_____ BGP和GRE实验_____学生学院自动化学院 ___专业班级__ 网络一班_________学号3108001217学生姓名_______ 李亮 _____指导教师________张钢 _______2011 年12 月一.实验目的1.掌握BGP路由协议的配置方法2.掌握GRE隧道协议的配置方法和应用场景3.掌握在复杂网络环境中的多协议配置和排错技巧二.实验原理和拓扑本实验的拓扑结构图如图2.1所示:图2.1 BGP & GRE的拓扑结构图三.实验内容说明和要求:A.S1、S2、S3为H3C的可配置交换机,请为每台交换机配置一个同网段的管理IP地址(172.16.254.*/24),并配置交换机的telnet远程登录。
三台交换机之间通过两条端口聚合的通道相连。
B.S S1和SS2为3COM的简单交换机,在本实验中作为HUB使用。
C.请取消所有交换机上的VLAN划分的配置。
D.为路由器配置telnet的远程登录。
E.本实验的配置目标有两个,第一是配置一个BGP的路由网络,外部BGP使用BGPv4,内部BGP使用OSPF作为路由协议。
第二个是配置R2和R3之间的GRE Tunnel,使R2和R3后面的两个子网能够通过这个通道连成一个虚拟的大子网。
F.把每台设备改名为图中的名字(如S1、S2、S3、R1、SS1等),以便识别。
R1和R7上不启动BGP协议,使用缺省路由指明出口为R2的串行口和R3的串行口。
G.R2、R3、R4、R5、R6上启动BGP协议。
H.请自行规划每一个网段和路由器上每个接口的地址和子网掩码。
I.在R2和R3上配置DHCP服务器,并且要求两个DHCP服务器的地址池不能设置为同一网段。
在R1/R7上设置DHCP中继,使R1/R7可以转发R2/R3的DHCP数据包给R1/R7的以太网口所连接的网段的主机。
J.在R2和R3之间开启一条GRE Tunnel,R2与R3后面的子网能够通过GRE Tunnel连成一个子网(能够相互访问)。
BGP-4路由协议:9.4.1 验证BGP基本功能9.4.2 验证BGP报文信息正常发布和接收9.4.3 验证BGP路由发布(network、静态、缺省) 9.4.4 验证BGP与IGP交互9.4.5 BGP的路由聚合9.4.6 BGP as-path的使用9.4.7 BGP route-policy的使用9.4.8 BGP路由反射器互通性测试9.4.9 验证BGP负载分担和MED属性9.4.10 BGP路由表容量测试验证BGP基本功能测试组网图:测试步骤和结果:步骤2:配置R1/R2/R3/R4/R5/R6的IGP路由在R1上:interface Loopback0ip address 1.1.1.1 255.255.255.255ip ospf 1 area 0interface FastEthernet0/0ip address 172.16.0.1 255.255.255.0ip ospf 1 area 0interface Ethernet1/0ip address 172.16.1.5 255.255.255.252 ip ospf 1 area 0interface Ethernet1/1ip address 172.16.1.1 255.255.255.252 ip ospf 1 area 0在R2上:interface Loopback0ip address 2.2.2.2 255.255.255.255ip ospf 1 area 0interface FastEthernet0/0ip address 172.16.2.1 255.255.255.0ip ospf 1 area 0interface Ethernet1/0ip address 172.16.1.6 255.255.255.252 ip ospf 1 area 0interface Ethernet1/1ip address 172.16.1.9 255.255.255.252ip ospf 1 area 0在R3上:interface Loopback0ip address 3.3.3.3 255.255.255.255ip ospf 1 area 0interface Ethernet1/0ip address 172.16.1.2 255.255.255.252ip ospf 1 area 0interface Ethernet1/1ip address 172.16.1.13 255.255.255.252 router ospf 1passive-interface E1/1在R4上:interface Loopback0ip address 4.4.4.4 255.255.255.255ip ospf 1 area 0interface Ethernet1/0ip address 172.16.1.10 255.255.255.252ip ospf 1 area 0interface Ethernet1/1ip address 172.16.1.17 255.255.255.252ip ospf 1 area 0router ospf 1passive-interface E1/1在R5上:interface Loopback0ip address 5.5.5.5 255.255.255.255interface FastEthernet0/0ip address 172.16.5.1 255.255.255.0 interface Ethernet1/0ip address 172.16.1.14 255.255.255.252在R6上:interface Loopback0ip address 6.6.6.6 255.255.255.255interface FastEthernet0/0ip address 172.16.4.1 255.255.255.0 interface Ethernet1/0ip address 172.16.1.18 255.255.255.252步骤3:配置R1/R2/R3/R4/R5/R6的BGP邻居关系R1上:router bgp 65000no synchronizationneighbor 2.2.2.2 remote-as 65000neighbor 2.2.2.2 update-source Loopback0neighbor 3.3.3.3 remote-as 65000neighbor 3.3.3.3 update-source Loopback0neighbor 4.4.4.4 remote-as 65000neighbor 4.4.4.4 update-source Loopback0 no auto-summary在R2上:router bgp 65000no synchronizationneighbor 1.1.1.1 remote-as 65000neighbor 1.1.1.1 update-source Loopback0 neighbor 3.3.3.3 remote-as 65000neighbor 3.3.3.3 update-source Loopback0 neighbor 4.4.4.4 remote-as 65000neighbor 4.4.4.4 update-source Loopback0 no auto-summary在R3上:router bgp 65000no synchronizationneighbor 1.1.1.1 remote-as 65000neighbor 1.1.1.1 update-source Loopback0 neighbor 2.2.2.2 remote-as 65000neighbor 2.2.2.2 update-source Loopback0 neighbor 4.4.4.4 remote-as 65000neighbor 4.4.4.4 update-source Loopback0 neighbor 172.16.1.14 remote-as 65001no auto-summary在R4上:router bgp 65000no synchronizationneighbor 1.1.1.1 remote-as 65000neighbor 1.1.1.1 update-source Loopback0 neighbor 2.2.2.2 remote-as 65000neighbor 2.2.2.2 update-source Loopback0 neighbor 3.3.3.3 remote-as 65000neighbor 3.3.3.3 update-source Loopback0 neighbor 172.16.1.18 remote-as 65002no auto-summary在R5上:router bgp 65001no synchronizationneighbor 172.16.1.13 remote-as 65000no auto-summary在R6上:router bgp 65002no synchronizationneighbor 172.16.1.17 remote-as 65000no auto-summary步骤4:发布路由信息在R3上:network 172.16.0.0 mask 255.255.255.0network 172.16.2.0 mask 255.255.255.0在R4上:network 172.16.0.0 mask 255.255.255.0network 172.16.2.0 mask 255.255.255.0在R5上:Network 172.16.5.0 mask 255.255.255.0在R6上:Network 172.16.4.0 mask 255.255.255.0步骤5:验证BGP的基本功能show ip route bgpBGP被设计用于在自治系统之间交换路由信息,并且可以处理大量的路由条目。
38个BGP实验汇总38个BGP实验汇总1.实验1说明:BGP的同步2.实验2 BGP环回接口实验3.实验3语法: Neighbor ip address /peer-group-name ebgp-multihop作用:Ebgp邻居一般情况下直连,如果不是直连,可通过这个命令来修改。
值为1-255如果不指定,默认为255 注意:如果要用多跳,一定要注意下一跳可达。
4.实验4语法:Neighbor ip address /peer-group-name next-hot-self作用:在非广播多路访问时,有时有必要将下一跳改为自己.在下面的实验中,将从a 传过来的路由条目改为自己5.实验6语法:Neighbor ip address/peer-group-name advertisementinterval seconds作用:修改bgp触发时间。
如果邻居是ibgp 则修改ibgp时间,如果是 ebgp则会修改ebgp时间了。
默认情况下,ibgp为5秒,ebgp为30秒。
这是路由更新的最少时间。
原因,就是:当路由条目在一定时间闪动多次时,也只有到了最少触发时间才会发出触发更新。
一般情况下,不必要修改。
但是注意这个时间是可以修改的以行。
6.实验7语法:Neighbor ip address/peer-grouup-name timers keepalive holdtime作用:用来修改bgp的存活时间与保持时间,默认为60秒与 180秒。
一般情况下不用修改。
7.实验8语法:BGP实验1 路由汇总Aggregate-address + address maskAggregate-address +上需要汇总的地址和掩码实验二Aggregate-address + address mask也可以用于接收路由器进行汇合。
实验三Aggregate-address + address mask+as-set 作用:来明确路由信息的as路径。
Bgp实验报告
1 路由协议相互引入
2 bgp属性设置
3 bgp同步设置
4 bgp反射器
1 路由协议相互引入
配置ip地址,如图所示。
在1上开启bgp协议
在2、3和4上也开启bgp协议并宣告网段
查看路由情况
因为内部没有开启协议,不知道路怎么走。
所以不能建立关系,要在20内部开启协议这里开ospf
在次查看邻居关系
查看路由情况
用ping命令测试一下
在2上宣告网段(也可以引入直连)
再次用ping命令测试
2 bgp属性设置本地优先级
在4上修改本地优先级
在3上查看路由情况
修改med值
先从1上查看路由情况
在2和4上都修改med值
再次查看路由
Med值越小。
优先走这条路
修改首选值
先在1上查看路由
在1修改首选值
查看路由情况
3 bgp同步
如图配置ip地址并开启协议宣告网段(这里只在4上和5建立关系就行了)
在5上开启协议
查看路由条目
在2和4上开启同步
查看路由情况
同步是把都有的往下传递,没有的则不传递相互引入路由
查看路由条目
在4上也引入路由
查看路由
在引入直连网络,1和5就都可以学到全部的路由了
4 反射器
在20里面的2 4 5都开启内部路由协议和3建立关系
在3上先建立关系
查看下路由
和其他建立关系
在建立客户端
查看路由情况
反射器从客户端学到的地址要发给其他客户端和非客户端,从非客户端学到的要发给客户端,客户端之间不能相互学习,要通过反射器才能学到。
Supernova测试仪BGP4+测试配置手册网测科技2023/08/25目录一、文档说明 (3)二、BGP4+简介 (3)三、测试拓扑图 (4)四、配置路由器 (5)五、配置BGP4+用例 (6)5.1新建用例 (6)5.2配置IPV6虚拟主机 (6)5.3配置IPv6边界网关 (7)5.4配置虚拟路由器协议参数 (7)5.5配置Ipv6虚拟网络区域 (8)5.6运行用例 (8)5.7查看用例运行界面及结果 (9)一、文档说明本文档主要介绍BGP4+的配置和测试过程。
随着需求的不断改变,可能会对用例配置进行修改和升级,从而改变配置过程,所以有任何问题,请联系我们的售前或售后支持人员。
二、BGP4+简介BGP是Border Gateway Protocol(边界网关协议)的简称,是一种动态路由协议,该协议用于创建自治系统之间无环路域间路由,分为IBGP(两台路由器自治域号一样)和EBGP(两台路由器自治域号不一样)。
目前针对IPv4协议使用的是BGP Version4(RFC1771);针对IPv6协议使用BGP4+(RFC1771)。
三、测试拓扑图Supernova测试仪Port1口只模拟客户端、Port2口只模拟服务端进行BGP4+协议仿真测试。
Port2口服务端模拟1个通告路由器和多个下联路由器。
Port1模拟客户端以Port2口服务端模拟的下联路由器为目的发送UDP流量。
四、配置路由器这里以华为路由器AR1220C举例,测试仪的port1端口网线连接路由器的11口;测试仪的port2端口网线连接路由器的12口。
1)登录路由器。
输入正确的用户名和密码。
输入sys进入系统视图。
2)配置路由器接口的IP地址[AR1200]ipv6[AR1200]int g0/0/11[AR1200-GigabitEthernet0/0/11]ipv6enable[AR1200-GigabitEthernet0/0/11]ipv6address2000:11::164[AR1200]int g0/0/12[AR1200-GigabitEthernet0/0/12]ipv6enable[AR1200-GigabitEthernet0/0/12]ipv6address2000:12::1643)配置BGPv4+功能[AR1200]bgp200[AR1200-bgp]router-id1.1.1.1[AR1200-bgp]peer2000:12::2as200[AR1200-bgp]peer2000:12::2connect-interface GigabitEthernet0/0/12 [AR1200-bgp]ipv6-family[AR1200-bgp-af-ipv6]peer2000:12::2enable五、配置BGP4+用例5.1新建用例在用例界面,依次打开【网关设备测试】-【2-3层协议仿真】-【动态路由协议】-【BGP4+】,点击【增加】选择拓扑为【单向】5.2配置IPV6虚拟主机【网络】-【网络配置】-【IPv6虚拟主机】填写用例名称,设定用例时长,选择客户端和服务端所使用的port口;port1的虚拟主机子网网关即是直连的路由器G0/0/11的ipv6地址;port1的虚拟主机子网主机位地址或范围要与路由器接口处在同一个网段;port1的服务端所在端口要正确选择测试仪的服务端端口,这里是port2;port2作为服务端不需要配置ipv6虚拟主机,默认值即可。
实验3 BGP协议实验1.查看R1和R2的路由表,注入路由信息前,是否有对方loopback的路由信息?注入路由信息后,是否有对方loopback的路由信息?为什么?答:注入路由信息前,没有对方的loopback;注入路由信息后,有对方的loopback;因为没有注入路由信息前,5.5.5.5的路由信息不会被BGP转发。
2.[R2]ping –a 4.4.4.4 5.5.5.5 能否ping通?如果不用ping命令的-a参数是否能ping通?为什么?答:能ping通,如果不用-a不能ping通。
-a参数指定源地址,而如果不指定4.4.4.4为源地址,则源地址为2.1.1.2,而R1中没有2.1.1.2的路由信息,所以ping消息无法返回。
3.把所截报文命名为BGP1-学号,并上传到服务器。
根据截获的BGP报文的顺序和结构,312UPDATE 1.1.1.2:179 1.1.1.1:3950携带路由更新信息4. 思考题:在实验截获的报文中是否有NOTIFICATION报文?为什么?答:没有,因为BGP运行正常没有出错。
5. 写出一个Update报文的完整结构,并指出报文中路由信息所携带的路由属性。
答:Marker(16 byte) 全1 检测BGP对等体之间的同步是否丢失Length(2 byte) 55 整个报文长度Type(1 byte) 2(UPDATE) 报文类型Withdrawn Routes Length(2 byte) 0 撤销路由长度Withdrawn Routes(变长0 byte) - 撤销路由Path Attribute Length(2 byte) 27 路径属性长度Path Attribute(27 byte) 见下路径属性ORIGIN(3+1=4 byte) 0(IGP) 起点属性AS_PATH(3+6=9 byte) 见下AS路径属性Segment type(1 byte) 2(AS_SEQUENCE)Segment length(1 byte) 1AS4(4byte) 100NEXT_HOP(3+4=7 byte) 1.1.1.1 下一跳属性MED(3+4=7 byte) 0 部邻居路由器进AS内的优先路径此Update报文共携带以上4个路由属性。
mininet实验-BGP和OSPF路由协议一、自治系统自治系统AS(Autonomous System):自治系统就是几个路由器组成了一个小团体,小团体内部使用专用的协议进行通信,而小团体和小团体之间也使用专用的协议进行通信。
就像这样一样:值得一提的是,尽管一个AS内部使用了路由选择协议,但是一个AS对其他AS还是相当于两个普通的路由器在通信。
二、路由选择协议互联网中有两大类路由选择协议,他们分别是:1️⃣内部网关协议IGP(Interior Gateway Protocol)2️⃣外部网关协议EGP(External Gateway Protocol)其中内部网关协议就是我们之前说的在路由器的小团体之间进行通信所使用的协议,如RIP和OSPF等。
而外部网关协议则是小团体与小团体之间交流所使用的协议,目前使用的协议就是BGP。
到此为止我们要讲述的猪脚就登场了!自治系统之间的路由选择也叫作域间路由选择(interdomain routing),在自治系统内部的路由选择叫作域内路由选择(intradomain routing)。
三、内部网关协议RIP好了,下面我们进入第一块内容RIP协议。
1、工作原理全称是路由信息协议RIP(Routing Information Protocol)。
✅它是一种分布式的、基于距离向量的路由选择协议。
✅它要求网络中的每一个路由器都要维护从它自己到其他每一个目的网络的距离记录。
关于距离的定义:从一个路由器到直接连接的网络的距离定义为1。
从一个路由器到非直接连接的网络的距离定义为所经过的路由器数加1。
“距离”也称为“跳数”(hop count),因为每经过一个路由器,跳数就加1。
这里的“距离”实际上指的是“最短距离”。
RIP认为一个好的路由就是它通过的路由器的数目少,即“距离短”。
RIP允许一条路径最多只能包含15个路由器。
❌这意味着RIP只会选择一个具有最少路由器的路由(即最短路由),哪怕还存在另一条高速(低时延)但路由器较多的路由。
实验四EIGRP协议的配置一、实验目的:1.掌握在路由器上配置EIGRP路由协议的方法2.理解默认网关、默认路由的意义3.掌握查看路由表和端口的命令4.理解路由表和端口中各内容的含义5.理解自治系统的含义与使用方法二、实验环境:(自己连接线缆)1、组网图2、IP地址规划PC_A:Ip地址:192.168.1.1子网掩码:255.255.255.0网关:192.168.1.254PC_B:Ip地址:192.168.3.1子网掩码:255.255.255.0网关:192.168.3.254PC_C:Ip地址:192.168.3.2子网掩码:255.255.255.0网关:192.168.3.254PC_D:Ip地址:192.168.5.1子网掩码:255.255.255.0网关:192.168.5.254Router_A:F0/1:192.168.1.254子网掩码:255.255.255.0F0/0:192.168.2.1子网掩码:255.255.255.0S0/0:192.168.4.1子网掩码:255.255.255.0Router_B:F0/0:192.168.3.254子网掩码:255.255.255.0S0/0:192.168.7.2子网掩码:255.255.255.0Router_C:F0/0:192.168.5.254子网掩码:255.255.255.0F0/1:192.168.6.1子网掩码:255.255.255.0S0/0:192.168.4.2子网掩码:255.255.255.0Router_D:F0/0:192.168.6.2子网掩码:255.255.255.0S0/0:192.168.7.1子网掩码:255.255.255.0三、实验内容及要求:1.网络环境配置与连接将给定的实验设备按实验拓朴进行连接,自己选择使用的网络连接线的类型对实验拓朴进行IP地址规划,并画出实验拓朴图,详细并标明IP地址规划注意:路由器的控制端口(Console)与PC机的串口(COM1或COM2)使用Console控制线 路由器计算机的通过网络接口的连接使用RJ-45的网线,应选择交叉线。