拉普拉斯(Laplace)变换及其应用
- 格式:ppt
- 大小:3.34 MB
- 文档页数:29
毕业设计(论文)题目:拉普拉斯变换的应用院(系)数学科学学院专业信息与计算科学届别学号姓名指导老师摘要拉普拉斯变换是重要的定理.本文首先叙述拉普拉斯变换的相关定理及其推广,然后通过了举例子的方法来列举了拉普拉斯变换在广义积分、微分方程求解中应用, 以及拉普拉斯变换的延迟性质的应用关键词:拉普拉斯变换; 拉普拉斯变换应用;拉普拉斯变换的推广.ABSTRACTThe theorem of Laplace transform is important.This paper described the related theorem and its extension of the Laplace transformation, then an example through the way of enumerating the Laplace transformation applied in the generalized integral, differential equation, and delay the nature of the application of Laplace transformKeywords:Laplace transform; Laplace transform application; A generalization of Laplace transform.目录第一章拉普拉斯变换的概念及存在定理 (4)引言 (4)1.拉普拉斯变换的定义 (4)2.拉普拉斯变换的存在定理 (4)3.拉普拉斯变换的基本性质 (6)第二章拉普拉斯变换的推广及其逆变换 (7)1.拉普拉斯变换的推广 (7)2.拉普拉斯逆变换 (7)第三章拉普拉斯变换的应用 (9)1.利用拉普拉斯变换解微分方程(组) (9)2.用拉普拉斯变换解积分方程 (12)第四章利用拉普拉斯变换求解广义积分 (13)1.主要方法及证明 (13)2.计算⎰∞0)(dtttf型积分 (15)3.计算⎰∞>)0(),(tdxxtf型积分 (16)第五章延迟性质在拉普拉斯变换中的应用 (18)结语 (20)参考文献 (21)后记 (22)第一章 拉普拉斯变换的概念及存在定理引 言复变函数论产生于18世纪,它是数论、代数、方程等理论研究中的重要方法之一,以其完美的理论与精湛的技巧成为数学的一个重要组成部分.在数学中为了把较复杂的运算转化为较简单的运算,常常采取一种变换手法,如数量乘积或商通过对数变换变成和或者差然后再作指数变换即得原来数量的乘积和商.所谓积分变换,就是通过积分运算,把一个函数变成另一个函数的变换,一般是化为含参数的积分.积分变换理论和方法不仅在数学许多分支中,而且在其他自然科学和各种工程技术领域中有广泛应用,已经成为不可缺少的运算工具 ,本论文主要总结归纳了拉普拉斯的变换几个重要方面的应用.通过本论文,不仅能使你对拉普拉斯的变换有更加深入的了解,而且能掌握其运用,增强自身的实际运用能力,使得自己对于拉普拉斯的变换有了真正意义上的掌握,而不是仅仅是停留在课本上的认识.1.拉普拉斯变换的定义:设函数ƒ(t)在[0,∞]上有定义,如果对于复参变量jw s +=β,积分dt e t f s F st -+∞⎰=0)()(在复平面s 的某一个区域内收敛,则称)(s F 为函数)(t f 的拉普拉斯变换,记为)]([£)(s f s F =;对应地,称函数)(s f 为)(s F 的拉普拉斯逆变换,记为)]([£)(-1s F t f =.同时,)(s F 和)(s f 分别被称为像函数和原函数.2.拉普拉斯变换的存在定理:若函数)(t f )满足下列条件:(1)在0≥t 的任一有限区间上连续或者分段连续;(2)当∞→t 时,)(t f 具有有限的增长性,即存在常数0>M 及0≥c ,使得 ct Me t f ≤)( )0(∞<≤x (1) 成立(其中c 称为)(t f 的增长指数,或者称)(t f 的增长是不超过指数级的).则)(t f 的拉普拉斯变换F(s)在半平面c s >)Re(上一定存在,拉普拉斯积分在c c >≥1Re 上绝对收敛而且一致收敛,并且)(s F 在c s >)Re(的半平面内解析.证 设jw s +=β,则t st e e β--=,由不等式(1),可得dt e M dt e t f s F t c st ⎰⎰+∞--+∞-≤=0)(0)()(β 又由c s >=β)Re(,即0>-c β,可知上式右端积分收敛,因此)(s F 在半平面c s >)Re(上存在.注1 上述拉普拉斯变换存在定理证明表明,一个函数即使它的绝对值随着t 的增大而增大,但只要不比某个指数函数增长得快,则它的拉普拉斯变换就存在,这一点可以从拉普拉斯的变换与傅里叶变换的关系中得到一种直观的解释.大多数物理和工程技术中常见的函数都满足存在定理的条件,因而拉普拉斯变换的应用范围较傅里叶更广泛.注2 存在定理中的条件是充分而非必要条件.例如,对于函数m t t f =)(来说,当1->m 时,拉普拉斯变换是存在的;但当21=m 时,t t f 1)(=却不满足存在定理中的条件(1),因为这时)(t f 在0=t 时为无穷大,不满足在0≥t 的任一有限区间上连续或者分段连续的要求.同理,单位脉冲函数)(t δ也不满足定理中的条件,但)(t δ的拉普拉斯变换是存在的.注3 当满足拉普拉斯变换存在定理条件的函数)(t f 在0=t 处有界时,积分dt e t f t f st ⎰+∞-=0)()]([ψ中的下限取+0或者-0不会影响其结果。
拉普拉斯定理拉普拉斯定理(Laplace's theorem),又称拉氏变换定理(Laplace transform theorem),是拉普拉斯变换理论中的重要定理之一。
它描述了一个函数经过拉普拉斯变换后的性质,被广泛应用于各个科学领域,如物理学、工程学等。
下面将详细介绍拉普拉斯定理的定义、性质以及应用。
首先,我们需要了解拉普拉斯变换。
拉普拉斯变换是一种将一个时间或空间域函数转化为一个复平面上的函数的数学工具。
对于一个函数f(t),它的拉普拉斯变换表示为F(s),其中s是复变量。
拉普拉斯变换可以将原函数从时间域转换到频率域,从而方便地进行信号分析和处理。
拉普拉斯定理是指当函数f(t)及其导数在t=0存在时,它们的拉普拉斯变换具有以下性质:1. 常数项性质:如果f(t)的拉普拉斯变换为F(s),那么f(t)中的常数项c的拉普拉斯变换为c/s。
这意味着拉普拉斯变换可以方便地处理包含常数项的函数。
2. 积分性质:如果f(t)的拉普拉斯变换为F(s),那么∫[0,t]f(u)du 的拉普拉斯变换为F(s)/s。
这个性质对于计算函数的积分非常有用,并且可以简化一些复杂的积分计算。
3. 初值定理:如果f'(t)的拉普拉斯变换为F(s),那么f(0)的拉普拉斯变换为lim(s->∞)sF(s)。
这个定理描述了函数f(t)在t=0处的初始值与其拉普拉斯变换之间的关系。
4. 终值定理:如果lim(t->∞)f(t)存在,并且函数f(t)的拉普拉斯变换为F(s),那么lim(s->0)sF(s)为f(t)的终值。
这个定理描述了函数f(t)在t趋近于无穷大时的极限与其拉普拉斯变换之间的关系。
拉普拉斯定理的这些性质可以方便地用于求解微分方程、差分方程以及其他许多数学问题。
它可以将一个复杂的微分方程转化为一个简单的代数方程,从而更加容易通过数值方法求解。
此外,拉普拉斯定理还在控制系统理论中有广泛的应用。
一、谈拉普拉斯定理及其应用拉普拉斯定理拉普拉斯(Pierre-Simon Laplace,1749-1827)是法国分析学家、概率论学家和物理学家,法国科学院院士。
他用数学方法证明了行星轨道大小只有周期性变化,此即著名的拉普拉斯定理. 他的著名杰作《天体力学》是经典力学的代表著作,在《宇宙系统论》这部书中,他提出了第一个科学的太阳系起源理论——星云说. 他在数学和物理方面有重要贡献,他是拉普拉斯变换和拉普拉斯方程的发现者。
在了解Laplace 定理之前,首先要了解如下概念在一个 n 级行列式 D 中任意选定 k 行 k 列 (k\leq n) ,位于这些行和列的交叉点上的 k^2 个元素按照原来次序组成一个 k 级行列式 M ,称为行列式 D 的一个 k 级子式;在 D 中划去这 k 行 k 列后,余下的元素按照原来的次序组成 n-k 级行列式 M' ,称为 k 级子式 M 的余子式;若 k 级子式 M 在 D 中所在的行、列指标分别是 i_1,i_2,\cdots,i_k;j_1,j_2,\cdots ,j_k ,则在 M 的余子式 M' 前加上符号 (-1)^{i_1+i_2+\cdots+i_k+j_1+j_2+\cdots +j_k}M' 后称之为 M 的代数余子式,记为 A=(-1)^{i_1+i_2+\cdots+i_k+j_1+j_2+\cdots +j_k}M' .Laplace 定理:设在行列式 D 中任取 k (1\leq k\leq n-1) 行,由这 k 行元素所组成的一切 k 级子式与它们的代数余子式的乘积和等于 D . 即,若 D 中取定 k 行后,由这 k 行得到的 k 级子式为 M_1,M_2,\cdots,M_t ,它们对应的代数余子式分别为 A_1,A_2,\cdots,A_t ,则 D=M_1A_1+M_2A_2+\cdots+M_tA_t为了更好的理解Laplace 定理,下面看个例子:先有行列式 D=\left| \begin{array}{ccc} 1 & 2 & 1 & 4 \\ 0 & -1 & 2 & 1 \\ 1 & 0 & 1 & 3 \\ 0 & 1 & 3 & 1 \\ \end{array} \right| ,取定其第一、三行,求其子式和代数余子式,并计算其值解:去定其第一、三行,其子式为:M_1=\left| \begin{array}{ccc} 1 & 2 \\ 1 & 0 \\ \end{array}\right|=-2,\quad M_2=\left| \begin{array}{ccc} 1 & 1 \\ 1 & 1 \\ \end{array} \right|=0,\quad M_3=\left| \begin{array}{ccc} 1 & 4 \\ 1 & 3 \\ \end{array} \right|=-1 \\M_4=\left| \begin{array}{ccc} 2 & 1 \\ 0 & 1 \\ \end{array}\right|=2,\quad M_5=\left| \begin{array}{ccc} 2 & 4 \\ 0 & 3 \\\end{array} \right|=6,\quad M_6=\left| \begin{array}{ccc} 1 & 4 \\ 1 & 3 \\ \end{array} \right|=-1 \\它们的代数余子式为:A_1=(-1)^{1+3+1+2}\left| \begin{array}{ccc} 2 & 1 \\ 3 & 1 \\\end{array} \right|=1,\quad A_2=(-1)^{1+3+1+3}\left|\begin{array}{ccc} -1 & 1 \\ 1 & 1 \\ \end{array} \right|=-2,\quad A_3=(-1)^{1+3+1+4}\left| \begin{array}{ccc} -1 & 2 \\ 1 & 3 \\ \end{array} \right|=5 \\A_4=(-1)^{1+3+2+3}\left| \begin{array}{ccc} 0 & 1 \\ 0 & 1 \\\end{array} \right|=0,\quad A_5=(-1)^{1+3+2+4}\left|\begin{array}{ccc} 0 & 2 \\ 0 & 3 \\ \end{array} \right|=0,\quad A_6=(-1)^{1+3+3+4}\left| \begin{array}{ccc} 0 & -1 \\ 0 & 1 \\ \end{array} \right|=0 \\所以其行列式为D=M_1A_1+M_2A_2+\cdots+M_6A_6=-7 \\经Matalb验证如下:M=[1,2,1,4;0,-1,2,1;1,0,1,3;0,1,3,1];det(M)___________-7二、证明如何证明行列式的拉普拉斯定理?首先回顾一下行列式的计算方法一个 n 阶矩阵的行列式等于其按第 i 行展开,对应元素与其代数余子式乘积的代数和,用符号表示为D=a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}=\sum_{j=1}^{n}{ a_{ij}A_{ij}}\quad (i=1,2,\cdots ,n) \\上式在很多教科书上被用作行列式的定义,现通常被称为“(行列式的)拉普拉斯展开式(Laplace expansion)/(行列式的)余因子展开式(cofactor expansion)”;然而,此式首先由范德蒙(Vandermonde)给出。
拉普拉斯变换的应用一·拉普拉斯变换的应用拉普拉斯变换在许多领域中都有着重要的作用,在工程学上应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
在计算机图像处理方面,拉普拉斯变换在Matlab上的拉普拉斯算子在图像处理上有很强的应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。
二·拉普拉斯变换在图像处理方面的应用计算机进行图像处理一般有两个目的: (1)产生更适合人观察和识别的图像。
(2)希望能由计算机自动识别和理解图像。
数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。
图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。
首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。
前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。
早期的经典算法有边缘算子法、曲面拟合法、模版匹配法等。
经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny算子等。
三·应用步骤用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程序编码和运行来实现。
下边是应用步骤:(一)、选好需要进行处理的照片,用拉普拉斯算子实现数字图像的边缘检测。