拉普拉斯变换的应用及其综合举例(D)
- 格式:ppt
- 大小:1.45 MB
- 文档页数:29
一、介绍拉普拉斯变换是一种用来分析和处理连续时间信号的数学工具。
它在控制理论、信号处理和电路分析等领域有着广泛的应用。
本文将围绕着表达式x(-t+3)的拉普拉斯变换展开讨论,探讨其在实际问题中的应用。
二、x(-t+3)的拉普拉斯变换拉普拉斯变换是一种用于将连续时间信号转换为复频域的数学工具。
对于表达式x(-t+3),它的拉普拉斯变换可以通过以下步骤来求解。
1. 根据拉普拉斯变换的定义,我们需要将表达式x(-t+3)乘以e^(-st),其中s为复变量。
这样得到的新表达式为x(t)e^(-3s)e^(-st)。
2. 我们需要对新表达式进行积分运算。
将x(t)e^(-3s)e^(-st)关于t进行积分,得到积分表达式∫x(t)e^(-3s)e^(-st)dt。
3. 对积分表达式进行求解,得到x(-t+3)的拉普拉斯变换。
三、应用举例x(-t+3)的拉普拉斯变换在实际问题中有着重要的应用。
以下举例说明其在控制理论和信号处理中的应用。
1. 控制理论在控制系统中,经常需要对输入信号进行变换和处理。
对于一个以时间t为自变量的输入信号x(t),我们希望将其延迟3个时间单位后输入系统中。
这时就需要用到x(-t+3)的拉普拉斯变换。
通过对输入信号进行拉普拉斯变换,可以方便地对系统的动态特性进行分析和控制。
2. 信号处理在信号处理中,经常需要对信号进行时移和频率变换。
对于表达式x(-t+3),其拉普拉斯变换可以帮助我们分析信号在频域中的特性。
可以通过变换后的频域表达式来设计滤波器、降噪和提取信号特征等。
四、结论本文围绕着表达式x(-t+3)的拉普拉斯变换展开讨论,介绍了其求解步骤和在控制理论和信号处理中的应用。
拉普拉斯变换作为一种重要的数学工具,对于分析和处理连续时间信号有着重要的意义,希望本文的内容对读者有所启发和帮助。
一、引言拉普拉斯变换是一种在工程和科学领域中被广泛应用的数学工具,它能够将时域中的函数变换到复频域中,为我们探索和分析系统的动态特性提供了有力的工具。
拉普拉斯变换在电路中的应用10071051朱海云 应用拉普拉斯变换求解线性电路的方法称为运算法。
运算法的思想是:首先找出电压、电流的像函数表示式,而后找出R、L、C 单个元件的电压电流关系的像函数表示式,以及基尔霍夫定律的像函数表示式,得到用像函数和运算阻抗表示的运算电路图,列出复频域的代数方程,最后求解出电路变量的象函数形式,通过拉普拉斯反变换,得到所求电路变量的时域形式。
显然运算法与相量法的基本思想类似,因此,用相量法分析计算正弦稳态电路的那些方法和定理在形式上均可用于运算法。
1.电路定律的运算形式 基尔霍夫定律的时域表示: 把时间函数变换为对应的象函数: 得基尔霍夫定律的运算形式:2.电路元件的运算形式 根据元件电压、电流的时域关系,可以推导出各元件电压电流关系的运算形式。
图1(a)1)电阻R的运算形式 图1(a)所示电阻元件的电压电流关系为:u =Ri ,两边取拉普拉斯变换,得电阻元件VCR 的运算形式: 或 根据上式得电阻R 的运算电路如图(b )所示。
图1(b )图2(a)图2(b)2)电感L 的运算形式 图2(a)所示电感元件的电压电流关系为 两边取拉普拉斯变换并根据拉氏变换的微分性质,得电感元件VCR 的运算形式: 或 根据上式得电感L 的运算电路如图(b)和图(c)所示。
图中表示附加电压源的电压,表示附加电流源的电流。
式中图2(c )分别称为电感的运算阻抗和运算导纳。
图3(a)图3(b)3)电容C 的运算形式 图3(a)所示电容元件的电压电流关系为: 两边取拉普拉斯变换并根据拉氏变换的微分性质,得电容元件VCR 的运算形式: 或 根据上式得电容C 的运算电路如图(b)和图(c)所示。
图中表示附加电流源的电流,表示附加电压源的电压。
式中分别为电容的运算阻抗和运算导纳。
图3(c)4)耦合电感的运算形式 图4(a )所示耦合电感的电压电流关系为: 图4(a ) 两边取拉普拉斯变换,得耦合电感VCR的运算形式: 根据上式得耦合电感的运算电路如图(b)所示。
§2-3拉普拉斯变换及其应用时域的函数可以通过线性变换的方法在变换域中表示,变换域的表示有时更为简捷、方便。
例如控制理论中常用的拉普拉斯变换,简称拉氏变换,就是其中的一种。
一、拉氏变换的定义已知时域函数,如果满足相应的收敛条件,可以定义其拉氏变换为(2-45)式中,称为原函数,称为象函数,变量为复变量,表示为(2-46)因为是复自变量的函数,所以是复变函数。
有时,拉氏变换还经常写为(2-47)拉氏变换有其逆运算,称为拉氏反变换,表示为(2-48)上式为复变函数积分,积分围线为由到的闭曲线。
二、常用信号的拉氏变换系统分析中常用的时域信号有脉冲信号、阶跃信号、正弦信号等。
现复习一些基本时域信号拉氏变换的求取。
(1)单位脉冲信号理想单位脉冲信号的数学表达式为(2-49)且(2-50)所以(2-51)说明:单位脉冲函数可以通过极限方法得到。
设单个方波脉冲如图2-13所示,脉冲的宽度为,脉冲的高度为,面积为1。
当保持面积不变,方波脉冲的宽度趋于无穷小时,高度趋于无穷大,单个方波脉冲演变成理想的单位脉冲函数。
在坐标图上经常将单位脉冲函数表示成单位高度的带有箭头的线段。
由单位脉冲函数的定义可知,其面积积分的上下限是从到的。
因此在求它的拉氏变换时,拉氏变换的积分下限也必须是。
由此,特别指明拉氏变换定义式中的积分下限是,是有实际意义的。
所以,关于拉氏变换的积分下限根据应用的实际情况有,,三种情况。
为不丢掉信号中位于处可能存在的脉冲函数,积分下限应该为。
(2)单位阶跃信号单位阶跃信号的数学表示为(2-52)又经常写为(2-53)由拉氏变换的定义式,求得拉氏变换为(2-54)因为阶跃信号的导数在处有脉冲函数存在,所以单位阶跃信号的拉氏变换,其积分下限规定为。
(3)单位斜坡信号单位斜坡信号的数学表示为(2-55)图2-15单位斜坡信号另外,为了表示信号的起始时刻,有时也经常写为(2-56)为了得到单位斜坡信号的拉氏变换,利用分部积分公式得(2-57)(4)指数信号指数信号的数学表示为(2-58)拉氏变换为(2-59)(5)正弦、余弦信号正弦、余弦信号的拉氏变换可以利用指数信号的拉氏变换求得。
拉普拉斯变换的应用-拉普拉斯变换的应用拉普拉斯变换在许多领域中都有着重要的作用,在工程学上应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
在计算机图像处理方面,拉普拉斯变换在Matlab 上的拉普拉斯算子在图像处理上有很强的应用性,例如:在图像的边缘检测、对图像进行拉普拉斯锐化、对图像进行滤波等。
二•拉普拉斯变换在图像处理方面的应用计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。
⑵ 希望能由计算机自动识别和理解图像。
数字图像的边缘检测是图像分害IJ、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。
物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。
图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。
根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。
首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。
前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。
早期的经典算法有边缘算子法、曲面拟合法、模版匹配法等。
经典的边缘检测算法是对原始图像中像素的某小领域米构造边缘检测算子,常用的边缘检测算子有Roberts算子、Sobel算子、Laplacian算子、Canny 算子等。
三•应用步骤用拉普拉斯变换进行数字图像处理,需要借用计算机上的Matlab软件去进行程序编码和运行来实现。
下边是应用步骤:(一)、选好需要进行处理的照片,用拉普拉斯算子实现数字图像的边缘检测。
拉普拉斯变换拉普拉斯(Laplace)变换是分析和求解常系数线性微分方程的一种简便的方法,而且在自动控制系统的分析和综合中也起着重要的作用.本章将扼要地介绍拉普拉斯变换(以下简称拉氏变换)的基本概念、主要性质、逆变换以及它在解常系数线性微分方程中的应用.1拉氏变换的基本概念在代数中,直接计算是很复杂的,而引用对数后,可先把上式变换为,然后通过查常用对数表和反对数表,就可算得原来要求的数.这是一种把复杂运算转化为简单运算的做法,而拉氏变换则是另一种化繁为简的做法.1.1 拉氏变换的基本概念定义 设函数当时有定义,若广义积分在的某一区域内收敛,则此积分就确定了一个参量为的函数,记作,即(7-1)称(1-1)式为函数的拉氏变换式,用记号表示.函数称为的拉氏变换(Laplace) (或称为的象函数).函数称为的拉氏逆变换(或称为象原函数),记作,即.关于拉氏变换的定义,在这里做两点说明:(1) 在定义中,只要求在时有定义.为了研究拉氏变换性质的方便,以后总假定在时,.(2)在较为深入的讨论中,拉氏变换式中的参数是在复数范围内取值.为了方便起见,本章我们把作为实数来讨论,这并不影响对拉氏变换性质的研究和应用.(3)拉氏变换是将给定的函数通过广义积分转换成一个新的函数,它是一种积分变换.一般来说,在科学技术中遇到的函数,它的拉氏变换总是存在的.例7-1 求一次函数(为常数)的拉氏变换.解.1.2 单位脉冲函数及其拉氏变换在研究线性电路在脉冲电动势作用后所产生的电流时,要涉及到我们要介绍的脉冲函数,在原来电流为零的电路中,某一瞬时(设为)进入一单位电量的脉冲,现要确定电路上的电流,以表示上述电路中的电量,则由于电流强度是电量对时间的变化率,即328.957812028.6⨯⨯=N 53)164.1(⨯164.1lg 53)20lg 28.9lg 5781(lg 3128.6lg lg ++-+=N N )(t f 0≥t dte tf pt ⎰∞+-0)(P P )(P F dte tf P F pt ⎰∞+-=)()()(t f )()]([P F t f L =)(P F )(t f )(t f )(t f )(P F )(P F )()]([1t f P F L =-)]([)(1P F L t f -=)(t f 0≥t 0<t 0)(=t f P P at t f =)(a t ,0≥⎰⎰⎰∞+-∞+-∞+-∞+-+-=-==00][)(][dte pa e p at etd pa dt ateat L pt pt ptpt2020][0p a e p a dt e papt pt =-=+=∞+-∞+-⎰)0(>p 0=t )(t i )(t Q ⎩⎨⎧=≠=.0,1,0,0)(t t t Q,所以,当时,;当时,.上式说明,在通常意义下的函数类中找不到一个函数能够用来表示上述电路的电流强度.为此,引进一个新的函数,这个函数称为狄拉克函数.定义设,当0时,的极限称为狄拉克(Dirac )函数,简称为函数.当时,的值为;当时,的值为无穷大,即.和的图形如图7-1和图7-2所示.显然,对任何,有,所以.工程技术中,常将函数称为单位脉冲函数,有些工程书上,将函数用一个长度等于的有向线段来表示(如图7-2所示),这个线段的长度表示函数的积分,叫做函数的强度.例1-2 求的拉氏变换.解 根据拉氏变换的定义,有,即.例1-3 求单位阶梯函数的拉氏变换.解,.t t Q t t Q dt t dQ t i t ∆∆∆)()(lim )()(0-+==→0≠t 0)(=t i 0=t ∞=-=-+=→→)1(lim )0()0(lim)0(00t t Q t Q i t t ∆∆∆∆∆⎪⎩⎪⎨⎧>≤≤<=εεεδεt t t t ,,,00100)(ε→)(t εδ)(lim )(0t t εεδδ→=-δ0≠t )(t δ00=t )(t δ⎩⎨⎧=∞≠=0,0,0)(t t t δ)(t εδ)(t δ0>ε11)(0==⎰⎰∞+∞-dt dt t εεεδ1)(=⎰∞+∞-dt t δ-δ-δ1-δ-δ)(t δdte dt edt edt et t L pt ptptpt-→∞+-→-→∞+-⎰⎰⎰⎰=⋅+==εεεεεεεεδδ01lim0lim)1lim()()]([11lim 1)()1(lim 11lim 1][1lim 00000==''-=-=-=-→-→-→-→εεεεεεεεεεεp p p pt pe p e p e p p e 1)]([=t L δ⎩⎨⎧≥<=0,10,0)(t t t u p e p dt e dt et u t u L pt pt pt1]1[1)()]([00=-=⋅==∞+-∞+-∞+-⎰⎰)0(>p例1-4求指数函数(为常数)的拉氏变换. 解 ,即.类似可得;.习题1–1求1-4题中函数的拉氏变换1..2..3.4.是常数).1.2 拉氏变换的性质拉氏变换有以下几个主要性质,利用这些性质,可以求一些较为复杂的函数的拉氏变换. 性质1 (线性性质) 若 ,是常数,且,,则. (7-2)证明.例7-5 求下列函数的拉氏变换:(1); (2).解(1).(2). 性质2(平移性质) 若,则(为常数). (7-3)证明.位移性质表明:象原函数乘以等于其象函数左右平移个单位.ate tf =)(a dt e dt e e e L t a p ptat at ⎰⎰∞+--∞+-=⋅=0)(0][)(1a p a p >-=)(1][a p a p e L at >-=)0(][sin 22>+=p p t L ωωω)0(][cos 22>+=p p pt L ωωte tf 4)(-=2)(t t f =atte t f =)(ϕωϕω,()sin()(+=t t f 1a 2a )()]([11p F t f L =)()]([22p F t f L =)]([)]([)]()([22112211t f L a t f L a t f a t f a L +=+)()(2211p F a P F a +=dte tf a dt et f a dt et f a t f a t f a t f a L pt ptpt-∞+-∞+-∞+⎰⎰⎰+=+=+)()()]()([)]()([02211221102211)()()]([)]([22112211p F a p F a t f L a t f L a +=+=)1(1)(at e a t f --=t t t f cos sin )(=)(1}11{1]}[]1[{1]1[1)]1(1[a p p a p p a e L L a e L a e a L at at at +=+-=-=-=----412221]2sin 21[]cos [sin 222+=+⋅==p p t L t t L )()]([p F t f L =)()]([a p F t f e L at -=a ⎰⎰∞+--∞+--===)(0)()()()]([a p F dt e t f dt et f e t f e L t a p ptat atat e a例1-6 求 ,和. 解 因为,,,由位移性质即得性质3(滞后性质) 若,则. (7-4)证明=,在拉氏变换的定义说明中已指出,当时,.因此,对于函数,当(即)时,,所以上式右端的第一个积分为,对于第二个积分,令,则滞后性质指出:象函数乘以等于其象原函数的图形沿轴向右平移个单位(如图1-3所示).由于函数是当时才有非零数值.故与相比,在时间上滞后了一个值,正是这个道理,我们才称它为滞后性质.在实际应用中,为了突出“滞后”这一特点,常在这个函数上再乘,所以滞后性质也表示为.例1-7 求.解 因为,由滞后性质得. 例1-8 求.解 因为,所以.例1-9 求下列函数的拉氏变换:(1) (2)解 (1)由图7-4容易看出,当时,的值是在的基础上加上了(),][at te L ]sin [t e L atω-]cos [t e L at ω-21][p t L =22][sin ωωω+=p t L 22][cos ωω+=p p t L 。