虚拟疲劳分析软件DesignLife应用案例
- 格式:doc
- 大小:117.00 KB
- 文档页数:6
虚拟疲劳分析软件DesignLife应用案例作者:英国nCode国际有限公司林晓斌传统的汽车整车和零部件开发通常都通过产品在试验室中的台架耐久性试验,或试车场道路试验,以验证产品是否满足其设计目标,这一过程周期很长,成本很高,发现问题较晚。
在当今的产品开发中,汽车企业越来越多地应用虚拟模拟分析技术,在实物样机出来之前就对其进行疲劳耐久性预测,在设计的早期消除不合格的设计,并通过设计比较,挑选出好的设计。
实践证明,进行虚拟寿命分析,能大大加快产品的开发,减少试验的工作量,节省成本。
新一代CAE疲劳分析软件ICE-flow DesignLife是nCode公司的旗舰产品之一。
它不仅继承了已经在工程上得到广泛应用的FE-Fatigue的功能特点,而且在软件的使用方便性方面也有了极大的改进。
本文首先介绍虚拟寿命分析的一般步骤,然后将重点介绍在汽车零部件疲劳分析中应用DesignLife的几个案例,以帮助读者深入了解并把握虚拟疲劳分析中的一些要点和难点。
典型步骤疲劳分析是一项较为复杂的工作,通常需要分析者对所分析的问题,以及需要从分析中获得什么样的结果有一个深刻的理解。
通常所说的虚拟疲劳分析,指的是基于有限元分析结果的疲劳分析,就是将有限元分析结果,通常是应力应变结果,作为疲劳分析的一个主要输入。
通过一个疲劳分析模型,计算出零部件或结构表面的疲劳寿命分布,以帮助判断设计寿命是否达到,或进行寿命优化设计。
步骤如下:1. 选择一个合适的疲劳分析模型汽车疲劳分析中常用的分析模型有局部应力法、局部应变法、焊点疲劳分析法和焊缝疲劳分析法,另外还有较为复杂的Dang Van多轴安全因子法、振动疲劳分析和高温疲劳分析等。
不同的分析方法需要不同的有限元分析结果和材料性能输入。
2. 准备有限元分析结果一旦疲劳分析模型已经选择,那么需要什么有限元分析结果也将明确。
比如,局部应力或应变法通常需要应力结果,而焊点分析法则需要焊点单元的力和力矩。
基于nCode DesignLife的车载扬声器盆架振动疲劳分析马明;朱玉田【摘要】针对某100 mm车载扬声器盆架结构的疲劳问题,采用基于功率谱密度(Power Spectrum Density,PSD)的频域分析法对其进行疲劳可靠性分析.应用ANSYS Workbench,先对扬声器单元进行有限元模态分析获得其固有频率和振型,再基于模态分析进行谐响应分析获得其频率响应函数(Frequency Response Function,FRF).将有限元分析结果导入到nCode DesignLife,施加加速度PSD载荷进行振动疲劳分析,获得盆架在x,y和z方向上各自8h的振动疲劳损伤,从而对盆架的疲劳可靠性进行评估.对照实物扬声器样品的疲劳耐久试验结果,为扬声器盆架结构设计提出一些建议.【期刊名称】《计算机辅助工程》【年(卷),期】2016(025)004【总页数】7页(P48-54)【关键词】汽车;扬声器盆架;振动疲劳;模态分析;谐响应;ANSYS Workbench 【作者】马明;朱玉田【作者单位】同济大学机械与能源工程学院,上海200092;同济大学机械与能源工程学院,上海200092【正文语种】中文【中图分类】U463.83近十几年,中国汽车工业发展迅速,家用轿车拥有量逐年增多,人们对汽车驾乘的舒适性和娱乐性提出更高的要求.车载音响系统顺应汽车工业的发展趋势,也更加完善.音响系统重要的部件之一为扬声器.传统的锥形纸盆扬声器大体由磁回路系统(永磁体、芯柱、导磁板)、振动系统(纸盆、音圈)和支撑辅助系统(定心支片、盆架、垫边)等三大部分构成.家用音响系统的扬声器主要承受静载荷,而车载音响系统的扬声器主要承受动载荷,即车辆行驶过程中因路面不平而引起的随机振动载荷.多数车载扬声器依靠盆架支撑所有零部件并安装在车身上.受扬声器自身质量、车身结构、产品成本等要素限制,盆架需要专门定制设计,故研究扬声器盆架的结构十分必要.随机振动载荷是扬声器盆架结构可靠性设计考虑的主要因素,疲劳断裂是扬声器盆架最主要的失效模式.疲劳是指材料、零件和结构在低于材料和结构强度的交变载荷作用下,在某些区域产生局部损伤并累积,直到裂纹形成和进一步扩展到最终断裂的破坏过程.疲劳发生发展的过程是与时间相关联的,而且引起疲劳的振动过程中振幅、相位和频率是随机变化的,都不是时间的确定函数,只能通过概率统计的方法来研究随机振动和振动疲劳.[1]在结构的疲劳可靠性分析方法中,主要有基于统计计数的时域分析方法和基于功率谱密度(Power Spectral Density,PSD)的频域分析方法.时域分析方法一般采用经典的“雨流循环计数”技术,从时间域应力响应曲线中获取各应力循环的幅值和均值及其概率分布.频域分析方法计算简单,不需要循环计数,可根据系统的外部激励,通过动态仿真和有限元分析,求得结构细部的应力响应功率谱密度函数,利用功率谱密度求得结构危险点位置的疲劳累积损伤和疲劳寿命.[2]本文以某款车型的100 mm中音扬声器盆架为例,运用CATIA建立扬声器单元的设计模型,运用ANSYS Workbench对设计模型先进行模态分析确定此款扬声器的固有频率和振型,再基于模态分析进行谐响应分析,用于确定结构在正弦载荷1g加速度作用下的频率响应函数(Frequency Response Function,FRF).将ANSYS Workbench分析获得的FRF结果和材料特性导入到疲劳分析软件nCode DesignLife中,输入随机振动加速度载荷谱PSD,选择振动疲劳分析模块进行疲劳损伤和疲劳寿命的预测和评估,不断优化设计模型或重新设计直到设计定型.按定型的设计模型制作产品进行疲劳耐久试验,并与计算机仿真结果进行对照验证. 1963年CRANDALL首次提出振动疲劳的概念,并将其定义为振动激励下产生的具有不可逆且累积性的结构损伤或破坏.20世纪70年代,因国内航空领域发展加速振动强度试验技术的需要,学者们也相继提出振动疲劳这一概念.此后的近40年中,振动疲劳逐渐成为国内外学者的热门研究课题,其研究结果成为振动环境工程和疲劳破坏理论的重要组成部分.随着工业的飞速发展,航空航天、交通运输等领域的很多机械结构、仪器设备长期处于振动严重的工作环境中,由此带来的振动疲劳问题越来越突出,成为振动环境工程与疲劳破坏理论的重要研究内容之一.[3] 常规结构疲劳研究以材料力学、弹塑性力学和断裂力学等为理论基础,考虑交变载荷作用,研究结构裂纹萌生发展过程和结构寿命.结构振动疲劳研究考虑疲劳与振动之间的耦合影响,努力揭示结构疲劳破坏与其动态特性之间的内在规律,寻找结构振动疲劳损伤和失效的外在原因.共振是外力与结构惯性力、弹性力和阻尼力的综合平衡现象,其中阻尼力是决定共振响应大小的重要因素.若振动激励频率与结构某些固有频率重合或接近,使结构产生共振而导致疲劳称为共振疲劳;反之,称为非共振疲劳.相同振动量级的激励力,共振时的结构动响应幅值远大于非共振时的动响应幅值.共振响应幅值主要取决于激振幅值和阻尼大小,于是大量中等量级的激振诱导共振疲劳失效.非共振疲劳响应同时受激振幅值与结构质量、刚度和阻尼的控制,对疲劳失效起主要贡献作用的是少量较大量级的激励力.[4-5]共振疲劳广泛存在于受冲击、瞬态或随机振动激励的大型结构中,而非共振疲劳是结构所受振动的激励频率远离结构共振频率,常存在于单频振动激励中或结构自身刚度较大而激振频率较低的情况.姚起杭等[6]阐明结构振动疲劳的概念和定义,并指出其特点以及其与常规结构疲劳的区别,建议将疲劳分为静态疲劳和动态疲劳2类进行研究,并重新定义振动疲劳,即振动疲劳是结构所受动态交变载荷(如振动、冲击、噪声等)的频率分布与结构固有频率分布具有交集或相接近,从而使结构产生共振所导致的疲劳破坏现象,也可直接说成是结构受到重复载荷作用激起结构共振所导致的疲劳破坏.疲劳分析通常需要具备响应分析、S-N曲线、累积损伤关系和破坏判据等基础,振动疲劳分析也遵循这些基础,响应分析一般来自有限元分析,S-N曲线来自材料属性.2.1 疲劳损伤累积法则当材料或零件承受高于疲劳极限的应力时,每一循环都使材料产生一定量的损伤,即材料性能或细微“结构”的变化.在循环载荷作用下,疲劳损伤会不断累积,当损伤累积到临界值时发生疲劳破坏,这就是疲劳损伤累积理论.线性疲劳累积损伤理论(Palmgren-Miner)认为材料在各应力下的疲劳损伤是独立的,总损伤可以线性累加起来.一般建议结构分析可采用Miner线性累积损伤求和,比较直接和简便. 若构件在k个应力水平Si作用下,各经受ni次循环,则总损伤D为式中:ni是在Si作用下的循环次数,由载荷谱给出;Ni是在Si下循环到破坏的寿命,由S-N曲线确定.2.2 破坏判据Miner线性累积损伤理论的破坏准则为式中:D为损伤值,D=1代表失效.2.3 频域分析方法在频域分析中,依据雨流循环计数法获得的应力范围概率密度函数(ProbabilityDensity Function,PDF)p(S),一个典型的PDF见图1.[7]在给定应力水平S下,总循环次数为n(S),失效时的总循环次数为N,则式中:C为材料常数;b为basquin指数,St为应力范围直方图中的总循环次数;dS为微应力单元.将式(3)和(4)代入式(1),得到期望的疲劳损伤公式为2.4 分析方法的选择有很多种疲劳分析理论和方法可预测应力范围的PSD函数,所有这些分析方法都假设应力PSD产生过程是平稳随机过程高斯分布各态遍历的.这些分析方法包括窄频带,Steinberg,Dirlik,Lalanne等.窄频带方法是最早的分析方法,比较保守,适应于单一频率过程;Steinberg适合于电子行业;Dirlik技术利用Monte Carlo,适用一般目的的宽频带过程;Lalanne是一种通用宽带技术,被许多军用标准使用,是nCode DesignLife推荐的分析技术[8].本文采用Lalanne理论,基于nCode DesignLife平台进行频域疲劳分析.Lalanne理论的应用公式为式中:N(S)为在循环应力S下的每秒循环次数;E(P)为期望的峰值次数;p(S)定义[8]为式中:r为均方根应力;γ为不规则因子;S为循环应力.nCode DesignLife振动疲劳分析模块只能使用标准S-N分析引擎.本文中振动载荷类型为PSD加速度载荷,可以叠加在静态有限元载荷工况上.PSD载荷与有限元FRF合成,直接获得应力响应谱的循环计数.参照文献[9-11],采用nCode DesignLife进行振动疲劳分析,分析流程见图2.3.1 nCode DesignLife疲劳分析要素3.1.1 模型简化与网格划分扬声器实物模型见图3.模型质量约为240 g,安装孔距为132 mm,高为58 mm.去除质量较轻、对结果影响较小的纸盆、弹波、音圈和塑料支撑环等零件后剩下4个金属件,质量约为230 g,包括0.9 mm厚由SPCC钢拉伸冲压而成的盆架、冷镦成型的08钢芯柱和导磁板,以及N38永磁体.盆架与芯柱为铆接,其余零件之间为胶接,采用ANSYS Workbench软件进行前处理,铆接和胶接都设置为Bonded,简化后的有限元模型见图4.对所关注的盆架用0.8 mm的实体单元进行全网格细化;对非关注的其他计算数据变化梯度较小的零件,进行网格为2 mm 的实体单元网格划分,该模型共有720 789个节点,455 264个单元.3.1.2 材料定义nCode DesignLife软件自带的材料库中有SAE1008_91HR材料,本文用此材料代替4个金属件的材料,其属性见图5.3.1.3 边界条件处理盆架上表面安装孔周围直径13.5 mm的区域添加fixed约束,模拟被法兰螺母压住的面积;盆架下表面安装孔周圈直径23 mm的区域添加fixed约束,模拟车身钣金支撑盆架的区域.3.1.4 FRF的获得在疲劳分析之前,用ANSYS Workbench对有限元模型进行模态分析和谐响应分析,获得用于疲劳分析的FRF.扫频按x,y和z这3个轴方向输入1g的加速度,分析项目框图见图6.采用无阻尼模态分析,前6阶模态共振频率分别为254.10,536.69,780.87,1 694.90,1 914.80和2 100.60 Hz,其振型见图7.通过分析研究谐响应的波特图,响应的最大应力都出现在模态分析得到的某一些模态频率附近.在10~1 000 Hz范围内:沿z轴的扫频,最大响应应力出现在2阶模态544.6 Hz附近;沿y轴的扫频,最大响应应力出现在2阶模态505.0 Hz附近和3阶模态802.0 Hz附近;沿x轴的扫频,最大响应应力出现在2阶模态505.0 Hz附近和3阶模态802.0 Hz附近.这进一步验证振动疲劳与共振点相关的结论.通过扫频分析得到频率响应函数的rst文件可以直接导入到nCode DesignLife中.3.2 扬声器疲劳仿真分析依据ISO 16750-3—2012,载荷功率谱输入见表1和图8,RMS加速度为27.8m/s2.疲劳耐久试验要求:以x,y和z每轴振动8 h,结构应该能正常工作,不出现肉眼可见的外观损伤.选用Lalanne分析方法,输入耐久时间8 h,即28 800 s,PSD加载方法完成振动疲劳分析的属性设置,见图9.z轴振动疲劳分析流程和损伤云图见图10和11.由损伤云图得到x,y和z轴各自8 h振动疲劳损伤汇总,见表2.x,y和z轴方向的各自8 h振动疲劳损伤累积为0.027 696<1,扬声器盆架结构安全可靠.3.3 随机振动疲劳试验以振动台为基础激励进行该扬声器样品的随机振动疲劳耐久试验.测试条件为:加速度PSD见图12;振动时间8 h;振动方向为x,y和z轴这3个方向;测试样品数量为3个.测试结束,未发现样品出现变形或破损现象,样品扬声器声学性能正常.从损伤云图来看,疲劳损伤容易发生在2个固定安装脚附近,损伤最严重的区域靠近没有加强筋特征的那只安装脚,远离安装脚质量比较集中的磁铁附近损伤最小. 结构共振是在动态外载荷作用下,外力与结构惯性力、弹性力和阻尼力的综合平衡现象,其特点是结构中发生模态惯性力和阻尼力.防止振动疲劳的着眼点主要是降低结构振动水平,特别是局部振动水平.依据模态振型的趋势,对局部结构增加阻尼或施加其他控制技术影响结构模态的分布特征.对于盆架钣金结构,需要避免纯平面特征,应该增加类似加强筋、凸台、翻边、凹槽等增加结构刚度和振动阻尼的特征,同时注意消除材料缺陷和降低应力集中等问题.(1)该扬声器盆架的结构设计满足振动疲劳寿命目标要求,顺利通过实际疲劳耐久测试.疲劳仿真结果能预测产生的疲劳损伤和危险断裂位置,给出产品改进和优化的方向.(2)将ANSYS Workbench与nCode DesignLife相结合,可缩短产品的设计开发周期,快速响应结构优化对疲劳寿命的影响.朱玉田(1967—),男,上海人,教授,博导,研究方向为机电液控制和工程机械设计,(E-mail)********************.cn【相关文献】[1] 曹明红, 葛森, 齐丕骞. 随机振动疲劳频域分析方法的对比研究[J]. 振动工程学报, 2008, 21(S1): 14-18.CAO M H, GE S, QI P Q. Comparative study of random vibration fatigue based on frequency domain analysis[J]. Journal of Vibration Engeering, 2008, 21(S1): 14-18.[2] 孟凡涛, 胡愉愉. 基于频域法的随机振动载荷下飞机结构疲劳分析[J]. 南京航空航天大学学报, 2012, 44(1): 32-35. DOI: 10.3969/j.issn.1005-2615.2012.01.006.MENG F T, HU Y Y. Analysis of aircraft structural fatigue under random vibration loadings based on information in frequency domain[J].Journal of Nanjing University of Aeronautics&Astronautics, 2012, 44(1): 32-35. DOI: 10.3969/j.issn.1005-2615.2012.01.006.[3] 廉政. 典型结构件的振动疲劳分析[D]. 南京: 南京航空航天大学, 2004.[4] 刘文光, 陈国平, 贺红林, 等. 结构振动疲劳研究综述[J]. 工程设计学报, 2012, 19(1): 1-6. DOI: 10.3785/j.issn.1006-754X.2012.01.001.LIU W G, CHEN G P, HE H L, et al. Review of studying on vibration fatigue[J]. Chinese Journal of Engineering Design, 2012, 19(1): 1-6. DOI: 10.3785/j.issn.1006-754X.2012.01.001.[5] 王明珠. 结构振动疲劳寿命分析方法研究[D]. 南京: 南京航空航天大学, 2009.[6] 姚起杭, 姚军. 工程结构的振动疲劳问题[J]. 应用力学学报, 2006, 23(1): 12-15. DOI:10.3969/j.issn.1000-4939.2006.01.003.YAO Q H, YAO J. Vibration fatigue of engineering structure[J]. Chinese Journal of Applied Mechanics, 2006, 23(1): 12-15. DOI: 10.3969/j.issn.1000-4939.2006.01.003.Y, CIGEROGLU E. Vibration fatigue analysis of a cantilever beam using different fatiguetheories[C]// Proceedings of the 31st IMAC. New York: Springer, 2014: 471-478. DOI 10.1007/978-1-4614-6585-0_45.[8] KUMAR S M. Analyzing random vibration fatigue[J]. ANSYS Advantage, 2008, 11(3): 39-42.[9] 李成林, 宋莎莎, 韩振南. 基于nCode DesignLife的某车架疲劳可靠性分析[J]. 图学学报, 2014, 35(1): 42-45. DOI: 10.3969/j.issn.2095-302X.2014.01.009.LI C L, SONG S S, HAN Z N. Fatigue reliability analysis of frame based on nCode DesignLife[J]. Journal of Graphics, 2014, 35(1): 42-45. DOI: 10.3969/j.issn.2095-302X.2014.01.009.[10] 刘建平, 鄂世国, 乔鑫. 电喇叭振动疲劳分析[J]. 汽车实用技术, 2015(1): 32-35. DOI:10.3969/j.issn.1671-7988.2015.01.011.LIU J P, E S G, QIAO X. Vibration fatigue analysis of horn[J]. Automobile Technology, 2015(1): 32-35. DOI: 10.3969/j.issn.1671-7988.2015.01.011.[11] 周美施, 张铁柱, 尹怀仙, 等. 基于nCode DesignLife的电动客车车架疲劳寿命分析[J]. 青岛大学学报(工程技术版), 2015, 30(4): 96-99. DOI: 10.13306/j.1006-9798.2015.04.018. ZHOU M S, ZHANG T Z, YIN H X, et al. Fatigue life analysis of frame based on nCode DesignLife[J]. Journal of Qingdao University(Engineering & Technology Edition), 2015, 30(4): 96-99. DOI: 10.13306/j.1006-9798.2015.04.018.。
虚拟疲劳分析软件Desig nLife 应用案例传统的汽车整车和零部件开发通常都通过产品在试验室中的台架耐久性试验,或试车场道路试验,以验证产品是否满足其设计目标,这一过程周期很长,成本很高,发现问题较晚。
在当今的产品开发中,汽车企业越来越多地应用虚拟模拟分析技术,在实物样机出来之前就对其进行疲劳耐久性预测,在设计的早期消除不合格的设计,并通过设计比较,挑选出好的设计。
实践证明,进行虚拟寿命分析,能大大加快产品的开发,减少试验的工作量,节省成本。
新一代CAE疲劳分析软件ICE-flow DesignLife 是nCode公司的旗舰产品之一。
它不仅继承了已经在工程上得到广泛应用的FE-Fatigue的功能特点,而且在软件的使用方便性方面也有了极大的改进。
本文首先介绍虚拟寿命分析的一般步骤,然后将重点介绍在汽车零部件疲劳分析中应用Desig nLife的几个案例,以帮助读者深入了解并把握虚拟疲劳分析中的一些要点和难点。
典型步骤疲劳分析是一项较为复杂的工作,通常需要分析者对所分析的问题,以及需要从分析中获得什么样的结果有一个深刻的理解。
通常所说的虚拟疲劳分析,指的是基于有限元分析结果的疲劳分析,就是将有限元分析结果,通常是应力应变结果,作为疲劳分析的一个主要输入。
通过一个疲劳分析模型,计算出零部件或结构表面的疲劳寿命分布,以帮助判断设计寿命是否达到,或进行寿命优化设计。
步骤如下:1. 选择一个合适的疲劳分析模型汽车疲劳分析中常用的分析模型有局部应力法、局部应变法、焊点疲劳分析法和焊缝疲劳分析法,另外还有较为复杂的Dang Van多轴安全因子法、振动疲劳分析和高温疲劳分析等。
不同的分析方法需要不同的有限元分析结果和材料性能输入。
2. 准备有限元分析结果一旦疲劳分析模型已经选择,那么需要什么有限兀分析结果也将明确。
比如,局部应力或应变法通常需要应力结果,而焊点分析法则需要焊点单元的力和力矩。
有限元分析通常对每一个作用在零部件或结构中的力和力矩做单位静力线性计算,应力输出结果可以是未平均的,或已平均的节点值,或者单元值。
联合ANSYS Workbench和nCode DesignLife 进行疲劳分析2018-09-09 21:38设计/技术疲劳失效是机械零部件失效的主要形式。
如何对这些结构进行有效的疲劳分析,引起了很多产品设计工程师的关注。
对于一般零部件的疲劳分析,并没有理论公式可以解决,几乎都是依据有限元技术以及疲劳分析技术。
因此联合有限元分析软件和疲劳分析软件,对这些零部件进行疲劳分析,是解决这类问题的有效途径。
ANSYS Workbench是世界上著名的以多物理场分析为特色的有限元分析软件,而DesignLife是ANSYS nCode下功能强大的疲劳分析软件。
本文以材料力学中中一根变截面轴的弯扭组合的疲劳分析为例,说明如何联合这两款软件对之进行疲劳分析。
问题描述如下:一根变截面轴,左边轴段(蓝色部分)固定,而在最右边轴段上(红色部分)施加一个1N的集中力(它导致弯曲变形)和一个1000Nmm的集中力偶(它导致扭转变形)对于这两种载荷的时间历程,使用力传感器进行测定94秒,得到如下图所示的时间历程曲线。
上图中的红色曲线图反应了集中力随时间的变化规律,横坐标是时间,单位是秒,这里测试了94秒。
而纵坐标是载荷的大小。
从图中可以看出,最大的载荷是18KN 左右,而且也可以看到,载荷的变化很不规则,并非理想的循环方式。
而蓝色曲线反应的是集中力偶随时间变化的规律,其幅值在-2717到2834之间改变。
该轴的材料已经给定,是碳钢SAE1045_390_QT.现在要求对该轴进行疲劳分析。
使用Workbench和DesignLife对之进行疲劳分析,分为两步。
第一步是在Workbench中建立有限元模型,并分别施加集中力和集中力偶,通过计算,得到两种情况的米塞斯应力,这相当于两种工况,这样可以得到ANSYS Workbench 的结构分析结果文件*.rst.第二步在DesignLife中进行,首先根据疲劳分析的五框图,构造疲劳分析流程,然后分别设定各个框图的属性,即有限元结果文件,载荷文件,材料文件,疲劳分析选项,然后启动分析,通过后处理以查看轴上各点的疲劳寿命。
虚拟疲劳分析软件DesignLife 应用案例
作者:英国nCode 国际有限公司 林晓斌
传统的汽车整车和零部件开发
通常都通过产品在试验室中的台架耐久性试验,或试车场道路试验,以验证产品是否满足其设计目标,这一过程周期很长,成本很高,发现问题较晚。
在当今的产品开发中,汽车企业越来越多地应用虚拟模拟分析技术,在实物样机出来之前就对其进行疲劳耐久性预测,在设计的早期消除不合格的设计,并通过设计比较,挑选出好的设计。
实践证明,进行虚拟寿命分析,能大大加快产品的开发,减少试验的工作量,节省成本。
新一代CAE 疲劳分析软件ICE-flow DesignLife 是nCode 公司的旗舰产品之一。
它不仅继承了已经在工程上得到广泛应用的FE-Fatigue 的功能特点,而且在软件的使用方便性方面也有了极大的改进。
本文首先介绍虚拟寿命分析的一般步骤,然后将重点介绍在汽车零部件疲劳分析中应用DesignLife 的几个案例,以帮助读者深入了解并把握虚拟疲劳分析中的一些要点和难点。
典型步骤
疲劳分析是一项较为复杂的工作,通常需要分析者对所分析的问题,以及需要从分析中获得什么样的结果有一个深刻的理解。
通常所说的虚拟疲劳分析,指的是基于有限元分析结果的疲劳分析,就是将有限元分析结果,通常是应力应变结果,作为疲劳分析的一个主要输入。
通过一个疲劳分析模型,计算出零部件或结构表面的疲劳寿命分布,以帮助判断设计寿命是否达到,或进行寿命优化设计。
步骤如下:
1. 选择一个合适的疲劳分析模型
汽车疲劳分析中常用的分析模型有局部应力法、局部应变法、焊点疲劳分析法和焊缝疲劳分析法,另外还有较为复杂的Dang Van 多轴安全因子法、振动疲劳分析和高温疲劳分析等。
不同的分析方法需要不同的有限元分析结果和材料性能输入。
2. 准备有限元分析结果
一旦疲劳分析模型已经选择,那么需要什么有限元分析结果也将明确。
比如,局部应力或应变法通常需要应力结果,而焊点分析法则需要焊点单元的力和力矩。
有限元分析通常对每一个作用在零部件或结构中的力和力矩做单位静力线性计算,应力输出结果可以是未平均的,或已平均的节点值,或者单元值。
3. 准备载荷输入数据
使用什么载荷数据对于疲劳分析至关重要,载荷定义了汽车的使用环境,也决定了疲劳分析的结果。
比如,载荷输入如果是试车场中采集的信号,那么疲劳分析结果将会是汽车在试验场中行驶的寿命,而不是在公共路面行驶的寿命。
特别需要指出的是,对于汽车零部件或结构的疲劳分析,通常需要相对真实的时域载荷数据,以保证疲劳分析结果的合理性。
如果无法测得实际的数据,那么多体动力学是分析载荷传递的强有力的工具。
4. 准备材料数据
疲劳分析需要材料的疲劳性能数据,高精度的疲劳寿命预测离不开真实的材料性能输入。
如果获得真实数据有困难,那么可从软件自带的材料数据库中寻找,nCode的DesignLife 自带的200多种材料大多数是汽车用钢,如果数据库中也没有相对应的材料,那么软件可以根据材料的抗拉强度估算出S-N或E-N曲线。
值得指出的是,汽车的疲劳分析有时着重于寿命的相对比较,材料性能的精确性并不是必须的。
5. 进行疲劳分析
设定疲劳分析参数是一项非常重要的工作,一个疲劳分析模型一般包含许多选项,比如,平均应力修正、缺口修正和多轴性考虑等。
同时,有限元结果、载荷数据和材料性能也有不同的输入类型,这些都需要设定。
DesignLife还包括了一些诸如多分析任务、热点计算、多处理器并行计算、众多的疲劳结果输出格式及计算加速等高级功能。
6. 疲劳分析结果评价
从一个疲劳分析中,通常可以得到疲劳寿命或疲劳损伤云图,以及每个计算节点或单元的疲劳结果和多轴性结果。
正确判断分析结果的合理性、可靠性至关重要。
对于疲劳理论的深刻理解,以及和以前的试验结果比较,有助于对结果作出准确的解读。
应用案例
1. 减振器上支座疲劳分析
减振器上支座受力比较复杂,在开发试验中容易产生疲劳开裂。
在设计阶段预测它的疲劳寿命能否达到设计目标非常重要。
图1所示的是用DesignLife构建的对减振器上支座钣金件材料和焊点同时进行疲劳分析的一个流程。
分析的目的是预测该结构在试车场一段强化路面行驶时的疲劳耐久性。
对于这一问题,我们选择DesignLife软件中预置的应变寿命和焊点分析模型,分别对基体材料和结构中的焊点进行疲劳分析。
支座结构已经被简化为受3个方向的变化的力,见图1。
图1 在一个分析流程中同时计算基体材料和焊点的疲劳寿命
在疲劳分析之前,我们需要对这3个力分别进行单位静力有限元分析,获取支座中产生的应力以及通过焊点所传递的力和力矩,作为疲劳分析的输入。
本案例的动载荷输入是根据从强化路面实测的车轮六分力,经过多体动力学获得的。
支座所用的钢板厚度为0.8~
3mm,抗拉强度约为600MPa,焊点均为自动焊。
疲劳分析所需的钢板材料的E-N曲线和焊点S-N曲线均从DesignLife软件中自带的材料库中选取。
E-N疲劳分析采用绝对值最大主应力作为计算参量,并考虑应力多轴性的影响,平均应力修正选用SWT方法。
焊点的分析也考虑了平均应力的影响,沿焊点周向每隔10°计算疲劳损伤。
分析结果的输出为基体材料的疲劳寿命(或损伤云图),和每个焊点的寿命标志图,见图1。
每个单元的疲劳寿命列表,以及每个焊点的寿命结果列表也同时输出并排序。
从结果云图中很容易发现可能的开裂位置和容易开裂的焊点。
2. 白车身的组合工况疲劳分析
白车身的疲劳分析和上述的减振器上支座的疲劳分析基本类似。
车身结构上可能有七八十甚至上百个各个方向的力和力矩,材料及板厚也多种多样。
图2为白车身钣金件在试车场5种不同路面组合工况下的疲劳寿命分析流程。
DesignLife可以组合各种路面载荷并计算其总寿命,同时也可以对各种载荷工况下的疲劳损伤进行计算,帮助鉴别出最危险的路面工况。
本案例的3个主要输入为:从MSC.NASTRAN获得的近20个有限元单位力静力分析应力结果;各个钣金件所对应的MS EXCEL格式的材料表单;5种路面的道路载荷谱,它们之间的比例通过DesignLife中的任务工况创建器预先定义。
疲劳分析采用E-N法。
图2中的右上图为组合工况下的疲劳损伤图,并标出了疲劳危险点。
疲劳分析结果也在图2右下表中列出。
图2 白车身疲劳分析流程图
3. 焊缝疲劳分析
薄板缝焊在汽车底盘件中经常使用,这些焊缝的耐久性也对整个底盘的结构完整性有着决定性的影响。
本案例的分析对象是悬架系统中的纵臂,内有一条环向焊缝。
图3表示了纵臂焊缝的疲劳分析DesignLife流程。
该纵臂受轴头传递过来的3个力和3个力矩,其中的左下图为实测的路面道路载荷谱作为分析的一个输入。
分析的另一个主要输入为对应于3个力和3个力矩的有限元分析结果。
疲劳分析采用和Volvo汽车集团合作开发的焊缝分析器,其方法细节请参见nCode技术资料。
分析只对焊缝单元进行,通过DesignLife中内置的焊缝S-N曲线,计算出焊缝单元上下两排节点的疲劳寿命值。
图3中的右上图显示了
沿着焊缝的寿命分布,红色区为薄弱区域,右下表同时给出了疲劳寿命的结果列表。
图3 纵臂焊缝的疲劳分析流程
4. 车轮的疲劳寿命分析
图4是一个车轮的疲劳分析流程,用实测的轴头垂向力对车轮的疲劳寿命进行预测。
分析的主要输入为:轴头垂向力以及相对应的方向正弦和余弦;车轮在不同角度时中心受力后的有限元应力结果。
分析采用关键面应力寿命法,流程中内含了一个将轴头各个时刻的垂向力分解到车轮相对应的各个旋转角,以对应于有限元应力结果。
图中的疲劳损伤云图清楚地给出了可能的开裂位置,可在设计的早期对车轮进行寿命优化设计。
图4 车轮的疲劳分析
结语
本文所描述的CAE虚拟疲劳分析步骤是一般性的,对于汽车零部件和结构相信具有指导意义。
所给出的案例均为典型的实际应用,已广泛用于汽车的疲劳耐久性分析。
值得指出的是,本文所给出的DesignLife分析流程,均可作为模板供类似的分析任务重复调用,或作进一步的编辑修改。
对流程也可以进行封装和加密,并可自动生成分析报告,以执行企业标准,使复杂的疲劳耐久性分析工作对于一般的工程师都能胜任和顺利完成。
(end)。