盾构隧道管片开裂原因及数值仿真
- 格式:pdf
- 大小:592.06 KB
- 文档页数:7
一、工程概况象秀区间上行线于2014.9.13日贯通,本段施工范围为象峰站~秀山站盾构区间工程,由象峰始发,上行线SK0+576.167~SK1+647.000共1070.833m、892环,象峰站~秀山站区间自秀峰路上的象峰站始发,沿着秀峰路过无名河桥、无名箱涵一直到达蓝山四季门口的秀山站。
本区间线间距从13.5m变化到18.9m;纵断面为单面坡,最大纵坡10.5‰,最小纵坡4.98‰,区间隧道覆土最大厚度10.2m,最小厚度4.4m。
在SK1+112.2设1座联络通道,位于直线段,线间距为13.5m,联络通道上覆土层厚度约9.9m。
盾构掘进地层主要为⒀a残积土、⒁全风化岩层,二.管片破损情况管片破损在隧道衬砌的内外两侧均有发生,衬砌外侧一般发生在管片与盾构机外壳的接触部位,以拱底块、封顶块居多,内侧一般发生在管片的角部、隧道底部,隧道清洗后发现隧道底部破损较多,尤其是200-500环,共破损116处,破损率达38.6%.三、破损原因分析1、盾构机在姿态微调的过程中管片千斤顶与管片环之间存在一定夹角,造成应力集中导致砼块破裂,如图1.拼装质量不好造成管片错台,管片间应力集中使管片破损,如图2.盾尾泥沙太多,拼装前没有清理干净,底部管片拼装后下面全是泥沙,管片间夹有沙粒,管片易破损。
盾尾清泥照片3.上行线推进过程中,有时测量系统发生故障,盲推会使盾构姿态有较大变化,管片容易破损4.管片螺栓没有及时复紧,推进过程中管片稳位造成管片破损四、管片修复目前上行线已基本完成修补,现在正组织修补人员对修补部位进行打磨。
五、经验总结1、应及时对盾尾进行清理,保证盾尾清洁。
2、管片拼装应遵循先下后上,左右交叉、最后封顶块的安装原则,拼装手应灵活运用管片安装微调器,待安装的管片块与已安装管片块的内弧面应平顺,螺栓孔对正。
3、盾构掘进时严格控制盾构机的姿态,特别在曲线段,盾构机应缓慢掘进、勤纠、少纠以控制盾构机的每环纠偏量,防止盾构机轴线与隧道管片轴线间的夹角过大和管片四周盾尾间隙不均匀。
盾构施工时管片产生裂缝的原因及对策盾构施工过程中,管片是构成隧道的主要组成部分,其质量的好坏直接影响到隧道的安全性和使用寿命。
然而,盾构施工中管片出现裂缝的情况时有发生,这可能会导致隧道的稳定性降低,甚至引发严重事故。
本文将探讨盾构施工时管片产生裂缝的原因以及应对策略。
一、原因分析1.地质条件:地质条件是影响盾构施工的重要因素,地下岩体的力学性质和变形特性直接关系到隧道的稳定性。
当地基土质较差、地下水位较高或者岩体裂隙较多时,管片易受到地下水压力和岩体活动的影响而发生裂缝。
2.施工工艺:盾构施工过程中,施工工艺的合理与否对管片质量起到决定性的作用。
如果盾构机工作面的推进速度过快,施工面附近土壤的累积应力将会超过其承载能力,造成管片的变形和破裂。
此外,施工工艺参数的选择和调整不合理也容易导致管片裂缝的产生。
3.材料质量:管片的材料质量直接影响到其抗压和抗弯强度,如果材料质量不符合设计要求或者存在生产缺陷,就有可能出现管片的裂缝问题。
二、应对策略1.加强勘察设计:在盾构隧道施工前,要加强对地质条件的勘察,对地下水位、岩层裂缝等情况进行详细分析,合理选取施工工艺和施工参数,为后续施工提供可靠的设计依据。
2.严格质量控制:管片的制作过程中,要加强对材料质量的把关,确保材料符合设计要求,并进行必要的检测和试验。
同时,要提高制作工艺的质量控制,保证管片的精度和几何尺寸的一致性。
3.施工监控与调整:盾构施工过程中,要加强对施工工艺参数的监控和调整。
施工过程中要及时记录和分析数据,对施工工艺进行必要的调整,确保施工的安全和质量。
4.加强风险防范:在盾构施工过程中,要充分认识到管片裂缝的风险,制定相应的应对措施并加以实施。
比如,可以通过加固或者预支护方式来减少管片裂缝的发生,或者在施工过程中增加监测手段,及时发现和处理问题。
5.引进先进技术:随着科技的不断发展,一些新的技术也被引入到盾构施工中。
例如,可以利用微震监测技术对管片的质量问题进行实时监测,在施工中及时发现裂缝的存在并采取相应的措施。
盾构施工时管片产生裂缝处理的原因及对策提纲:一、盾构施工时管片产生裂缝的原因分析二、盾构施工时管片产生裂缝的处理方法探讨三、化学充填剂防止管片裂缝出现的有效性分析四、管片接口处的特殊施工措施及其防止管片裂缝出现的实效性分析五、盾构施工过程中规范化操作的重要性一、盾构施工时管片产生裂缝的原因分析概述:随着盾构施工的不断深入,管片在施工过程中越来越容易出现裂缝,影响管片及整个工程的质量和进度,因此对于盾构施工时管片产生裂缝的原因进行深入分析显得尤为重要。
1、机械因素:盾构施工过程中机械故障、加劲板调整不及时等因素可能导致管片产生裂缝。
2、地质因素:地层情况、地质变化等因素,对于盾构施工过程中管片产生的裂缝也具有很大的影响。
3、盾构机梁之间的连接处的渐进收敛:在盾构施工过程中,因为盾构机梁之间的连接处发生变形,导致管片产生了拉裂现象,增大了管片发生裂缝的可能。
4、施工过程中温度变化造成量变:盾构施工过程中由于加固体的硬化、边界热膨胀等因素也可能对管片产生裂缝,同时温度变化还会对管片的尺寸和水泥的物性产生影响。
5、其他因素:差异测量、材料的强度等因素都可能影响管片的质量、精度和强度,从而导致其出现裂缝。
二、盾构施工时管片产生裂缝的处理方法探讨概述:对于盾构施工过程中出现裂缝的处理措施是盾构施工过程中的重要环节,合理的处理方法可以有效的避免损失。
1、加固处理:盾构施工时,通过加固板、加固筋等措施将管片的承载能力加强,从而避免了其继续产生裂缝。
2、抢修处理:裂缝出现后,及时对管片进行抢修处理是避免其出现更严重问题的必要措施,包括局部加固、堵缝、填充裂缝等措施。
3、更换处理:在管片裂缝出现较为严重或质量不能得到保证的情况下,考虑对其进行更换的处理方法。
4、强化管子接口处:加强管子接口处采用新型的施工工艺、材料等措施进行强化处理,有效地避免了管子接口处位裂缝现象的发生。
5、设备优化改造:对于运行不良的盾构机进行优化改造,增加控制技术,提高运行性能和精度。
盾构隧道施工期管片开裂原因和相应对策1 施工阶段管片受力分析盾构隧道在施工过程中管片衬砌受到的主要荷载有千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载等。
(1)千斤顶推力千斤顶推力是盾构隧道掘进的驱动力,它反过来作用在管片上,是施工过程中隧道衬砌在轴线方向最大的外力。
在目前国内地铁盾构隧道施工中,淤泥质黏土层中总推力一般为8~12 MN,细沙土地层中总推力为12~15 MN,全断面砂土地层推力则为15~20 MN,复合地层推力有时候达到20 MN以上,大型跨江海盾构隧道千斤顶推力通常都在30MN以上。
(2)注浆压力依据盾构工法的特性:拼装好的衬砌脱离盾尾后,由于盾壳原来占据的空间、为衬砌的拼装操作所留空隙、盾构推进时带走的部分粘附于盾壳上的土体所形成的空隙等,在衬砌环背面与实际开挖洞壁间存在环形空隙,使土体暂时处于无支护状态,该空隙即为盾尾间隙。
盾尾间隙的大小是由盾构钢壳的厚度和盾尾操作空间决定的,一般为8~16 cm。
盾构工法施工中,对盾尾间隙的处理,即壁后注浆是施工的关键。
壁后注浆在填充盾尾间隙、加固土体的同时,对管片也产生了一定压力,该压力达到一定程度时,可能引起管片局部或整体上浮、错台、开裂、压碎或其他形式的破坏。
(3)上浮力盾构隧道的壁后注入的水泥浆液一般需要5~7h的初凝时间,而通常情况下这期间盾构一直在向前掘进,如果周围地层满足一定条件,一定范围内的土体未能及时握裹住管片,那么在这几个小时内有一段管片是悬浮在注浆浆液中的(或者是水、泥浆等),这就产生了管片上浮力(浆液浮力扣除管片自重)。
(4)盾壳作用力管片与盾壳之间存在着一定摩擦力,盾尾密封刷对管片环也存在一较为均匀的环向压力,一般情况下这些荷载不会对管片结构造成影响。
但是,当盾构在曲线段掘进、纠偏,或者因其他原因造成盾构长时间停止掘进(造成盾构机“栽头”发生)时,盾壳对管片造成的荷载尤其是挤压荷载就变得不可忽视,如图1所示。
盾构隧道管片破裂原因分析及应对措施由于目前盾构隧道的衬砌普遍采用单层装配式管片衬砌,盾构隧道的质量控制主要是对拼装管片的质量控制,包括管片生产质量、拼装质量二个方面。
下面针对我单位承建的新海大道站~盾构区间隧道成型管片破损的原因及相应处理措施进行阐述。
1、管片破损情况分类已成型隧道内管片破损情况根据破损的位置主要可以分为:管片纵缝破裂、管片环缝破裂、管片边角崩裂、管片环向螺栓孔处砼崩裂等几种情况。
2 破裂原因分析2.1 管片纵缝环缝破裂在初始掘进过程中,我们发现管片在从盾尾脱离的时候,盾尾密封刷将管片弧面破裂的砼碎块带自盾构机拼装部位,碎块发现的部位大都在管片环的下部,但进一步观察发现,破裂的部位并不一定在管片环下部,而是任何一个点位,而且发生管片纵缝破裂的同时,总是在盾构机线路纠偏微调的时候,有的管片边角破裂引起了渗漏水。
经过对破裂点的统计分析,我们认为破裂的原因主要有以下几点:(1)管片纵缝环缝破裂;(2)管片间止水密封条及软木衬垫的形式,见右图。
2.2 管片边角崩裂边角崩裂在隧道掘进中发生较少,且都发生在管片错台、拼装质量不好的管片上,见右图。
通过分析,可以确定边角破裂的原因是拼装质量不好引起的,由于管片间边角吻合不好,在下一环管片拼装千斤顶施加顶推力时,在边角应力集中,造成管片砼破碎脱落。
2.3管片环向螺栓孔处砼崩裂由于管片从盾尾脱离后进入土层,周边荷载模式改变,并随着时间逐步稳定。
在未稳定之前,管片间剪力、拉力主要由管片间螺栓承受,并传递至螺栓孔周边的砼。
在管片砼破裂统计中,管片环向螺栓孔处砼崩裂占大多数,见右图。
原因分析:⑴同步注浆量不足,管片在脱离盾尾后下沉,管片环之间剪力增大,引起螺栓孔附近砼破裂;⑵拼装质量不好造成管片错台,管片间剪应力集中至螺栓孔附近造成砼破裂;2.4其他破损原因①盾构姿态与管片姿态出现偏差,管片的环面与盾构推进方向存在夹角,其合力作用方向部位的管片发生破碎;②施工初期,由于工人经验不足,管片安装速度很慢,有时发生管片错台大、在管片边角或在螺栓孔处破裂的问题;③封顶块安装时,由于先行安装的5块管片圆度不够,两邻接块间的间隙太小,封顶块强行顶入,导致封顶块及邻接块接缝处管片破碎,破碎部位发生在邻接块上部及封顶块两侧;④螺栓初紧、复紧不及时或者螺栓拧的不够紧,管片受力后,环向螺栓由垂直方向变倾斜,造成管片产生错台,从而出现边角部位的破碎以及裂缝等问题;3、处理及预防措施在盾构机掘进过程中,我们针对上述问题产生的各种原因进行了分析,采取的处理及预防措施见下表。
盾构施工时管片产生裂缝的原因及对策摘要:管片作为盾构隧道的主体结构,其开裂必将造成隧道的质量问题,并最终影响地铁隧道的使用寿命。
本文通过对隧道管片在盾构掘进施工时产生裂缝原因的分析,并提出相应的对策对指导施工具有重要意义关键词:盾构隧道管片开裂防治措施随着社会经济的发展城市人口增多、规模变大现有的城市交通已经不能满足城市发展的需要.经济发达的城市开始修建地铁工程盾构施工技术普遍应用于地铁工程中。
盾构法施工的隧道衬砌方式有两种:单层装配式衬砌和多层混合式衬砌.在盾构施工中.主要采用单层装配式衬砌。
衬砌为钢筋混凝土管片构成盾构隧道的主体结构承受四周土体的荷载.1盾构施工过程中出现的管片开裂盾构掘进施工过程中隧道管片在盾构机千斤顶反作用力及同步注浆压力和周围土体的压力作用下部分管片出现裂缝裂缝的位置主要位于隧道中部以上其中隧道拱顶占多数。
管片裂缝为纵向裂缝有两种类型:1.1前开裂裂缝从管片前端开裂并向后延伸(见图I),主要集中在隧道拱顶位置。
1。
2后开裂裂缝从管片后端开裂并向前延伸(见图2),此类裂缝主要在隧道的两腰部位或偏上位置。
2管片开裂的原因分析盾构隧道管片为钢筋混凝土结构其开裂主要为受力不均或受力过大所造成。
在施工过程中,管片的受力状态与设计所考虑的不完全一致盾构机掘进过程中管片承受着千斤顶顶力盾尾密封刷的作用力和衬砌背后注浆的浆液压力等在这些荷载的相互作用下使盾构管片出现了不同的受力特征。
通过对现场观察了解结合其它地铁工程中的经验造成管片出现上面开裂现象的主要原因可能有如下几种:2。
1盾构机千斤顶总推力较大作用于管片上的力是造成管片开裂的最基本因素其中盾构推进过程中总推力过大是致使管片开裂的最直接原因。
目前,国内地铁盾构隧道施工中,淤泥质粘土层中总推力为8000~12000kN;细砂土地层中总推力为12000~15000kN,当总推力过大时,对于养护不好并且配筋小的管片则有可能开裂。
2.2管片环面不平整造成管片环面不平整主要有:管片制作精度误差管片纠偏时贴片不平整;盾构机推进时各区的千斤顶推力大小不等管片之间的环缝压缩量不一致等原因.因管片环面不平整盾构机千斤项作用于管片上将产生较大的劈裂力矩造成管片开裂(如图3所示)。
盾构隧道施工期管片开裂原因和相应对策1 施工阶段管片受力分析盾构隧道在施工过程中管片衬砌受到的主要荷载有千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载等。
(1)千斤顶推力千斤顶推力是盾构隧道掘进的驱动力,它反过来作用在管片上,是施工过程中隧道衬砌在轴线方向最大的外力。
在目前国地铁盾构隧道施工中,淤泥质黏土层中总推力一般为8~12 MN,细沙土地层中总推力为12~15 MN,全断面砂土地层推力则为15~20 MN,复合地层推力有时候达到20 MN以上,大型跨江海盾构隧道千斤顶推力通常都在30MN以上。
(2)注浆压力依据盾构工法的特性:拼装好的衬砌脱离盾尾后,由于盾壳原来占据的空间、为衬砌的拼装操作所留空隙、盾构推进时带走的部分粘附于盾壳上的土体所形成的空隙等,在衬砌环背面与实际开挖洞壁间存在环形空隙,使土体暂时处于无支护状态,该空隙即为盾尾间隙。
盾尾间隙的大小是由盾构钢壳的厚度和盾尾操作空间决定的,一般为8~16 cm。
盾构工法施工中,对盾尾间隙的处理,即壁后注浆是施工的关键。
壁后注浆在填充盾尾间隙、加固土体的同时,对管片也产生了一定压力,该压力达到一定程度时,可能引起管片局部或整体上浮、错台、开裂、压碎或其他形式的破坏。
(3)上浮力盾构隧道的壁后注入的水泥浆液一般需要5~7h的初凝时间,而通常情况下这期间盾构一直在向前掘进,如果周围地层满足一定条件,一定围的土体未能及时握裹住管片,那么在这几个小时有一段管片是悬浮在注浆浆液中的(或者是水、泥浆等),这就产生了管片上浮力(浆液浮力扣除管片自重)。
(4)盾壳作用力管片与盾壳之间存在着一定摩擦力,盾尾密封刷对管片环也存在一较为均匀的环向压力,一般情况下这些荷载不会对管片结构造成影响。
但是,当盾构在曲线段掘进、纠偏,或者因其他原因造成盾构长时间停止掘进(造成盾构机“栽头”发生)时,盾壳对管片造成的荷载尤其是挤压荷载就变得不可忽视,如图1所示。
图1 盾壳作用力(5)拼装荷载拼装荷载主要是管片拼装过程中作用在管片上的装配器荷载。
盾构隧道管片衬砌裂纹病害整治技术提纲:1.盾构隧道管片衬砌裂纹病害的成因分析2.盾构隧道管片衬砌裂纹病害的检测方法3.盾构隧道管片衬砌裂纹病害的整治技术4.盾构隧道管片衬砌裂纹病害整治的应用实例5.盾构隧道管片衬砌裂纹病害整治的发展方向1. 盾构隧道管片衬砌裂纹病害的成因分析盾构隧道管片衬砌裂纹病害的成因有很多种,主要包括以下几个方面:(1) 材料缺陷:盾构隧道管片衬砌所用的材料质量直接影响病害的产生。
如果材料存在缺陷,例如内部有小裂纹,组织不均匀,存在夹杂物等,都会导致管片在使用过程中出现裂纹。
(2) 设计问题:盾构隧道的设计是十分复杂的,如果在设计中没有考虑到各种因素的影响,例如不恰当的工程参数、过小的弯曲半径、管片相互间的接合缺陷等,都会加深病害产生的程度。
(3) 施工问题:盾构隧道施工是非常复杂的,如果施工过程中存在问题,例如操作不当、质量检测不严格、材料不均匀等,都会让管片出现裂痕。
(4) 检修问题:在盾构隧道的使用过程中没有及时进行检查和维护的话,产生病害的风险就更大,例如水泥材料结构的侵蚀、热胀冷缩数字以及管片设备损坏等,都会导致管片产生裂痕。
(5) 环境问题:盾构隧道是由众多的管片组合构成的,如果在使用过程中遇到非常恶劣的环境,例如土壤下沉、高温潮湿、地震等都会给管片的使用带来风险。
2. 盾构隧道管片衬砌裂纹病害的检测方法盾构隧道管片衬砌裂纹病害的检测方法主要包括以下几个方面:(1) 可视检查:通过望远镜和高空等视来检查管片表面是否出现裂纹,以及裂纹的大小和长度等。
(2) 音探检查:利用超声波检测仪等检测管片内部有无空心化和隐性损伤等质量问题。
(3) 扫描电子显微镜:利用扫描电子显微镜对盾构隧道管片进行显微结构分析,发现管片材料中的微小裂纹,便于发现裂痕的发生位置。
(4) 直接测量:通过测量管片外表面的距离、厚度等指标,来科学的衡量管片的质量问题。
(5) 磁粉探伤:利用磁粉探伤仪等工具,对隐性缺陷进行检测。