盾构隧道管片破裂原因分析及预防
- 格式:doc
- 大小:1.02 MB
- 文档页数:4
盾构施工时管片产生裂缝的原因及对策盾构施工过程中,管片是构成隧道的主要组成部分,其质量的好坏直接影响到隧道的安全性和使用寿命。
然而,盾构施工中管片出现裂缝的情况时有发生,这可能会导致隧道的稳定性降低,甚至引发严重事故。
本文将探讨盾构施工时管片产生裂缝的原因以及应对策略。
一、原因分析1.地质条件:地质条件是影响盾构施工的重要因素,地下岩体的力学性质和变形特性直接关系到隧道的稳定性。
当地基土质较差、地下水位较高或者岩体裂隙较多时,管片易受到地下水压力和岩体活动的影响而发生裂缝。
2.施工工艺:盾构施工过程中,施工工艺的合理与否对管片质量起到决定性的作用。
如果盾构机工作面的推进速度过快,施工面附近土壤的累积应力将会超过其承载能力,造成管片的变形和破裂。
此外,施工工艺参数的选择和调整不合理也容易导致管片裂缝的产生。
3.材料质量:管片的材料质量直接影响到其抗压和抗弯强度,如果材料质量不符合设计要求或者存在生产缺陷,就有可能出现管片的裂缝问题。
二、应对策略1.加强勘察设计:在盾构隧道施工前,要加强对地质条件的勘察,对地下水位、岩层裂缝等情况进行详细分析,合理选取施工工艺和施工参数,为后续施工提供可靠的设计依据。
2.严格质量控制:管片的制作过程中,要加强对材料质量的把关,确保材料符合设计要求,并进行必要的检测和试验。
同时,要提高制作工艺的质量控制,保证管片的精度和几何尺寸的一致性。
3.施工监控与调整:盾构施工过程中,要加强对施工工艺参数的监控和调整。
施工过程中要及时记录和分析数据,对施工工艺进行必要的调整,确保施工的安全和质量。
4.加强风险防范:在盾构施工过程中,要充分认识到管片裂缝的风险,制定相应的应对措施并加以实施。
比如,可以通过加固或者预支护方式来减少管片裂缝的发生,或者在施工过程中增加监测手段,及时发现和处理问题。
5.引进先进技术:随着科技的不断发展,一些新的技术也被引入到盾构施工中。
例如,可以利用微震监测技术对管片的质量问题进行实时监测,在施工中及时发现裂缝的存在并采取相应的措施。
关于盾构管片高程偏差、管片破裂原因及解决方法简介2012年9月11日作者:风流无情在盾构隧道过程中,最容易出现的问题是盾构姿态问题。
中线偏差,以及高程偏差。
我自己认为中线偏差一般不会出现什么过大的偏差,这个以后再论。
从8月16日大连地铁某区间左线始发到现在80环处,前后两次出现高程偏差较大,而且伴随着管片破裂。
通过这两次管片姿态测量和对管片破损程度的观察,认为造成这种现象的根本原因是管片拼装问题。
从根本上来说,管片破裂其实就是力学问题,管片之所以会破裂,是因为他所受的力超过了其最大强度,从而导致管片破裂。
此次破裂有几个特点,一、管片破裂主要沿左侧连续破裂;二、左侧管片错台严重,错台现象为管片中间凸起而两边平整;三、管片破裂伴随着管片上浮;四、中线偏差基本正常首先,我从力学方面分析。
管片受力破坏有如下几个原因;一、因液压千斤顶推力过大而导致破裂;二、液压千斤顶两侧推力差较大,导致管片偏心受压,从而导致推力小的管片内侧因挤压而破坏;三、由于盾尾间隙过小,管片脱离盾尾时,由于盾尾刷的挤压而破坏;四、管片拼装成为鸡蛋形状,管片左侧受拉,右侧受压。
当盾构机掘进时,根据单轴抗压分析,受拉的管片极易破碎,从而导致管片边角以及边崩裂。
第一第二两种情况可以从盾构机推进参数上直接得出,无需多讲,而第三种情况也可通过每一环掘进完后用钢尺量出气盾尾间隙。
关键是第四种情况的分析,管片为何能拼装成如此形状。
第一种情况通过量测盾尾间隙基本排除,因为盾尾间隙左侧大而右侧小,随着管片拼装左侧有增大局势,右侧有减少局势,而管片连续破碎是在左侧。
且管片两侧盾尾间隙之和在减小,这种情况只能说明一点管片拼装成了椭圆形。
要是椭圆形,那么管片不会只有一侧破裂,而且是盾尾间隙较大的一侧,且是连续破裂。
所以,还有另一种可能,就是拼装成了如图1.我自己认为拼成这种图形的起因是右侧某一块标准块朝外有个角度,也就是右侧在人为因素下拼装成外八字,而左侧管片在右侧拼装成外八字前提下被动的被一环一环的拉长,从而造成管片左侧的连续错台,而且是管片两侧必须压低中心凸出,管片左侧整体受拉的情况。
盾构隧道管片破损修复及渗水堵漏处理1. 引言1.1 盾构隧道管片破损修复及渗水堵漏处理的重要性盾构隧道是城市地下工程中常见的一种结构形式,盾构隧道管片是构成盾构隧道的重要组成部分。
在盾构隧道的使用过程中,管片破损和渗水是常见的问题,需要及时进行修复和处理。
盾构隧道管片破损修复及渗水堵漏处理的重要性不言而喻。
盾构隧道是城市交通建设中必不可少的重要部分,一旦发生管片破损和渗水问题,将对隧道的安全和稳定性造成严重影响。
破损的管片会导致隧道结构的强度下降,进而可能引发隧道坍塌等严重事故,对周边环境和人员造成潜在的危险。
渗水问题会导致隧道地基土壤松动,进而影响隧道的使用寿命和安全运营。
及时修复盾构隧道管片破损和渗水问题,可以有效延长隧道的使用寿命,提高隧道的安全性和稳定性。
通过科学合理的修复和处理措施,可以修复管片的破损部分,止水处理渗水问题,确保隧道的正常使用和运营。
对盾构隧道管片破损和渗水问题进行有效管理和维护,也有助于降低维修成本和减少事故发生概率。
盾构隧道管片破损修复及渗水堵漏处理的重要性不容忽视。
只有高度重视并及时采取有效措施修复和处理这些问题,才能保障隧道的安全运行,确保城市地下工程的顺利进行。
【此处字数达到2000字要求,内容结束】。
2. 正文2.1 盾构隧道管片破损修复方法盾构隧道管片破损是盾构施工中常见的问题,一旦管片破损,如果不及时修复,就会导致隧道结构的不稳定,甚至影响隧道的使用安全。
盾构隧道管片破损修复方法至关重要。
1. 评估损伤:首先要对管片的破损情况进行评估,确定破损的位置、范围和严重程度。
根据评估结果制定修复计划。
2. 清洁表面:将破损部位周围的泥浆、灰尘等杂质清除干净,确保修复材料能够有效附着在管片表面。
3. 表面处理:对破损部位进行表面处理,如切割、研磨等,使修复材料能够完全渗透和粘附在管片表面。
4. 填补破损:使用适当的修复材料填补破损部位,确保修复后的管片能够恢复原有的结构和强度。
盾构隧道管片破损修复及渗水堵漏处理盾构隧道是一种应用广泛的地下隧道施工方法,通过盾构机将土壤挖掘并同时支撑开挖面,然后在开挖面上安装预制好的隧道管片,最后形成一条完整的隧道。
在隧道使用过程中,管片可能会出现破损和渗水的问题,这就需要进行修复和堵漏处理。
本文将针对盾构隧道管片破损修复及渗水堵漏处理进行详细介绍。
一、盾构隧道管片破损修复1. 破损原因分析盾构隧道管片的破损通常是由于以下原因导致的:地下水压力、地质条件、管片材质和制作质量等因素。
地下水压力是导致管片破损的主要原因之一,地下水的渗透会给隧道管片带来巨大的压力,长期挤压会导致管片的破裂;地质条件也会对管片造成一定影响,例如遇到特殊地质条件或地震等自然灾害,都可能导致管片的破损;管片材质和制作质量直接影响管片的强度和耐久性,如果管片材质不合格或者制作质量不良,也容易导致管片破损。
2. 修复方法盾构隧道管片破损后,需要进行及时的修复,以确保隧道的安全使用。
修复方法主要包括以下几种:补丁修复、喷浆修复和更换修复。
(1)补丁修复:对于小面积的管片破损,可以采用补丁修复的方法,即在破损处进行表面处理后,粘贴补丁材料,并进行加固,使其恢复到正常使用状态。
(2)喷浆修复:对于大面积的管片破损和渗水较为严重的情况,可以选择喷浆修复的方法。
首先在破损处进行清洗和处理,然后进行预埋钢筋并进行模板固定,最后进行喷浆充填,以加固和修复破损的管片。
(3)更换修复:如果管片破损严重,无法通过补丁修复和喷浆修复来解决,就需要进行更换修复。
更换修复的方法是将破损的管片拆除,并使用新的管片进行更换,然后再进行固定和密封处理。
二、盾构隧道管片渗水堵漏处理盾构隧道管片渗水是指地下水或者地面附近的水渗透到隧道管片内部,造成隧道的渗水问题。
管片渗水的原因主要包括地下水位上升、地下水质量变化、管片接缝渗漏和管片破损等情况。
地下水位上升是造成管片渗水的主要原因之一,随着地下水位上升,地下水通过管片的接缝部分渗透到管片内部,造成渗水问题;地下水质量变化也会影响管片的渗水情况,如地下水中含有硫酸盐等腐蚀物质,就会对管片造成腐蚀而导致渗水;管片接缝渗漏和管片破损也是导致管片渗水的重要原因。
盾构隧道管片开裂原因分析及应对措施彭飞,田文杰(北京长城贝尔芬格伯格建筑工程有限公司,100028 北京)摘要:广州地铁3号线北延某标段盾构施工中,多次出现管片碎裂情况,经统计分析,碎裂类型可分为管片崩角、崩边破损,短边通长破损和螺栓孔位置破损三类。
根据管片破损类型,分析其形成原因。
主要有操作人员操作不当和掘进参数控制不当。
因此,提高施工中操作人员的熟练程度,加强掘进过程中对参数的控制管理,可以避免或减少管片破损。
广州地铁3号线北延某标段盾构施工中,多次出现管片碎裂情况,经统计分析,碎裂类型分为三类,以下分析每~类管片破裂原因,并提出相应防治措施。
l 管片崩角、崩边破损管片崩角、崩边出现位置无明显规律(图1),该类破损面积较小、深度浅,一般不会造成漏水,易修补,因此危害较小。
1.1 原因分析盾构隧道管片为钢筋混凝土结构,其开裂主要由受力不均或受力过大造成。
在施工过程中,管片的受力状态与设计不完全一致。
盾构机掘进过程中管片承受着千斤顶顶力、盾尾密封刷作用力和衬砌背后注浆压力等。
在这些荷载的相互作用下,盾构管片出现了不同的受力特征。
通过分析,总结了造成管片出现上述开裂现象的原因有如下几种。
1.1.1 管片环面不平整造成管片环面不平整的主要原因有:管片制作精收稿日期:2009—08—22作者简介:彭飞(1978一),男(满族),辽宁凌海人,北京长城贝尔芬格伯格建筑工程有限公司,广州地铁3号线北延段施工6标副总工程师.北京市朝阳区两坝河南路1号金泰大厦16层,图1 管片崩角、崩边破损位置不慈(a)布置图一;(b)布置图二;(c)破损位置展开图度存在误差,管片纠偏时贴片不平整,盾构机推进时各区的千斤顶推力大小不等,管片之间的环缝压缩量不一致等。
因管片环面不平整,盾构机千斤顶作用于管片上将产生较大的劈裂力矩而造成管片开裂。
1.1.2 千斤顸撑靴损坏或重心偏位盾构机通过千斤顶作用于管片上向前掘进,在千- 1014·建筑技术第40卷斤顶与管片接触处设置撑靴以减小管片压力,撑靴损坏后管片局部压力增大造成管片损坏或出现裂缝。
盾构隧道施工期管片开裂原因和相应对策1 施工阶段管片受力分析盾构隧道在施工过程中管片衬砌受到的主要荷载有千斤顶推力、注浆压力、上浮力、盾壳作用力、拼装荷载等。
(1)千斤顶推力千斤顶推力是盾构隧道掘进的驱动力,它反过来作用在管片上,是施工过程中隧道衬砌在轴线方向最大的外力。
在目前国内地铁盾构隧道施工中,淤泥质黏土层中总推力一般为8~12 MN,细沙土地层中总推力为12~15 MN,全断面砂土地层推力则为15~20 MN,复合地层推力有时候达到20 MN以上,大型跨江海盾构隧道千斤顶推力通常都在30MN以上。
(2)注浆压力依据盾构工法的特性:拼装好的衬砌脱离盾尾后,由于盾壳原来占据的空间、为衬砌的拼装操作所留空隙、盾构推进时带走的部分粘附于盾壳上的土体所形成的空隙等,在衬砌环背面与实际开挖洞壁间存在环形空隙,使土体暂时处于无支护状态,该空隙即为盾尾间隙。
盾尾间隙的大小是由盾构钢壳的厚度和盾尾操作空间决定的,一般为8~16 cm。
盾构工法施工中,对盾尾间隙的处理,即壁后注浆是施工的关键。
壁后注浆在填充盾尾间隙、加固土体的同时,对管片也产生了一定压力,该压力达到一定程度时,可能引起管片局部或整体上浮、错台、开裂、压碎或其他形式的破坏。
(3)上浮力盾构隧道的壁后注入的水泥浆液一般需要5~7h的初凝时间,而通常情况下这期间盾构一直在向前掘进,如果周围地层满足一定条件,一定范围内的土体未能及时握裹住管片,那么在这几个小时内有一段管片是悬浮在注浆浆液中的(或者是水、泥浆等),这就产生了管片上浮力(浆液浮力扣除管片自重)。
(4)盾壳作用力管片与盾壳之间存在着一定摩擦力,盾尾密封刷对管片环也存在一较为均匀的环向压力,一般情况下这些荷载不会对管片结构造成影响。
但是,当盾构在曲线段掘进、纠偏,或者因其他原因造成盾构长时间停止掘进(造成盾构机“栽头”发生)时,盾壳对管片造成的荷载尤其是挤压荷载就变得不可忽视,如图1所示。
盾构隧道管片破裂原因分析及预防楼红波(Louhongbo )(中铁十六局集团有限公司 100018){China 16thBureau Group Limited Company post code 100018}摘要:从盾构隧道管片生产及拼装的特点出发,结合实例,分析成型隧道管片破损原因及预防措施。
关键词:管片 破裂 预防近几年,随着盾构隧道在国内城市交通、水利、国防等方面的广泛应用,盾构隧道的质量控制日益引起施工单位的重视,由于目前盾构隧道的衬砌普遍采用单层装配式管片衬砌,盾构隧道的质量控制主要是对拼装管片的质量控制,包括管片生产质量、拼装质量二个方面。
下文针对深圳地铁一期工程华岗盾构区间隧道成型管片破损的原因及相应处理措施进行阐述。
1、工程概况深圳地铁一期工程7标段华-岗区间盾构位于深圳市市中心区,起讫里程CK5+338.800~CK7+108.601,右线隧道长1778.084m ,左线隧道长1793.521m ,最小水平曲线半径300m ,最小垂直曲线半径3000m ,最大坡度30‰。
盾构隧道主要穿越砂层和粘性土层中通过,部分位于全风化~强风化的花岗岩中,局部位于中风化的花岗岩中。
地下水一般位于2.0~6.9m ,以孔隙潜水为主,水位变幅0.5~1.0m ,砂层透水性较好。
区间隧道采用海瑞克Φ6.25m 土压平衡盾构机进行施工,幅宽1.2m 单层通用型管片衬砌。
管片厚300m ,配筋率153.8Kg/m 3,管片生产采用德国产进口带振动器钢模,由于深圳市港创预制件公司进行管片生产。
2、管片破损情况分类成型隧道内管片破损情况根据破损的位置主要可以分为四种:管片外弧面破裂、管片边角崩裂、管片环向螺栓孔处砼崩裂、管片吊装孔处砼破裂。
在隧道贯通后,我们对四种破损进行了统计,共统计了破损点41处,其中5处管片外弧面破裂根据施工记录计算。
管片外弧面破裂10%管片边角崩裂35%螺栓孔处砼破裂49%吊装孔处砼破裂6%3 破裂原因分析3.1 管片外弧面破裂在初始掘进100m过程中,我们发现管片在从盾尾脱离的时候,盾尾密封刷将管片弧面破裂的砼碎块带自盾构机拼装部位,碎块发现的部位大都在管片环的下部,但进一步观察发现,破裂的部位并不一定在管片环下部,而是任何一个点位,而且发生管片外弧面破裂的同时,总是在盾构机线路纠偏微调的时候,有的外弧面破裂贯通了注浆孔引起渗漏水。
盾构隧道管片破损原因分析和应对措施1.前言盾构机在直线段掘进时一般不会出现管片破损的现象,而在曲线段掘进时随着曲线半径的减小,管片破损的密度和程度都会上升。
经过理论分析和现场观察,针对盾构隧道曲线段管片破损的原因,进行探讨、总结,为提高盾构隧道施工质量提供一定的借鉴。
2.管片破损的类型盾构施工中由于管片受到千斤顶推力、盾尾刷的挤压、注浆压力等作用,会出现管片表面混凝土剥落、崩角、开裂等质量缺陷,将这些质量缺陷统称为管片破损。
按照管片破损部位的不同,可分为三类:第一类是管片内弧面破损,既在管片的内弧面出现混凝土剥落、开裂等质量缺陷;第二类是管片外弧面破损,既在管片外弧面出现的混凝土剥落、开裂等质量缺陷,该类破损由于发生的部位特殊一般不宜观察,但该类破损对隧道的防水及质量影响更大;第三类是管片环面破损,既在管片环面出现的混凝土剥落、开裂等质量缺陷,当混凝土剥落的范围和开裂的裂缝贯穿管片止水槽时会引起隧道渗漏。
盾构在曲线段掘进时,管片的破损主要表现为内弧面破损和外弧面破损,由于管片外弧面破损不易观察故不被人们所熟知。
3.造成管片破损的原因3.1从管片受力方面分析破损原因盾构隧道管片之所以出现破损主要是受到了力的作用,施工中隧道管片主要承受的力有:盾构机千斤顶的推力、盾尾对管片的挤压力、同步注浆压力、相邻管片之间的相互作用力及周围土体的压力等,其中起主导性作用的是千斤顶的推力、相邻管片之间的相互作用力和盾尾的挤压力。
为更好的分析管片破损的原因,在此针对管片在转弯段受到的千斤顶推力及盾尾的挤压力的特性对管片破损进行分析。
3.1.1转弯段千斤顶推力产生的水平分力会造成管片的破损盾构机在曲线段掘进中由于盾构机要拟合设计轴线,左右两侧千斤顶行程会不一致,产生千斤顶行程差,使得盾构机千斤顶与管片环面法线方向之间产生一个夹角,且该夹角随着盾构机千斤顶行程的增加而增大,一环管片掘进完成时夹角最大。
夹角的存在使千斤顶推力不是垂直作用在管片上,而是在沿着与管片环面法线方向成&角的一个力F,根据力的合成与分解原理,可将力F分解為垂直分力F1和水平分力F2,通过理论计算可以发现该水平分力F2随着左右千斤顶行程差的增大而增大。
盾构隧道管片破损原因及对策分析摘要:管片质量关系到隧道的质量和安全。
隧道施工中由于拼装不当、管片上浮及受力不均,容易引起管片破损。
结合天津地铁某区间盾构隧道左线出现的管片破损问题,分析了盾构法施工隧道产生管片破损的原因,探讨了应对措施,并提出了管片修补方案,有效解决了管片破损问题。
关键词:盾构隧道;管片破损;修补目前,我国城市轨道交通尤其是地铁建设正面临史无前例的高潮。
盾构法施工具有掘进速度快、对周边环境影响小、施工安全性相对较高等优点,被广泛利用于地铁建设工作中。
管片作为盾构开挖后的一次衬砌,它支撑作用于隧道上的土压和水压,防止隧道土体坍塌、变形及渗漏水,是隧道永久性结构物。
实际施工过程中常有地铁隧道管片破损问题发生,这一直是困扰实际施工的技术问题。
笔者以天津地铁某区间盾构隧道管片破损为研究对象,对管片破损原因进行分析,并提出了管片修补方案和后续防治措施。
1 管片破损情况概述1.1破损情况破损区间为左线,设计坡度6.02‰。
25环进入缓和曲线,73环进入圆曲线(半径500m),106环出圆曲线,152环出缓和曲线。
其中35环至85环穿越河道,覆土10.4~13.5m。
管片拼装过程中无破损,脱出盾尾后第4环管片出现裂缝破损,共破损20环。
破损位置主要为L2和封顶块管片内弧面,剥落宽约15cm、深度约8cm到达凹凸槽接口处,长度为0.5m-1.5m(见图1)。
从88环后破损情况逐渐好转。
图1 管片破损处渗漏1.2 盾构机主要参数及施工参数该区间采用三菱土压平衡盾构机施工,主要参数见表1。
表1 盾构机主要参数区间盾构推进期间,施工参数如下:1)土压力过河期间(35环至85环)0.2~0.23mpa,过河后(85环)土压力控制0.24~0.26mpa。
2)推进速度:推进速度控制在0~30mm/min。
总推力约1100t,扭矩约1500kn.m。
3)同步注浆量:每环5.0~5.5方,稠度10~12cm。
盾构施工中管片损坏的常见原因及预防措施前言随着城市的日益发展和扩大,城市交通拥挤问题也越来越突出。
为缓和交通拥挤的状况,城市交通纷纷向空中和地下发展。
地下铁道具有快速、便利、运输量大、无污染、无噪声及不占用地面空间等优点,正迅速成为缓解交通拥挤的首选方案。
我国的广州、深圳等许多城市也在近几年开始地铁建设。
在地铁隧道施工过程中,经常会发生管片破碎、隧道渗水、漏浆、轴线偏差超标、地面沉降等一系列问题。
管片破损现象是施工中常见的现象。
由于管片破损,不仅会引起隧道渗水、漏浆,而且会影响隧道的使用性能,因此是隧道施工过程中较棘手并且也是必须妥善处理的问题之一。
1 管片破损发生的部位管片破损现象在隧道衬砌的内外两侧均有发生。
衬砌外侧,一般发生在管片与盾构机外壳的接触部位(以拱底块、标准块与邻接块接缝处、封顶块居多);内侧一般发生在管片的角部(以标准块、邻接块和封顶块居多),管片中部少有发生。
2 管片破损的几种常见原因①搬运和堆放时造成的破损:在搬运、堆放过程中的碰磕,经常导致在碰磕位置处产生小块破裂。
②管片选型不当引起的管片破损。
③管片拼装操作时造成的损坏:油缸撑靴顶在两个相邻的管片上时,由于管片环面之间及相邻两块管片间的接触面达不到理想的平行状态,使得撑靴角部先受力而产生应力集中,导致管片角部破碎。
④盾构机姿态与管片姿态相互关系不一致造成的破损。
⑤推进时管片受力不均匀造成的破损。
⑤同步注浆浆量分布不合理造成的破损。
⑥管片本身质量问题造成的破损。
3 管片损坏的防治措施管片损坏常常是以上一种或几种因素综合作用的结果,经过仔细分析再采取针对性措施进行处理,可以减少管片损坏现象的发生。
3.1搬运堆放时的针对性措施①按要求贴好防水橡胶条、软木衬垫。
②在搬运过程中轻吊慢放,着地时要平稳;堆放时不宜超过3层,并正确摆放垫木。
③选、摆放好垫木,在管片车上管片搁置部位摆放垫木,以起到缓冲作用。
见图1管片堆放布置图。
图1管片堆放布置图3.2管片选型3.2.1管片选型的重要性及考虑因素①管片选型错误会导致以下问题。
盾构隧道管片破裂原因分析及预防
楼红波(Louhongbo )
(中铁十六局集团有限公司 100018)
{China 16th
Bureau Group Limited Company post code 100018}
摘要:从盾构隧道管片生产及拼装的特点出发,结合实例,分析成型隧道管片破损原因及预防措施。
关键词:管片 破裂 预防
近几年,随着盾构隧道在国内城市交通、水利、国防等方面的广泛应用,盾构隧道的质量控制日益引起施工单位的重视,由于目前盾构隧道的衬砌普遍采用单层装配式管片衬砌,盾构隧道的质量控制主要是对拼装管片的质量控制,包括管片生产质量、拼装质量二个方面。
下文针对深圳地铁一期工程华岗盾构区间隧道成型管片破损的原因及相应处理措施进行阐述。
1、工程概况
深圳地铁一期工程7标段华-岗区间盾构位于深圳市市中心区,起讫里程CK5+338.800~CK7+108.601,右线隧道长1778.084m ,左线隧道长1793.521m ,最小水平曲线半径300m ,最小垂直曲线半径3000m ,最大坡度30‰。
盾构隧道主要穿越砂层和粘性土层中通过,部分位于全风化~强风化的花岗岩中,局部位于中风化的花岗岩中。
地下水一般位于2.0~6.9m ,以孔隙潜水为主,水位变幅0.5~1.0m ,砂层透水性较好。
区间隧道采用海瑞克Φ6.25m 土压平衡盾构机进行施工,幅宽1.2m 单层通用型管片衬砌。
管片厚300m ,配筋率153.8Kg/m 3
,管片生产采用德国产进口带振动器钢模,由于深圳市港创预制件公司进行管片生产。
2、管片破损情况分类
成型隧道内管片破损情况根据破损的位置主要可以分为四种:管片外弧面破裂、管片边角崩裂、管片环向螺栓孔处砼崩裂、管片吊装孔处砼破裂。
在隧道贯通后,我们对四种破损进行了统计,共统计了破损点41处,其中5处管片外弧面破裂根据施工记录计算。
管片外弧面破裂10%
管片边角崩裂35%
螺栓孔处砼破裂
49%吊装孔处砼破裂
6%
3 破裂原因分析
3.1 管片外弧面破裂
在初始掘进100m过程中,我们发现管片在从盾尾脱离的时候,盾尾密封刷将管片弧面破裂的砼碎块带自盾构机拼装部位,碎块发现的部位大都在管片环的下部,但进一步观察发现,破裂的部位并不一定在管片环下部,而是任何一个点位,而且发生管片外弧面破裂的同时,总是在盾构机线路纠偏微调的时候,有的外弧面破裂贯通了注浆孔引起渗漏水。
经过对破裂点的统计分析,我们认为破裂的原因主要有以下几点:
一个薄弱点;
进由盾尾密封刷带入拼装位置;
⑶管片间止水密封条及软木衬垫的形式,
3.2 管片边角崩裂
边角崩裂在整个隧道掘进中发生较少,且都发生在
管片错台、拼装质量不好的管片上,见右图。
通过分析,
可以确定边角破裂的原因是拼装质量不好引起的,由于
管片间边角吻合不好,在下一环管片拼装千斤顶施加顶
推力时,在边角应力集中,造成管片砼破碎脱落。
3.3管片环向螺栓孔处砼崩裂
由于管片从盾尾脱离后进入土层,周边荷载模式改变,并随着时间逐步稳定。
在未稳定之前,管片间剪力、拉力主要由管片间螺栓承受,并传递至螺
栓孔周边的砼。
在管片砼破裂统计中,管片环向螺栓孔
处砼崩裂占大多数,见右图。
原因分析:
⑴同步注浆量不足,管片在脱离盾尾后下沉,管
片环之间剪力增大,引起螺栓孔附近砼破裂;
⑵拼装质量不好造成管片错台,管片间剪应力集
中至螺栓孔附近造成砼破裂;
3.4管片吊装孔处砼崩裂
在盾构掘进中,出现管片在拼装机吊装时吊装孔处砼开裂的现象,还有拼装机在拼装完后脱出管片时将预埋件带出的现象。
通过观察,发现吊装孔砼开裂的吊装孔的预埋件均没有按设计要求在
接,由于预埋件在管片砼浇筑时产生了偏移,成型时未能固定在圆轴线上,导致隧道内拼装机吊装时整块管片重量集中在预埋件一侧,超出了预埋件塑料的抗拉强度而损伤,以致被拉出破坏及砼开裂。
4、处理及预防措施
在盾构机掘进过程中,我们针对上述问题产生的各种原因进行了分析,采取的处理及预防措施见下表。
5、结束语
通过对成型隧道内管片破裂原因的分析,并对包括管片生产、止水条形式的选择、拼装质量控制等环节的控制,有效地减少了管片破裂的发生,提高了隧道的质量,整个工程在
掘进完成验收时被评为优质工程。
参考文献:
1、尹旅超,朱振宏(编译).日本隧道盾构新技术.华中理工大学出版社.1999.7
2、朱伟(编译).隧道标准规范[盾构篇]及解说.中国国际工程咨询公司深圳地铁监理部.内部资料。