等差数列复习课
- 格式:ppt
- 大小:328.50 KB
- 文档页数:14
等差数列复习课教案(公开课)等差数列复习课宜良县职业高级中学董家金(一) 教学目标1.学问与技能:复习等差数列的定义、通项公式、前n 项和公式及相关性质.2.过程与办法:师生共同回忆复习,通过相关例题与练习加深同学的理解.3.情感与价值:培养同学观看、归纳的能力,培养同学的应用意识.(二) 教学重、难点重点:等差数列相关性质的理解。
难点:等差数列相关性质的应用。
(三) 教学办法师生共同探讨复习本课时的主要学问点,再通过例题、习题加深同学的应用意识,本节课采纳多媒体辅助教学。
(四) 课时支配1课时(五) 教具预备多媒体课件(六) 教学过程Ⅰ学问回顾1、等差数列定义普通地,假如一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。
2、等差数列的通项公式假如等差数列{}n a 首项是1a ,公差是d ,则等差数列的通项公式是d n a a n )1(1-+=。
注重:等差数列的通项公式收拾后为)(1d a nd a n -+=,是关于n 的一次函数。
3、等差中项假如a,A,b 成等差数列,那么A 叫着a 与b 的等差中项。
即:2b a A +=,或b a A +=2。
4、等差数列的前n 项和公式等差数列{}n a 首项是1a ,公差是d ,则2)(1n n a a n S +==d n n na 2)1(1-+。
注重:1) 该公式收拾后为n d a n d s n )2(212-+=,是关于n 的二次函数,且常数项为0。
2) 等差数列的前n 项和公式推导过程中利用了“倒序相加求和法”。
3) 数列n a 与前n项和n s 的关系-=-11S S S a n n n )1()2(=≥n n 5、等差数列的推断办法a) 定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
b) 等差中项法:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。
一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)n n n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
等差数列复习教案教案标题:等差数列复习教案教学目标:1. 理解等差数列的概念和性质。
2. 能够识别等差数列中的公差和首项。
3. 掌握等差数列的通项公式和求和公式。
4. 能够应用等差数列的知识解决问题。
教学准备:1. 教师准备:白板、黑板笔、教学课件、教学素材、练习题。
2. 学生准备:课本、笔记本、笔。
教学过程:一、导入(5分钟)1. 引入等差数列概念:回顾上一节课学习的内容,提问学生对等差数列的理解和特点。
2. 引导学生思考:列举几个实际生活中的等差数列例子,让学生发现等差数列的应用。
二、概念解释和性质讲解(10分钟)1. 教师通过教学课件或板书,给出等差数列的定义和符号表示。
2. 解释等差数列的公差和首项的含义,并强调它们在等差数列中的作用。
3. 讲解等差数列的性质,如相邻项之差相等等。
三、求解等差数列的公式(15分钟)1. 教师通过示例和解题步骤,引导学生推导等差数列的通项公式和求和公式。
2. 强调公式的应用方法和注意事项,如确定已知条件、代入公式计算等。
四、练习与巩固(20分钟)1. 分发练习题,让学生独立完成练习。
2. 教师巡视指导学生解题过程,及时纠正错误和解答疑惑。
3. 收集学生的练习答案,进行讲解和订正。
五、拓展与应用(10分钟)1. 提供一些拓展题目,让学生运用等差数列的知识解决问题。
2. 鼓励学生思考等差数列在实际生活中的应用场景,并展示他们的解决方案。
六、总结与反思(5分钟)1. 教师对本节课的重点内容进行总结,强调等差数列的重要性和应用价值。
2. 学生对本节课的学习进行反思,提出问题和困惑,教师进行解答和引导。
教学延伸:1. 鼓励学生通过自主学习和合作学习,进一步巩固和拓展等差数列的知识。
2. 提供更多的练习题和挑战题,让学生在解决问题中发现等差数列的应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、合作与思考能力等。
2. 教师收集学生完成的练习题和拓展题答案,进行评价和订正。