实验用压力传感器和温度传感器
- 格式:doc
- 大小:585.00 KB
- 文档页数:7
《用传感器做实验》学历案一、学习主题用传感器做实验二、学习目标1、了解常见传感器的工作原理和应用场景。
2、掌握使用传感器进行实验的基本方法和步骤。
3、培养通过实验探究问题、解决问题的能力。
4、提升对科学技术的兴趣,增强创新意识和实践能力。
三、学习资源1、传感器实验设备,如温度传感器、压力传感器、光电传感器等。
2、计算机及相关数据采集软件。
3、实验指导手册和教材。
四、学习过程(一)导入在我们的日常生活中,传感器无处不在。
比如,手机中的光线传感器可以自动调节屏幕亮度,汽车中的胎压传感器能监测轮胎压力。
那么,传感器是如何工作的呢?我们又该如何利用传感器来进行实验呢?(二)知识讲解1、常见传感器类型(1)温度传感器:基于热敏电阻、热电偶等原理,能够测量环境或物体的温度。
(2)压力传感器:通常利用应变片或压电效应,用于测量压力的大小。
(3)光电传感器:通过接收光信号的变化来检测物体的位置、速度等。
(4)位移传感器:可精确测量物体的位移量。
2、传感器工作原理以温度传感器为例,热敏电阻的电阻值会随温度的变化而改变。
通过测量电阻值的变化,并经过一定的转换和计算,就能得到对应的温度值。
(三)实验操作1、实验一:温度测量实验(1)连接温度传感器与数据采集设备。
(2)将传感器放入不同温度的环境中,如冰水混合物、室温、热水等。
(3)观察并记录数据采集软件中显示的温度变化。
2、实验二:压力测量实验(1)安装压力传感器在压力测试装置上。
(2)逐渐增加压力,观察压力数值的变化。
3、实验三:光电传感器测速实验(1)设置光电传感器和运动物体的相对位置。
(2)让物体运动,通过传感器获取速度数据。
(四)数据处理与分析1、对采集到的数据进行整理,绘制图表,如温度时间曲线、压力位移曲线等。
2、分析数据的规律和趋势,探讨可能的误差来源。
(五)拓展与应用1、思考如何利用传感器解决实际生活中的问题,比如设计一个自动浇水系统,根据土壤湿度传感器的反馈来控制浇水。
传感器实验总结一、引言随着科技的不断发展,传感器在现代生活中扮演着越来越重要的角色。
传感器具备检测和感知周围环境的能力,而且能够将这些信息转化为可读的信号。
本文对我所参与的传感器实验进行总结和分析,旨在探讨传感器在不同领域的应用以及其未来发展趋势。
二、传感器技术的背景与分类传感器技术在众多领域中得到了广泛的应用,如环境监测、智能家居、医疗设备等。
根据其工作原理和应用场景的不同,传感器可以被分为光学传感器、温度传感器、压力传感器、湿度传感器等多个类别。
三、光学传感器实验在光学传感器实验中,我们以光电二极管为示例,研究了其对光线强度的响应特性。
实验结果显示,光电二极管能够根据光线强度的变化产生响应电压。
这一技术在日常生活中被广泛应用于光照控制、光电传感器等领域。
四、温度传感器实验通过温度传感器实验,我们探讨了不同类型的温度传感器的工作原理和精度。
实验表明,热电阻和热敏电阻能够根据温度的变化输出相应的电阻值。
而微电机在将这一电阻值转化为数字信号时,还需考虑到温度与电阻之间的非线性关系。
五、压力传感器实验压力传感器的实验中,我们使用压阻式压力传感器作为样例,研究了其对压力的敏感性。
当压力发生变化时,传感器将输出与之对应的电阻值。
这种传感器可应用于工业自动化、液压控制等多个领域。
六、湿度传感器实验湿度传感器实验中,我们测试了电容式湿度传感器的响应特性。
实验结果表明,湿度传感器能够根据周围环境湿度的变化导致电容值的变化。
这一技术常用于气象观测、温湿度调节等领域。
七、传感器应用展望传感器技术在农业、工业、医疗等领域都有广泛的应用前景。
随着物联网技术的发展,传感器将在更多领域实现智能化的应用。
例如,在农业领域,通过传感器可以实现对农田土壤湿度、温度等参数的实时监测,从而实现农业的智能化管理和节约资源的目标。
八、结语传感器作为现代科技的重要组成部分,其在各个领域中的应用既方便了人们的生活,也提高了工作效率。
通过传感器实验,我们深入了解了传感器的工作原理和应用。
常用传感器在物理实验中的应用与选择在物理实验中,传感器是不可或缺的工具之一。
它们能够将物理量转化为电信号,并且在实验中提供准确的测量结果。
不同的物理实验需要使用不同类型的传感器,因此在实验中正确选择和应用常用传感器非常重要。
首先,温度传感器是物理实验中最常用的传感器之一。
它们可以测量物体的温度,并根据不同的工作原理将温度转化为电信号。
在实验中,我们可以使用热电偶传感器、热敏电阻或半导体温度传感器等不同类型的温度传感器。
选择合适的温度传感器取决于实验的需求,例如所测量的温度范围和精度要求。
对于高温实验,热电偶传感器是合适的选择,而半导体温度传感器则适用于低温实验。
其次,压力传感器在物理实验中也有广泛的应用。
它们可以测量物体的压力,并将其转化为电信号。
在实验中常见的压力传感器有压电传感器、微型压力传感器和电容式压力传感器等。
不同的压力传感器适用于不同的压力范围和应用需求。
例如,在流体力学实验中,我们常使用微型压力传感器来测量流体的压力,而在材料力学实验中,电容式压力传感器则能提供更高的压力测量精度。
除了温度和压力传感器,光传感器也是物理实验中常用的传感器之一。
它们可以测量物体的光强度和光谱,并将其转化为电信号。
在物理实验中常见的光传感器有光电二极管传感器、光电倍增管和光纤光谱传感器等。
不同类型的光传感器适用于不同的光学测量需求。
例如,在光谱分析实验中,光纤光谱传感器能够提供较高的光谱分辨率和灵敏度。
此外,加速度传感器也是物理实验中常用的传感器之一。
它们可以测量物体的加速度,并将其转化为电信号。
在力学实验中,加速度传感器常被用于测量物体的加速度和振动。
根据实验的需求,我们可以选择压电型加速度传感器、微机械加速度传感器或光纤光栅加速度传感器等不同类型的加速度传感器。
除了上述提及的传感器,还有许多其他常用传感器在物理实验中发挥着重要的作用。
例如,电流传感器、湿度传感器、位移传感器等。
每种传感器都有其特定的工作原理和应用领域。
传感器试验报告范文一、实验目的:通过对传感器进行试验,了解它的性能指标和特点,并掌握传感器在不同环境下的适用范围。
二、实验材料:1.传感器:温度传感器、压力传感器、光敏传感器。
2.仪器设备:示波器、万用表、电源、计算机。
三、实验过程:1.温度传感器试验:连接温度传感器、示波器和电源。
调节电源输出电压,观察示波器上的波形变化。
测量传感器的输出电压随温度的变化,并绘制图表。
2.压力传感器试验:将压力传感器与示波器和电源连接。
通过调节电源的输出电压,观察示波器上的波形变化,并记录传感器的输出电压随压力的变化情况。
绘制图表进行分析。
3.光敏传感器试验:连接光敏传感器、示波器和电源,调节电源输出电压,观察示波器上的波形变化。
通过遮挡传感器的光线,观察传感器的输出电压变化情况,并记录数据进行分析。
四、实验结果:1.温度传感器试验结果:温度传感器的输出电压随温度的变化呈线性关系,即温度越高,输出电压越高。
通过绘制图表,可以得出明确的温度-电压曲线。
2.压力传感器试验结果:压力传感器的输出电压随压力的变化呈线性关系,即压力越大,输出电压越高。
通过绘制图表,可以得出明确的压力-电压曲线。
3.光敏传感器试验结果:光敏传感器的输出电压随光强的变化呈非线性关系。
在光线较弱的情况下,输出电压较低,光线较强时,输出电压较高。
通过绘制图表,可以得出明确的光强-电压曲线。
五、实验讨论:从实验结果可以看出,不同的传感器有不同的特点和性能指标。
温度传感器对温度变化敏感,可以精确测量温度;压力传感器对压力变化敏感,可以精确测量压力;光敏传感器对光强变化敏感,可以精确测量光强。
因此,在实际应用中,需要根据需要选择合适的传感器。
六、实验总结:通过本次传感器试验,我们深入了解了传感器的性能指标和特点,以及它们在不同环境下的适用范围。
这对于我们在实际应用中选择合适的传感器具有重要的指导意义。
同时,本次试验还让我们掌握了使用示波器、万用表等仪器设备进行传感器测试的方法和技巧。
传感器技术实验报告
《传感器技术实验报告》
近年来,随着科技的不断发展,传感器技术在各个领域中得到了广泛的应用。
传感器作为一种能够感知环境并将感知到的信息转化为可用信号的装置,已经成为了现代科技发展中不可或缺的一部分。
在本次实验中,我们将对传感器技术进行一系列的实验,以探究其在不同领域中的应用和性能表现。
实验一:温度传感器性能测试
在这个实验中,我们使用了一款市场上常见的温度传感器,通过连接到实验仪器上并对其进行测试,我们得出了传感器在不同温度下的性能表现。
通过实验数据的分析,我们发现该温度传感器具有较高的精准度和稳定性,能够在不同温度条件下准确地反映出环境温度变化。
实验二:光敏传感器应用实验
在这个实验中,我们将光敏传感器应用于光控灯的设计中。
通过实验数据的采集和分析,我们发现光敏传感器能够准确感知环境光线的强弱,并将其转化为控制信号,从而实现了光控灯的自动开关。
这一实验结果表明了光敏传感器在节能环保领域中的重要应用价值。
实验三:压力传感器在工业领域中的应用
在这个实验中,我们将压力传感器应用于工业机械设备中,通过实验数据的采集和分析,我们发现压力传感器能够准确感知机械设备的工作压力,并将其转化为控制信号,从而实现了对机械设备的智能监控和控制。
这一实验结果表明了压力传感器在工业领域中的重要应用潜力。
通过以上一系列的实验,我们深入探究了传感器技术在不同领域中的应用和性
能表现,实验结果表明了传感器技术在现代科技发展中的重要作用和广阔前景。
我们相信,随着科技的不断进步,传感器技术将会在更多领域中得到广泛的应用,为人类社会的发展进步做出更大的贡献。
传感器应用举例及原理传感器是一种可以感知和测量某种物理量或环境参数的设备。
它可以将所测量的物理量转化为电信号或其他形式的输出信号,以便于被其他设备或系统处理和使用。
传感器被广泛应用于工业控制、智能家居、医疗设备、汽车电子等领域。
以下是几个传感器应用的举例及其工作原理:1. 温度传感器:温度传感器是最常见的传感器之一,它可以测量物体或环境的温度。
其中一个常见的例子是室内温度传感器,被广泛应用于智能家居系统中。
它的工作原理是基于温度对物质的影响,如电阻、压力或电磁放射等。
常见的温度传感器包括热敏电阻、热电偶和红外线温度传感器。
2. 压力传感器:压力传感器可以测量液体或气体的压力,常用于工业自动化、汽车电子等应用中。
汽车轮胎压力传感器是一个常见的例子,它可以检测轮胎的压力是否过低或过高。
工作原理通常是基于敏感元件的弯曲或拉伸来测量压力。
常见的压力传感器包括应变片、电容式压力传感器和压电传感器等。
3. 湿度传感器:湿度传感器可以测量空气中的湿度,常用于气象观测、农业、温室控制等领域。
一个例子是空调系统中的湿度传感器,它可以感知室内空气的湿度,从而控制空调系统的制冷或加湿。
工作原理通常是基于湿度对敏感材料的吸收或释放水分来进行测量。
常见的湿度传感器包括电容式湿度传感器和电阻式湿度传感器等。
4. 光学传感器:光学传感器可以检测光的吸收、散射、反射或发射等现象,广泛应用于光学仪器、机器人、安防系统等领域。
一个例子是红外线传感器,它可以感知物体是否存在,被广泛用于自动门、人体检测和反射型光电传感器等应用。
工作原理通常是基于光敏材料的电阻、电容或输出电压的变化。
常见的光学传感器包括光电传感器、光纤传感器和光电开关等。
5. 加速度传感器:加速度传感器可以测量物体的加速度、振动或冲击,常用于移动设备、运动控制和体感游戏等领域。
一个例子是手机中的加速度传感器,它可以感知手机的倾斜、旋转或摇动。
工作原理通常是基于质量与受力之间的关系,通过测量质量与加速度之间的变化来判断物体的运动状态。
传感器实验的实验总结传感器实验是一项重要的实验课程,在这个实验中我们学习了传感器的原理、应用及性能评估方法。
通过实际操作和数据分析,我们深入了解了传感器的工作原理、灵敏度、线性度和稳定性等指标。
以下是对这次实验的总结:首先,我们学习了传感器的基本原理。
传感器是将物理量转化为信号输出的设备,可以用于测量温度、压力、湿度等各种物理量。
在实验中,我们主要研究了温度传感器和压力传感器。
温度传感器通过测量热敏电阻的电阻值变化来反映温度的变化,而压力传感器则通过测量应变电桥的电位变化来反映压力的变化。
通过理论讲解和实际操作,我们对这两种传感器的工作原理有了更深刻的理解。
其次,我们学习了传感器的性能评估方法。
传感器的性能评估主要包括灵敏度、线性度和稳定性等指标。
灵敏度是指传感器输出信号的变化与输入物理量变化之间的比例关系,即单位输入物理量变化引起的传感器输出信号变化。
线性度是指传感器输出信号与输入物理量之间的直接关系,即传感器输出信号的线性与输入物理量之间的线性关系程度。
稳定性是指传感器输出信号在一定时间内是否能保持相对稳定,即输出信号的波动范围。
通过实验数据的采集和处理,我们计算了温度传感器和压力传感器的灵敏度、线性度和稳定性指标,并对结果进行了分析。
实验结果表明,我们选择的传感器性能较为稳定,能够满足实际应用的要求。
最后,我们学习了传感器的应用场景。
传感器在工业生产、环境监测、医疗健康等领域有着广泛的应用。
在实验中,我们以温度传感器和压力传感器为例,研究了它们在温度测量和压力测量中的应用。
温度传感器可以用于室内温度的监测,以及工业生产中的温度控制;压力传感器可以用于机械设备的压力检测,以及气体和液体的压力监测。
通过实验的实际操作和数据分析,我们对传感器的应用场景有了更加清晰的了解。
总的来说,这次传感器实验给我们提供了一个更深入理解传感器工作原理和应用的机会。
通过实际操作和数据分析,我们对传感器的性能评估方法有了更加深入的理解。
基本传感器实验报告传感器是一种能够感知环境中某种特定物理量并将其转化为可供人们观测或处理的信号的装置。
在现代科技发展中,传感器扮演着重要的角色,广泛应用于工业生产、医疗设备、汽车电子、智能家居等领域。
本实验旨在通过对基本传感器的实验,探究其工作原理和应用。
实验一,温度传感器。
温度传感器是一种能够感知环境温度并将其转化为电信号的装置。
我们选用了一款常见的NTC热敏电阻作为温度传感器,并通过连接电路和微处理器进行实验。
实验结果显示,随着环境温度的升高,NTC热敏电阻的电阻值呈现出明显的下降趋势,从而产生了与温度成反比的电信号。
这为温度传感器的工作原理提供了直观的验证。
实验二,光敏传感器。
光敏传感器是一种能够感知环境光照强度并将其转化为电信号的装置。
我们选用了一款光敏电阻作为光敏传感器,并通过搭建简单的光照实验装置进行实验。
实验结果显示,光敏电阻的电阻值随着光照强度的增加而呈现出明显的下降趋势,从而产生了与光照强度成正比的电信号。
这为光敏传感器的工作原理提供了直观的验证。
实验三,压力传感器。
压力传感器是一种能够感知环境压力并将其转化为电信号的装置。
我们选用了一款压阻式传感器作为压力传感器,并通过搭建简单的压力实验装置进行实验。
实验结果显示,压阻式传感器的电阻值随着受压程度的增加而呈现出明显的变化,从而产生了与压力大小成正比的电信号。
这为压力传感器的工作原理提供了直观的验证。
结论:通过本次实验,我们对基本传感器的工作原理有了更深入的了解。
温度传感器、光敏传感器和压力传感器分别能够感知环境的温度、光照强度和压力,并将其转化为电信号输出。
这些传感器在工业生产、环境监测、智能家居等领域有着广泛的应用前景。
通过不断地研究和实验,我们相信传感器技术将会在未来发展中发挥越来越重要的作用。
实验用压力传感器和温度传感器压力传感器和温度传感器是现代实验室中必不可少的设备之一。
在实验中,这些传感器可以被用于测量许多参数,包括流体压力、温度和湿度等。
首先,我们来谈一下压力传感器。
在工业化社会中,压力传感器得到了广泛的应用。
压力传感器可以检测许多不同类型的压力,包括气体、液体和压缩空气等。
在实验室中,常常需要测量流体中的压力,因此压力传感器也成为实验室必备的设备之一。
压力传感器的工作原理基于弹性变形原理。
当物体受到外力的作用时,会发生形变。
而弹性体可以在一定范围内保持其原始形状。
因此在监测物体的弹性变形时,就可以测量其所受到的力的大小。
常用的压力传感器包括石英晶体压力传感器、压电陶瓷压力传感器、微电子荧光压力传感器等。
除了测量压力外,温度传感器也是实验室中常用的设备之一。
温度传感器可以测量环境中的温度、物体表面的温度以及流体内部的温度等。
温度传感器的工作原理基于热电效应、电阻变化和半导体特性等原理。
常用的温度传感器有热电偶、温度电阻、红外线传感器等。
其中热电偶是一种利用热电效应来测量温度的传感器,它包括两种不同的金属,当它们接触时会产生电势差,这个电势差和温度的变化是成正比的。
温度电阻是另外一种常见的传感器,它通过测量电阻值来计算温度值。
温度电阻可以通过改变其电阻值来适应不同的温度值。
红外线传感器则是通过测量物体表面的辐射温度来计算温度的值。
在实验室中,压力传感器和温度传感器通常用于监测和控制环境变化。
比如在化学实验中,温度的变化可以影响到反应速度和反应产物的产生,因此在实验中需要对温度进行精确的测量和控制。
在机械实验中,需要测量机械部件所受到的力和压力,这时就需要用到压力传感器。
总之,实验室中的压力传感器和温度传感器是非常重要的设备。
它们可以帮助研究人员快速、准确地测量各种参数,为实验结果的细化和精确性提供了极大的帮助。
在使用这些传感器时,我们需要注意仪器的正确使用和保养,以确保其正常工作和精准度。
一、实验目的1. 了解各类传感器的基本原理、工作特性及测量方法。
2. 掌握传感器实验仪器的操作方法,提高实验技能。
3. 分析传感器在实际应用中的优缺点,为后续设计提供理论依据。
二、实验内容本次实验主要包括以下几种传感器:电容式传感器、霍尔式传感器、电涡流式传感器、压力传感器、光纤传感器、温度传感器、光敏传感器等。
1. 电容式传感器实验(1)实验原理:电容式传感器利用电容的变化来测量物理量,其基本原理为平板电容 C 与极板间距 d 和极板面积 S 的关系式C=ε₀εrS/d。
(2)实验步骤:搭建实验电路,将传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
2. 霍尔式传感器实验(1)实验原理:霍尔式传感器利用霍尔效应,将磁感应强度转换为电压信号,其基本原理为霍尔电压 U=KBIL。
(2)实验步骤:搭建实验电路,将霍尔传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
3. 电涡流式传感器实验(1)实验原理:电涡流式传感器利用涡流效应,将金属导体中的磁通量变化转换为电信号,其基本原理为电涡流电压 U=KfB。
(2)实验步骤:搭建实验电路,将电涡流传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
4. 压力传感器实验(1)实验原理:压力传感器利用应变电阻效应,将力学量转换为易于测量的电压量,其基本原理为应变片电阻值的变化与应力变化成正比。
(2)实验步骤:搭建实验电路,将压力传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
5. 光纤传感器实验(1)实验原理:光纤传感器利用光纤的传输特性,将信息传感与信号传输合二为一,其基本原理为光纤传输的损耗与被测物理量有关。
(2)实验步骤:搭建实验电路,将光纤传感器安装在实验台上,调整传感器与测量电路的连接,进行数据采集,分析传感器特性。
6. 温度传感器实验(1)实验原理:温度传感器利用电阻或热电偶的特性,将温度变化转换为电信号,其基本原理为电阻或热电偶的电阻或电动势随温度变化。
第五章 热学实验热学实验是大学物理实验中的重要内容。
在理想热学实验中,应遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。
我们的实验内容设计了对空气的比热容比进行测定。
5.1空气比热容比的测定气体的定压比热容与定容比热容之比称为气体的绝热指数,它是一个重要的热力学常数,在热力学方程中经常用到,本实验用新型扩散硅压力传感器测空气的压强,用电流型集成温度传感器测空气的温度变化,从而得到空气的绝热指数;要求观察热力学现象,掌握测量空气绝热指数的一种方法,并了解压力传感器和电流型集成温度传感器的使用方法及特性。
预习重点1.了解理想气体物态方程,知道理想气体的等温及绝热过程特征和过程方程。
2.预习定压比热容与定容比热容的定义,进而明确二者之比即绝热指数的定义。
3.认真预习实验原理及测量公式。
实验目的1.用绝热膨胀法测定空气的比热容比。
2.观测热力学过程中状态变化及基本物理规律。
3.了解压力传感器和电流型集成温度传感器的使用方法及特性。
实验原理理想气体的压强P 、体积V 和温度T 在准静态绝热过程中,遵守绝热过程方程:PV γ等于恒量,其中γ是气体的定压比热容P C 和定容比热容V C 之比,通常称γ=V P C C /为该气体的比热容比(亦称绝热指数)。
如图5.1.1所示,我们以贮气瓶内空气(近似为理想气体)作为研究的热学系统,试进行如下实验过程。
(1)首先打开放气阀A ,贮气瓶与大气相通,再关闭A ,瓶内充满与周围空气同温(设为0T )同压(设为0P )的气体。
(2)打开充气阀B ,用充气球向瓶内打气,充入一定量的气体,然后关闭充气阀B 。
此时瓶内空气被压缩,压强增大,温度升高。
等待内部气体温度稳定,即达到与周围温度平衡,此时的气体处于状态I (1P ,1V ,0T )。
(3)迅速打开放气阀A ,使瓶内气体与大气相通,当瓶内压强降至0P 时,立刻关闭放气阀A ,将有体积为ΔV 的气体喷泻出贮气瓶。
由于放气过程较快,瓶内保留的气体来不及与外界进行热交换,可以认为是一个绝热膨胀的过程。
在此过程后瓶中的气体由状态I (1P ,1V ,0T )转变为状态II (0P ,2V ,1T )。
2V 为贮气瓶容积,1V 为保留在瓶中这部分气体在状态I (1P ,0T )时的体积。
(4)由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温0T 为止,此时瓶内气体压强也随之增大为2P 。
则稳定后的气体状态为III (2P ,2V ,0T )。
从状态II →状态III 的过程可以看作是一个等容吸热的过程。
由状态I →II →III 的过程如图5.1.2所示。
图5.1.1 试验装置简图图5.1.2 气体状态变化及PV 图I →II 是绝热过程,由绝热过程方程得1102PV PV γγ= (5.1.1)状态I 和状态III 的温度均为T 0,由气体状态方程得1122PV PV = (5.1.2)合并式(5.1.1)、式(5.1.2消去V 1、V 2得10101212ln ln ln()ln ln ln()P P P P P P P P γ-==- (5.1.3) 由式(5.1.3)可以看出,只要测得0P 、1P 、2P 就可求得空气的绝热指数γ。
实验仪器一、FDNCD 型空气比热容比测定仪本实验采用的FDNCD 型空气比热容比测定仪由扩散硅压力传感器、AD590集成温度传感器、电源、容积为1000ml 左右玻璃瓶、打气球及导线等组成。
如图5.1.3、图5.1.4所示。
1.充气阀B2.扩散硅压力传感器3.放气阀A4.瓶塞5.AD590集成温度传感器6.电源 (详见图图5.1.3 FDNCD 空气比热容比测定仪5.1.4)7. 贮气玻璃瓶8.打气球1.压力传感器接线端口2.调零电位器旋钮3.温度传感器接线插孔4.四位半数字电压表面板(对应温度)5.三位半数字电压表面板(对应压强)1.AD590集成温度传感器AD590是一种新型的半导体温度传感器,测温范围为50˚C ~150˚C 。
当施加+4V ~+30V 的激励电压时,这种传感器起恒流源的作用,其输出电流与传感器所处的温度成线性关系。
如用摄氏度t 表示温度,则输出电流为0 I Kt I =+ (5.1.4)К=1μA/˚C 对于I 0,其值从273~278μA 略有差异。
本实验所用AD590也是如此。
AD590输出的电流I 可以在远距离处通过一个适当阻值的电阻R ,转化为电压U ,由公式I =U /R 算出输出的电流,从而算出温度值。
如图5.1.5。
若串接5KΩ电阻后,可产生5mV/˚C 的信号电压,接0~2V 量程四位半数字电压表, 最小可检测到0.02˚C 温度变化。
2.扩散硅压力传感器扩散硅压力传感器是把压强转化为电信号,最终由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
它显示的是容器内的气体压强大于容器外环境大气压的压强差值。
当待测气体压强为P 010.00KPa时,数字电压表显示为200mV ,仪器测量气体压强灵敏度为20mV/KPa ,测量精度为5Pa 。
图5.1.4 测定仪电源面板示意图图5.1.5 AD590电路简图可得测量公式:P 1=P 0U /2000 (5.1.5)其中电压U 的单位为mV ,压强P 1、P 0的单位为105Pa 二、气压计该气压计用来观测环境气压。
三、水银温度计实验内容1.打开放气阀A ,按图5.1.4连接电路,集成温度传感器的正负极请勿接错,电源机箱后面的开关拨向内。
用气压计测定大气压强0P ,用水银温度计测环境室温0T 。
开启电源,让电子仪器部件预热20分钟,然后旋转调零电位器旋钮,把用于测量空气压强的三位半数字电压表指示值调到“0”,并记录此时四位半数字电压表指示值0T U 。
2.关闭放气阀A ,打开充气阀B ,用充气球向瓶内打气,使三位半数字电压表示值升高到100mV ~150mV 。
然后关闭充气阀B ,观察T U 、1P U 的变化,经历一段时间后,T U 、1P U 指示值不变时,记下(1P U ,T U 此时瓶内气体近似为状态I (1P ,0T )。
注:T U 对应的温度值为T.3.迅速打开放气阀A ,使瓶内气体与大气相通,由于瓶内气压高于大气压,瓶内∆V 体积的气体将突然喷出,发出“嗤”的声音。
当瓶内空气压强降至环境大气压强0P 时(放气声刚结束立刻关闭放气阀A ,这时瓶内气体温度降低,状态变为II 。
4.当瓶内空气的温度上升至温度T 时,且压强稳定后,记下(2P U ,T U )此时瓶内气体近似为状态III (2P ,0T )。
5.打开放气阀A ,使贮气瓶与大气相通,以便于下一次测量。
6.把测得的电压值1P U 、2P U 、T U (以mV 为单位)填入如下数据表格,依公式(5.1.5)计算气压值、依(5.1.3)式计算空气的绝热指数γ值。
7.重复步骤2-4,重复3次测量,比较多次测量中气体的状态变化有何异同,并计算γ。
注意事项1.实验中贮气玻璃瓶及各仪器应放于合适位置,最好不要将贮气玻璃瓶放于靠桌沿处,以免打破。
2.转动充气阀和放气阀的活塞时,一定要一手扶住活塞,另一只手转动活塞,避免损坏活塞。
3.实验前应检查系统是否漏气,方法是关闭放气阀A ,打开充气阀B ,用充气球向瓶内打气,使瓶内压强升高1000Pa ~2000Pa 左右(对应电压值为20mV ~40mV ),关闭充气阀B ,观察压强是否稳定,若始终下降则说明系统有漏气之处,须找出原因。
4.做好本实验的关键是放气要进行的十分迅速。
即打开放气阀后又关上放气阀的动作要快捷,使瓶内气体与大气相通要充分且尽量快底完成。
注意记录电压值。
思考题1.本实验研究的热力学系统,是指那部分气体?2. 实验内容2中的T 值一定与初始时室温0T 相等吗?为什么?若不相等,对γ有何影响?3.实验时若放气不充分,则所得γ值是偏大还是偏小?为什么?讨论在上面的实验中,环境温度 (室温)假设为是恒值。
瓶中气体处于室温不变情况下而得出测量公式(5.1.3)。
实际测量中,室温是波动的,高灵敏度测温传感器观测时(如本实验所用的AD590,温度每变化0.02˚C ,电压变化0.1mV 这种变化很明显。
那么,P 1 ,P 2 值短时间内不易读取。
为了得出更细致的测量公式,让我们再回顾瓶内气体状态变化过程:设充气前室温为0T ,充气后,瓶内气体平衡时室温为0T ',气体状态为I(1P ',1V ',0T ')放气后,绝热膨胀,气体状态为II (0P ,2V ,1T '等容吸热瓶内气体平衡时室温为0T '',气体状态变为III (2P ',2V ,0T ''其中2V 为贮气瓶容积,1V '为保留在瓶中这部分气体在状态I (1P ',0T ')时的体积。
瓶内气体状态变化为:I (1P ',1V ',0T ') II (0P ,2V ,1T ') III (2P ',2V ,0T '')I →II 是绝热过程,由绝热过程方程得1102()P V PV γγ''=I 、 III 两状态,由理想气体状态方程得110P V nRT '''= 220P V nRT '''=n 为气体的摩尔数,R 为气体的普适常数合并上三式,消去V 1、V 2得101020ln()ln()P P P T P T γ'=''''' (5.1.6) 由式(5.1.6)可知,只要测得1P '、0P 、2P '、0T '、0T ''就可求得空气的γ。
很显然,用现有仪器只能得出0T '、0T ''的粗略值,那么用公式(5.1.6)将毫无意义。
为了得出温度的较精确而直观值,需要解决这样两个问题:1.定出测量公式(5.1.4)中的I 0具体值;2.把温度传感器改装成为真正的数字温度计。
绝热膨胀等容吸热。