《特殊平行四边形》基础训练
- 格式:doc
- 大小:71.00 KB
- 文档页数:4
第十九章特殊平行四边形练习题题一:以下说法中,正确的选项是( )A.对角线相互垂直且相等的四边形是正方形B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线必然相互垂直题二:如图,四边形ABCD中,AB∥CD.那么以下说法中,不正确的选项是( )A.当AB=CD,AO=DO时,四边形ABCD为矩形B.当AB=AD,AO=CO时,四边形ABCD为菱形C.当AD∥BC,AC=BD时,四边形ABCD为正方形D.当AB≠CD,AC=BD时,四边形ABCD为等腰梯形题三:如图,已知四边形ABCD中,E、F、G、H别离为AB、BC、CD、DA的中点,题四:①求证:四边形EFGH是平行四边形.题五:②探索下列问题,并选择一个进行证明.题六:a.原四边形ABCD的对角线AC、BD知足________时,四边形E FGH是矩形.题七:b.原四边形ABCD的对角线AC、BD知足________时,四边形EFGH是菱形.题八:c.原四边形ABCD的对角线AC、BD知足________时,四边形EFGH是正方形.题九:如下图,在△ABC中,别离以AB、AC、BC为边在BC的同侧作等边△ABD,等边△ACE、等边△BCF.(1)求证:四边形DAEF是平行四边形;(2)探究下列问题:(只填满足的条件,不需证明)①当△ABC知足_________条件时,四边形DAEF是矩形;②当△ABC知足_________条件时,四边形DAEF是菱形;③当△ABC知足_________条件时,以D、A、E、F为极点的四边形不存在.题十:如下图,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.题十一:(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;题十二:(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?什么缘故?题十三:(3)若四边形AECF是矩形,试判定四边形ABCD是不是为矩形,没必要写理由.题十四:如图,任意四边形ABCD,对角线AC、BD交于O点,过各极点别离作对角线AC、BD的平行线,四条平行线围成一个四边形EFGH.试想当四边形ABCD的形状发生改变时,四边形EFGH 的形状会有哪些转变?完成以下题目:题十五:(1)①当ABCD为任意四边形时,EFGH为___________;题十六:②当ABCD为矩形时,EFGH为___________;③当ABCD为菱形时,EFGH为___________;④当ABCD为正方形时,EFGH为___________;(2)请对(1)中①②你所写的结论进行证明.(3)反之,当用上述方法所围成的平行四边形EFGH别离是矩形、菱形时,相应的原四边形ABCD必需知足如何的条件?题十七:如图,在矩形ABCD中,M、N别离是AD、BC的中点,P、Q别离是BM、DN的中点.题十八:(1)求证:△MBA≌△NDC;题十九:(2)四边形MPNQ是什么样的特殊四边形?请说明理由.题二十:在折纸这种传统手工艺术中,包括许多数学思想,咱们能够通过折纸取得一些特殊图形.把一张正方形纸片依照图①~④的进程折叠后展开.(1)猜想四边形ABCD是什么四边形;(2)请证明你所得到的数学猜想.题二十一:如图,在梯形ABCD中,AD∥BC,AD=5cm,BC=8cm,M是CD的中点,P是BC边上的一动点(P与B,C不重合),连接PM并延长交AD的延长线于Q.题二十二:(1)试说明△PCM≌△QDM;题二十三:(2)当P在B、C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.题二十四:如图,矩形ABCD中,AB=5cm,BC=10cm,动点M从点D动身,按折线D-C-B方向以2cm/s的速度运动,动点N从点D动身,沿DA方向以1cm/s的速度向点A运动.动点M、N 同时动身,当一个点抵达终点时,另一个点也随即停止运动.题二十五:(1)若点E在线段BC上,且BE=4cm,通过几秒钟,点A、E、M、N组成平行四边形?题二十六:(2)动点M、N在运动的进程中,线段MN是不是通过矩形ABCD的两条对角线的交点?若是线段MN过此交点,请求出运动的时刻;若是线段MN只是此交点,请说明理由.题二十七:如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD= 4,∠ABC=∠DCB,求BC的长.题二十八:已知:如图,四边形ABCD中,AD∥BC,AB= 4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.特殊平行四边形课后练习参考答案题一:C.详解:A.对角线相互垂直且相等的四边形不能判定正方形,故本选项错误;B.对角线互相平分的四边形是平行四边形,故本选项错误;C.四边相等的四边形是菱形,故本选项正确;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选C.题二:C.详解:选项A的结论正确,AB=CD可判定为平行四边形,AO=DO可判定对角线相等,故是矩形;选项B的结论正确,AB=AD可判定△ABD为等边三角形,AO=CO可判定△CDB也为等边三角形,故是菱形;选项C的结论错误,判定结果为矩形,不必然是正方形;选项D的结论正确,对角线相等的梯形是等腰梯形;故选C.题三:见详解.详解:①连接AC,BD,∵四边形ABCD中,E、F、G、H别离为AB、BC、CD、DA的中点,∴EH∥BD,FG∥BD,∴EH∥FG,同理:GH∥EF,∴四边形EFGH是平行四边形.②a.当AC⊥BD时,四边形EFGH是矩形.∵由①得:四边形MONH是平行四边形,∴当AC⊥BD时,四边形MONH是矩形,∴∠EH G=90°,∴四边形EFGH是矩形.b.当AC=BD时,四边形EFGH是菱形.∵HG=12AC,EH=12BD,∴EH=GH,∴四边形EFGH是菱形;c.由a与b可得:原四边形ABCD的对角线AC、BD知足AC⊥BD且AC=BD时,四边形EFGH是正方形.故答案为:a.AC⊥BD,b.AC=BD,c.AC⊥BD且AC=BD.题四:见详解.详解:(1)∵△ABD和△FBC都是等边三角形,∴BD=BA,BF=BC,∠DBA=∠FBC=60°,∴∠DBA-∠FBA=∠FBC-∠FBA,∴∠DBF=∠ABC.在△ABC和△DBF中,BA=BD,∠ABC=∠DBF,BC=BF,∴△ABC≌△DBF.∴AC=DF=AE.同理△ABC≌△EFC.∴AB=EF=AD.∴四边形ADFE是平行四边形.(2)当∠BAC=150°,∠DAE=360°-60°-60°-150°=90°,∴平行四边形DAEF是矩形.当AB=AC≠BC,有AD=AE,∴平行四边形DAEF是菱形.当∠BAC=60°,△FBC与△ABC重合,故以D、A、E、F为极点的四边形不存在.题五:见详解.详解:连AC,设AC、BD相交于点O,(1)∵四边形AECF是平行四边形,∴OE=OF,OA=OC,∵BE=FD,∴OB=OD.∴四边形ABCD是平行四边形;(2)∵四边形AECF是菱形,∴OE=OF,OA=OC,AC⊥BD.∵BE=FD,∴OB=OD.∴四边形ABCD是菱形;(3)四边形ABCD不是矩形.题六:见详解.详解:(1)平行四边形;菱形;矩形;正方形;(2)结合图形,联想特殊四边形的特点及识别很容易发觉,其中的桥梁为AC、BD.①当ABCD为任意四边形时,EFGH为平行四边形.∵EH∥AC∥FG,EF∥BD∥GH,∴四边形EFGH为平行四边形.②若ABCD为矩形,那么EFGH为菱形.∵EH∥AC∥FG,EF∥BD∥GH.∴四边形EACH,ACGF,EFBD,BDHG,EFGH均为平行四边形.∴EH=AC=FG,EF=BD=GH.∵四边形ABCD为矩形.∴AC=BD.∴EH=AC=FG=EF=BD=GH.∴四边形EFGH为菱形.(3)当平行四边形EFGH是矩形时,四边形ABCD必需知足:对角线相互垂直.当平行四边形EFGH是菱形时,四边形ABCD必需知足:对角线相等.题七:见详解.详解:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N别离是AD、BC的中点,∴AM=12AD,CN=12BC,∴AM=CN,在△MAB和△NDC中,∵AB=CD,∠A=∠C=90°,AM=CN,∴△MBA≌△NDC;(2)四边形MPNQ是菱形.理由如下:连接AP,MN,那么四边形ABNM是矩形,∴AN和BM相互平分,那么A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q别离是BM、DN的中点,∴PM=NQ,∵DM=BN,DQ=BP,∠MDQ=∠NBP,∴△MQD≌△NPB,∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=12AN,∴MQ=12BM,∵MP=12BM,∴MP=MQ,∴平行四边形MQNP是菱形.题八:见详解.详解:(1)四边形ABCD是菱形;(2)∵△AMG沿AG折叠,使AM落在AC上,∴∠MAD=∠DAC=12∠MAC,同理可得∠CAB=∠NAB=12∠CAN,∠DCA=∠MCD=12∠ACM,∠ACB=∠NCB=12∠ACN,∵四边形AMCN是正方形,∴∠MAC=∠MCA=∠NAC=∠NCA,∴∠DAC=∠BAC=∠BCA=∠DCA,∴AD∥BC,AB∥DC,∴四边形ABCD为平行四边形,∵∠DAC=∠DCA,∴AD=CD,∴四边形ABCD为菱形.题九:见详解.详解:(1)∵AD∥BC,∴∠QDM=∠PCM,∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,∴△PCM≌△QDM;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC-CP=AD+QD,∴8-CP=5+CP,∴CP=(8-5)÷2=,∴当PC=时,四边形ABPQ是平行四边形.题十:见详解.详解:(1)∵点N只在AD上运动,∴当点M运动到BC边上的时候,点A、E、M、N才可能组成平行四边形,即<t<,设经过t秒,四点可组成平行四边形.分两种情形:①当M点在E点右边,如图:此时AN=EM,那么四边形AEMN是平行四边形,∵DN= t,CM=2t -5,∴AN=10- t,EM=10- 4-(2t -5),∴10- t =10- 4-(2t -5),解得:t =1,∵<t<,∴t =1舍去;②当M点在B点与E点之间,如图,那么MC=2t -5,BM=10-(2t -5)=15-2t,∴ME= 4-(15-2t)=2t -11,2t-11=10-t,解得t =7,现在符合,∴当t =7秒时,点A、E、M、N组成平行四边形;(2)动点M、N在运动的进程中,线段MN能通过矩形ABCD的两条对角线的交点,现在M在BC上,如图,∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∴∠NAO=∠MCO,在△ANO和△CMO中,∠NAO=∠MCO,AO=OC,∠AON=∠COM,∴△ANO≌△CMO(ASA),∴AN=CM,设N运动的时刻是t秒,那么10-t=2t -5,解得:t =5,即动点M、N在运动的进程中,线段MN能通过矩形ABCD 的两条对角线的交点,现在运动的时刻是5秒.题十一:8.详解:∵AD∥BC,∠A=120°,∴∠ABC=180°-120°=60°,∵BD平分∠ABC,∴∠DBC=12∠ABC=12×60°=30°,又∵∠ABC=∠DCB=60°,∴∠BDC=180°-30°-60°=90°,∴BC=2CD=2×4=8.题十二:18.详解:过D作DE∥AB,交CB于E点,又∵AD∥CB,∴四边形ABED是平行四边形,∴EB=AD=3,DE=AB=4,∵CB=6,∴EC=BC-BE=6-3=3,∵CD=5,∴CD2=DE2+CE2,∴△DEC是直角三角形,∴∠DEC=90°,∴四边形ABCD的面积是:12(AD+CB)•DE=12(3+6)×4=18.。
特殊平行四边形习题(含答案)特殊平行四边形习题一、选择题1.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于( )A.20B.15C.10D.5答案 B ∵四边形ABCD是菱形,∴AB=BC,AB∥CD,∴∠B+∠BCD=180°,∴∠B=180°-∠BCD=180°-120°=60°,∴△ABC是等边三角形,故△ABC的周长=3AB=15.2.如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AC=BDD.AB=BC答案 C 可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形,故选C.3.已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE 的长为( )A.6cmB.4cmC.3cmD.2cm答案 C 因为菱形的四条边相等且对角线互相垂直平分,所以可以由OE∥DC证得点E是BC 的中点,此时利用三角形的中位线或直角三角形斜边上中线的性质都可以求得OE的长为3 cm.4.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O.当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )A.6.5B.6C.5.5D.5答案 C 设AE=x,则EB=8-x,∵四边形ABCD是菱形,AE=AF,EG∥AD,FH∥AB,∴四边形AEOF和四边形OHCG都是菱形.∵四边形AEOF与四边形CGOH的周长之差为12,∴4x-4(8-x)=12,解得x=5.5.故选C.5.如图,将一个长为10cm,宽为8cm的矩形纸片先按照从左向右对折,再按照从下向上的方向对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下(如图1-4-5①),再打开,得到如图1-4-5②所示的小菱形的面积为( )A.10cm2B.20cm2C.40cm2D.80cm2答案 A 由题意可得AC=5cm, BD=4cm,故小菱形的面积为×4×5=10(cm2).故选A.6.如图,正方形ABCD中,E、F是对角线AC上两点,连接BE、BF、DE、DF,则添加下列条件:①∠ABE=∠CBF;②AE=CF;③AB=AF;④BE=BF.可以判定四边形BEDF是菱形的条件有( )A.1个B.2个C.3个D.4个答案 C 连接BD,交AC于点O,在正方形ABCD中,AB=BC,∠BAC=∠ACB,AC⊥BD,OB=OD,①在△ABE与△CBF中,∴△ABE≌△CBF(ASA),∴AE=CF,∵OA=OC,∴OE=OF,又∵AC⊥BD,∴四边形BEDF是菱形,故①正确.②正方形ABCD 中,OA=OB=OC=OD,∵AE=CF,∴OE=OF,又EF⊥BD,BO=OD,∴四边形BEDF是菱形,故②正确.③由AB=AF不能推出四边形BEDF其他边的关系,故不能判定它是菱形,故③错误.④在正方形ABCD 中,OA=OC=OB=OD,AC⊥BD,∵BE=BF,EF⊥BD,∴OE=OF,∴四边形BEDF是菱形,故④正确.故选C.7.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E、F为垂足,AE=ED,则∠EBF等于( )A.75°B.60°C.50°D.45°答案 B 连接BD.因为BE⊥AD,AE=ED,所以AB=BD.又因为AB=AD,所以△ABD是等边三角形,所以∠A=60°,所以∠ADC=120°.在四边形BEDF 中,∠EBF=360°-∠BED-∠BFD-∠ADC=360°-90°-90°-120°=60°,故选B.8.如图所示,矩形纸片ABCD中,AB=6cm, BC=8cm,现将其沿EF对折,使得点C与点A重合,则AF长为( )A .cm B.cm C.cm D.8cm答案 B 设AF=x cm,则D'F=DF=(8-x)cm,在Rt△AFD'中,(8-x)2+62=x2,解得x=.9.如图所示,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为( )A.15°或30°B.30°或45°C.45°或60°D.30°或60°答案 D 画出所剪的图形示意图如图.∵四边形ABCD是菱形,∴∠ABD=∠ABC,∠BAC=∠BAD,AD∥BC,∵∠BAD=120°,∴∠ABC=180°-∠BAD=180°-120°=60°,∴∠ABD=30°,∠BAC=60°.∴剪口与第二次折痕所成的角的度数应为30°或60°.故选D.10.如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S△AOB=S四边形DEOF,其中正确的有( )A.4个B.3个C.2个D.1个答案 B ∵四边形ABCD为正方形,∴AB=AD=DC,∠D=∠BAD=90°,∵CE=DF,∴DE=AF,∴△DEA≌△AFB,∴AE=BF,∠DEA=∠AFB,又∠DEA+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF.由△DEA≌△AFB得S△DEA=S△AFB,∴S△DEA-S△AOF=S△AFB-S△AOF,∴S△AOB=S四边形DEOF,所以正确的是(1)(2)(4),共3个,故选B.二、填空题11.如图,菱形ABCD中,对角线AC、BD相交于点O,不添加任何辅助线,请添加一个条件,使四边形ABCD是正方形(填一个即可).答案AC=BD(答案不唯一)12.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.答案20解析在Rt△ABC中,由勾股定理易得AC=13,由矩形的性质得AO=BO=AC=,而OM是△ACD 的中位线,所以OM=CD=,所以四边形ABOM的周长为AB+BO+OM+AM=5+++6=20.13.如图,已知矩形ABCD的对角线AC与BD相交于点O,若AO=1,那么BD= .答案2解析∵在矩形ABCD中,AC与BD相交于点O,AO=1,∴AO=CO=BO=DO=1,∴BD=2.14.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.答案3解析∵AE垂直平分OB,AB=3,∴AB=AO=3,∵四边形ABCD是矩形,∴BO=AO=3,∴BD=2BO=6,∴AD===3.15.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是(写出一个即可).答案CB=BF(或BE⊥CF或∠EBF=60°或BD=BF等,答案不唯一)解析由已知得CB∥EF,CB=EF,∴四边形CBFE是平行四边形.因此可以添加CB=BF;BE⊥CF;∠EBF=60°;BD=BF等,都能说明四边形CBFE是菱形.16.如图,正方形ABCO的顶点C,A分别在x轴,y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是.答案(2+,1)解析过点D作DF⊥x轴,垂足为F,在正方形ABCO中,∠BCO=90°,所以∠BCF=90°,在菱形BDCE中,BD=DC,又因为∠D=60°,所以△BCD是等边三角形,因为BC=2,所以CD=2,又∠BCD=60°,所以∠DCF=30°,在Rt△DCF中,因为∠DCF=30°,CD=2,所以DF=CD=1,由勾股定理得CF=,所以OF=OC+CF=2+,所以点D的坐标为(2+,1).17.如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.答案13解析连接BE,EF,FD,AC,∵菱形、正方形为轴对称图形,对角线所在直线是其对称轴,∴B,E,F,D在同一条直线上,∵S正方形AECF=AC·EF=AC2=50cm2,∴AC=10cm,∵S菱形ABCD=AC·BD=120cm2,∴BD=24cm.设AC,BD的交点为O,由菱形的性质可得AC⊥BD,AO=5cm,OB=12 cm,∴AB===13cm.18.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.答案3解析设AC与EG相交于点O,∵四边形ABCD是菱形,∠BAD=120°,∴∠EAC=∠DAC=60°,∠B=60°,AB=BC.∴△ABC是等边三角形.又∵AB=6,∴△ABC的面积为18.∴菱形ABCD的面积为36,∵EG⊥AC,∴∠AOE=∠AOG=90°.∴∠AGE=90°-60°=30°.∵△BEF与△GEF关于直线EF对称,点B的对称点是点G,∴∠EGF=∠B=60°,∴∠AGF=∠EGF+∠AGE=90°.∴FG⊥AD,∴FG===3.三、解答题19.如图,在菱形ABCD中,对角线AC、BD相交于点O,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求△ADE的周长.答案(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴AE∥CD,∠AOB=90°,又∵DE⊥BD,即∠EDB=90°,∴∠AOB=∠EDB.∴DE∥AC.∴四边形ACDE是平行四边形.(2)∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,DO=3,∴AD=CD==5.又∵四边形ACDE是平行四边形,∴AE=CD=5,DE=AC=8.∴△ADE的周长为AD+AE+DE=5+5+8=18.20.如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.答案(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF.(2)四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.21.如图,在正方形ABCD中,点E、F分别在边AB、BC上,∠ADE=∠CDF.(1)求证:AE=CF;(2)连接DB交EF于点O,延长OB至点G,使OG=OD,连接EG、FG,判断四边形DEGF是否为菱形,并说明理由.答案(1)证明:在正方形ABCD中,AD=CD,∠A=∠C=90°,在△ADE和△CDF中,∴△ADE≌△CDF(ASA),∴AE=CF.(2)四边形DEGF是菱形.理由如下:在正方形ABCD中,AB=BC,∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴BD垂直平分EF,∴OE=OF,又∵OG=OD,∴四边形DEGF为平行四边形,∵△ADE≌△CDF,∴DE=DF,∴四边形DEGF是菱形.22.如图,AB∥CD,点E、F分别在AB、CD上,连接EF.∠AEF、∠CFE的平分线交于点G,∠BEF、∠DFE的平分线交于点H.(1)求证:四边形EGFH是矩形;(2)小明在完成(1)的证明后继续进行了探索.过G作MN∥EF,分别交AB、CD于点M、N,过H 作PQ∥EF,分别交AB、CD于点P、Q,得到四边形MNQP.此时,他猜想四边形MNQP是菱形.请在下列框图中补全他的证明思路.答案(1)证明:∵EH平分∠BEF,∴∠FEH=∠BEF.∵FH平分∠DFE,∴∠EFH=∠DFE.∵AB∥CD,∴∠BEF+∠DFE=180°,∴∠FEH+∠EFH=(∠BEF+∠DFE)=×180°=90°,又∠FEH+∠EFH+∠EHF=180°,∴∠EHF=180°-(∠FEH+∠EFH)=180°-90°=90°.同理可证,∠EGF=90°.∵EG平分∠AEF,∴∠FEG=∠AEF.∵EH平分∠BEF,∴∠FEH=∠BEF.∵点A、E、B在同一条直线上,∴∠AEB=180°,即∠AEF+∠BEF=180°.∴∠FEG+∠FEH=(∠AEF+∠BEF)=×180°=90°,即∠GEH=90°.∴四边形EGFH是矩形.(2)本题答案不唯一,下面答案供参考.例如,FG平分∠CFE;GE=FH;∠GME=∠FQH;∠GEF=∠EFH.23.已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD 的中点时,有:①AF=DE;②AF⊥DE成立.试探究下列问题:(1)如图①,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”,不需要证明)(2)如图②,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图③,在(2)的基础上,连接AE和EF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.答案(1)成立.(2)仍然成立.证明:∵四边形ABCD为正方形,∴AD=DC,∠BCD=∠ADC=90°.在△ADF和△DCE中,∴△ADF≌△DCE(SAS),∴AF=DE,∠FAD=∠EDC,∵∠ADG+∠EDC=90°,∴∠ADG+∠DAF=90°,∴∠AGD=90°,即AF⊥DE.(3)四边形MNPQ是正方形.证明:如图,设MQ,DE分别交AF于点G,O,PQ交DE于点H,∵点M,N,P,Q分别为AE,EF,FD,AD的中点,∴MQ=PN=DE,PQ=MN=AF,MQ∥DE,PQ∥AF,∴四边形OHQG是平行四边形,∵AF=DE,∴MQ=PQ=PN=MN,∴四边形MNPQ是菱形,∵AF⊥DE,∴∠AOD=90°,∴∠HQG=∠AOD=90°,∴四边形MNPQ是正方形.人教版八年级数学下册第十八章平行四边形单元检测卷一、选择题1.如图,在平行四边形ABCD中,下列结论中错误的是( )A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC=BC2.如图,▱ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( )A.10B.14C.20D.223.四边形ABCD中,对角线AC,BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )A.3种B.4种C.5种D.6种4.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.165.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC至F,使CF=BC,若AB=10,则EF的长是( )A.5B.4C.3D.26.下列命题中正确的是( )A.两条对角线相等的平行四边形是矩形B.有三个角是直角的多边形是矩形C.两条对角线相等的四边形是矩形D.有一个角是直角的四边形是矩形7.如图,菱形ABCD的周长为20,一条对角线AC的长为8,另一条对角线BD的长为( )A.16B.12C.6D.48.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )A.4B.6C.8D.109.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=( )A.30°B.45°C.22.5°D.135°10.如图,直线EF经过矩形ABCD对角线的交点O,分别交AB、CD于点E、F,那么图中阴影部分的面积是矩形ABCD的面积的( )A. B. C. D.二、填空题11.如图,平行四边形ABCD的周长为20,对角线AC的长为5,则△ABC的周长为.12.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件: ,使四边形AECF是平行四边形(只填一个即可).13.如图,在矩形ABCD中,对角线AC、BD相交于点O,直线EF是OA的中垂线,分别交AD、OA 于点E、F.若AB=6 cm,BC=8 cm,则△DEO的周长= cm.14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.15.如图,在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的一动点,则PE+PC的最小值是.16.如图所示,平行四边形ABCD中,对角线AC,BD相交于点O,过点O的直线分别交AD、BC于点M、N,若△CON的面积为2,△DOM的面积为4,则△AOB的面积为.三、解答题17.如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB,求证:△AEF≌△DFC.18.如图,四边形ABCD是平行四边形,DE平分∠ADC,交AB于点E,BF平分∠ABC,交CD于点F.(1)求证:DE=BF;(2)连接EF,写出图中所有的全等三角形.(不要求证明)19.在矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE,垂足为F,求证:DF=DC.20.如图,在▱ABCD中,E、F为BC上的两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是矩形.21.已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.(1)求证:四边形AODE是矩形;(2)若AB=6,∠BCD=120°,求四边形AODE的面积.22.如图,在直角梯形纸片ABCD中,AB∥DC,∠A=90°,CD>AD,将纸片沿过点D的直线折叠,使点A落在边CD上的点E处,折痕为DF.连接EF并展开纸片.求证:四边形ADEF是正方形.23.在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.参考答案1-10 DBBDA ACCCB11.1512.答案不唯一,如AF=CE13.1314.415.1316.617.证明∵四边形ABCD是平行四边形,∴AB=CD且AB∥CD,∴∠EAF=∠ADC,又∵AF=AB,BE=AD,∴AF=CD,AE=DF,在△AEF和△DFC中,∴△AEF≌△DFC.18.(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理,CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF.(2)△ADE≌△CBF,△DFE≌△BEF.19.证明∵四边形ABCD是矩形,∴AB=CD,AD∥BC,∠B=90°.∵DF⊥AE,∴∠AFD=∠B=90°.∵AD∥BC,∴∠DAE=∠AEB,又∵AD=AE,∴△ADF≌△EAB,∴DF=AB,∴DF=DC.20.证明(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∴△ABF≌△DCE(SSS).(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴四边形ABCD是矩形.21.(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,即∠AOD=90°,∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵∠AOD=90°,∴▱AODE是矩形.(2)∵四边形ABCD是菱形,∴AO=OC=AC,BO=OD,AB=BC,AB∥CD,∴∠ABC+∠BCD=180°,∵∠BCD=120°,∴∠ABC=60°,∴△ABC是等边三角形.∴AC=AB=6,∴OA=3.在Rt△ABO中,由勾股定理得BO=3,∴DO=3,∴S矩形AODE=AO·DO=3×3=9.22.证明∵△DEF由△DAF折叠得到,∴∠DEF=∠A=90°,DA=DE,∵AB∥CD,∴∠ADE=180°-∠A=90°.∵∠DEF=∠A=∠ADE=90°,∴四边形ADEF是矩形.又∵DA=DE,∴四边形ADEF是正方形.23.证明(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴EB=DF,又∵DF∥EB,∴四边形DEBF是平行四边形,又∵DF=BF,∴四边形DEBF为菱形.人教版八年级下册第十八章平行四边形单元测试含答案一、选择题1、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形 B.每组邻边都相等的四边形是菱形C.对角线互相垂直的平行四边形是正方形 D.四个角都相等的四边形是矩形2、如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是A.1 B. 2 C.3 D.43、如图,将长方形ABCD沿AE折叠,使点D落在BC边上的点F,若∠BAF = 60°,则∠DAE = ()(A)15°(B)30°(C)45°(D)60°4、在□ABCD中,AB=3,BC=4,当□ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③ B.①②④ C.②③④ D.①③④5、四边形ABCD的对角线AC、BD相交于点O.下列条件中,能判断四边形ABCD是平行四边形的是()A.AD=BC,AB∥CD B.AO=CO,AD=BCC.AD∥BC,∠ADC=∠ABC D.AD=BC,∠ABD=∠CDB6、如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )A.4.8 B.3.6 C.2.4 D.1.27、如图,在矩形COED中,点D的坐标是(1,2),则CE的长是()A. B.2 C. D.8、如图,正方形ABCD的边长为1,则正方形ACEF的面积为()A. 2B. 3C. 4D. 5二、填空题9、已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x= .10、如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE 的周长为 ______ .11、如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.12、如图,矩形中,、交于点,,平分交于点,连接,则。
书山有路勤为径;学海无涯苦作舟初三数学基础训练《特殊平行四边形》初三数学基础训练《特殊平行四边形》1.(1 分)矩形的对角线相交构成的钝角为120 度,短边等于5cm,则对角线的长为. 2. (1 分)菱形的面积为24cm2,边长为5cm,则该菱形的对角线长分别为. 3.(2 分)已知中对角线AC 的垂直平分线交AD 于点F,交BC 于点E. 求证:四边形AECF 是菱形. 证明:∵EF 是AC 的垂直平分线(已知) ∴ 四边形AECF 是菱形(对角线互相垂直平分的四边形是菱形). 老师说小明的解答不正确⑴你能找出小明错误的原因吗?请你指出来. ⑵请你给出本题的证明过程. 4.(3 分)如图,四边形ABCD 是一个正方形. ⑴请你在平面内找到一个点O,并连接OA、OB、OC、OD 使得到△OAB、△BOC、△COD、△OAD 都是等腰三角形. ⑵这样的点,你能找到多少个? ⑶试写出你找到的等腰三角形的顶角的度数. 5.(5 分)已知,对角线AC、BD 相交于点O. ⑴若AB=BC,则是. ⑵若AC=BD,则是. ⑶若∠BCD=90 度,则是. ⑷若OA=OB,且OA⊥OB,则是. ⑸若AB=BC,且AC=BD,则是. 6.(2 分)如图,已知AE 是正方形ABCD 中∠BAC 的平分线,AE 交BD、BC于点E、F,AC、BD 相交于点O. 求证:OF=CE. 综合创新应用题(共14 分) 1.(2 分)⑴四年一度的国际数学家大会于2002 年8 月20 日在北京召开,大会会标如图1 所示.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13.每个直角三角形两直角边的和为5,求中间小正方形的面积. ⑵现在一张长为6.5,宽为2 的纸片,如图2,请你将它分割成6 块,再拼合成一个正方形.(要求:先在图2 中画出分割线,再画出拼成的正方形草图并标明相应数据) 2.(3 分)请你画出把下列矩形的面积两等分的直线,并且根据你所画的直线回答下列问题. ⑴在一个矩形中,把此矩形今天的努力是为了明天的幸福。
特殊的平行四边形练习题(50题)菱形、矩形、正方形一、单选题(共18题;共36分)1.下列条件中,能判定一个四边形为矩形的条件是( )A. 对角线互相平分的四边形B. 对角线相等且平分的四边形C. 对角线相等的四边形D. 对角线相等且互相垂直的四边形【答案】B【解析】【解答】解:A、对角线互相平分的四边形是平行四边形,故A不符合题意;B、对角线相等且平分的四边形是矩形,故B符合题意;C、对角线相等的四边形不是矩形,故C不符合题意;D、对角线相等且互相垂直的四边形不是矩形,故D不符合题意.故答案为:B.【分析】根据矩形的判定方法,逐项进行判断,即可求解2.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HNMO均为矩形,设BC=a ,EF=b ,NH= c ,则下列各式中正确的是()A. a > b > cB. a =b =cC. c > a > bD. b > c > a【答案】B【解析】【解答】解:连接OA、OD、OM,如图所示:则OA=OD=OM,∵四边形ABOC、DEOF、HNMO均为矩形,∴OA=BC=a,OD=EF=b,OM=NH=c,∴a=b=c;故答案为:B.【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的对角线相等得出OA=BC=a,OD=EF=b,OM=NH=c,再由同圆的半径相等即可得出a=b=c.3.如图,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是( )A. 1B. 2C.D.【答案】 D【解析】【解答】解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∴AD=BD,∵AE=BE=AB=1,∴DE⊥AB,在Rt△ADE中,DE=,∴ PE+PB的最小值是.故答案为:D.【分析】连接DE交AC于P,连接BD,BP,根据菱形的性质得出B、D关于AC对称,得出DE就是PE+PB 的最小值,根据等边三角形的判定与性质得出DE⊥AB,再根据勾股定理求出DE的长,即可求解.4.若正方形的对角线长为2 cm,则这个正方形的面积为()A. 4B. 2C.D.【答案】B【解析】【解答】解:设正方形的边长为xcm,根据题意得:x2+x2=22,∴x2=2,∴正方形的面积=x2=2(cm2).故答案为:B.【分析】设正方形的边长为xcm,利用勾股定理列出方程,求出x2=2,即可求出正方形的面积为2.5.如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,OH=4,则菱形ABCD的面积为()A. 72B. 24C. 48D. 96【答案】C【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥BD,∵DH⊥AB,∴∠BHD=90°,∴BD=2OH,∵OH=4,∴BD=8,∵OA=6,∴AC=12,∴菱形ABCD的面积= AC•BD=×12×8=48.故答案为:C.【分析】根据菱形的性质得O为BD的中点,再由直角三角形斜边上的中线等于斜边的一半,得BD的长度,最后由菱形的面积公式求得面积.6.将一张长方形纸片折叠成如图所示的形状,则∠ABC等于( )A. 73°B. 56°C. 68°D. 146°【答案】A【解析】【解答】如图,∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,由折叠的性质可得∠ABC=∠ABE= ∠CBE=73°.故答案为:A【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE= ∠CBE,可得出∠ABC的度数.7.如图,已知矩形AOBC的顶点O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A. (4,1)B. (4,)C. (4,)D. (4,)【答案】B【解析】【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H,如图,由题意可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,设GB=GH=x,由S△OBC=×3×4=×5×x+ ×4×x,解得:x=,∴G(4,).故答案为:B.【分析】根据勾股定理可得OC的长,作GH⊥OC于H,根据角平分线的性质可得GB=GH,然后利用面积法求出GB即可.8.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ⊥CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是( )A. 2B.C.D. 1【答案】B【解析】【解答】解:由图象可知:AE=3,BE=4,在Rt ABE中,∠AEB=90°AB= =5当x=6时,点P在BE上,如图,此时PE=4-(7-x)=x-3=6-3=3∵∠AEB=90°, PQ⊥CD∴∠AEB=∠PQE=90°,在矩形ABCD中,AB//CD∴∠QEP=∠ABE∴PQE BAE, ∴=∴=∴PQ=故答案为:B.【分析】由图象可知:AE=3,BE=4,根据勾股定理可得AB=5,当x=6时,点P在BE上,先求出PE的长,再根据△ PQE ∽△ BAE,求出PQ的长.9.如图,在平面直角坐标系中,已知点,.若平移点到点,使以点,,,为顶点的四边形是菱形,则正确的平移方法是()A. 向左平移1个单位,再向下平移1个单位B. 向左平移个单位,再向上平移1个单位C. 向右平移个单位,再向上平移1个单位D. 向右平移1个单位,再向上平移1个单位【答案】 D【解析】【解答】解:因为B(1,1)由勾股定理可得OB=,所以OA=OB,而AB<OA.故以AB为对角线,OB//AC,由O(0,0)移到点B(1,1)需要向右平移1个单位,再向上平移1个单位,由平移的性质可得由A(,0)移到点C需要向右平移1个单位,再向上平移1个单位,故选D.【分析】根据平移的性质可得OB//AC,平移A到C,有两种平移的方法可使O,A,B,C四点构成的四边形是平行四边形;而OA=OB>AB,故当OA,OB为边时O,A,B,C四点构成的四边形是菱形,故点A平移到C的运动与点O平移到B的相同.10.如图,把长方形ABCD沿EF对折,若∠1=500,则∠AEF的度数等于()A. 25ºB. 50ºC. 100ºD. 115º【答案】 D【解析】解析:∵把矩形ABCD沿EF对折,∴AD∥BC,∠BFE=∠2,∵∠1=50°,∠1+∠2+∠BFE=180°,∴∠BFE==65°,∵∠AEF+∠BFE=180°,∴∠AEF=115°.故选D11.在矩形ABCD中,AB=1,AD=,AF平分∠DAB,过C点作CE⊥BD于E,延长AF.EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED.正确的是()A. ②③B. ③④C. ①②④D. ②③④【答案】 D【解析】【解答】∵AB=1,AD=,∴BD=AC=2,OB=OA=OD=OC=1.∴△OAB,△OCD为正三角形.AF平分∠DAB,∴∠FAB=45°,即△ABF是一个等腰直角三角形.∴BF=AB=1,BF=BO=1.∵AF平分∠DAB,∴∠FAB=45°,∴∠CAH=45°﹣30°=15°.∵∠ACE=30°(正三角形上的高的性质)∴∠AHC=15°,∴CA=CH由正三角形上的高的性质可知:DE=OD÷2,OD=OB,∴BE=3ED.所以正确的是②③④.故选D.【分析】这是一个特殊的矩形:对角线相交成60°的角.利用等边三角形的性质结合图中的特殊角度解答.本题主要考查了矩形的性质及正三角形的性质.12.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB 上,当△CDE的周长最小时,点E的坐标为()A. (3,1)B. (3,)C. (3,)D. (3,2)【答案】B【解析】【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y= ,∴点E坐标(3,)故选:B.【分析】如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小,先求出直线CH解析式,再求出直线CH与AB的交点即可解决问题.本题考查矩形的性质、坐标与图形的性质、轴对称﹣最短问题、一次函数等知识,解题的关键是利用轴对称找到点E位置,学会利用一次函数解决交点问题,属于中考常考题型.13.如图,正方形ABCD的边长为4,M在DC上,且DM=1,N是AC上一动点,则DN+MN的最小值为().A. 3B. 4C. 5D.【答案】C【解析】【分析】由正方形的对称性可知点B与D关于直线AC对称,连接BM交AC于N′点,N′即为所求在Rt△BCM中利用勾股定理即可求出BM的长即可.【解答】∵四边形ABCD是正方形,∴点B与D关于直线AC对称,连接BD,BM交AC于N′,连接DN′,N′即为所求的点,则BM的长即为DN+MN的最小值,∴AC是线段BD的垂直平分线,又CM=CD-DM=4-1=3,在Rt△BCM中,BM==5,故DN+MN的最小值是5.故选C.【点评】本题考查的是轴对称-最短路线问题及正方形的性质,先作出M关于直线AC的对称点M′,由轴对称及正方形的性质判断出点M′在BC上是解答此题的关键.14.将矩形OABC如图放置,O为原点.若点A(﹣1,2),点B的纵坐标是,则点C的坐标是()A. (4,2)B. (2,4)C. (,3)D. (3,)【答案】 D【解析】【解答】解:过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,过点A作AN⊥BF于点N,过点C作CM⊥x轴于点M,∵∠EAO+∠AOE=90°,∠AOE+∠MOC=90°,∴∠EAO=∠COM,又∵∠AEO=∠CMO,∴∠AEO∽△COM,∴=,∵∠BAN+∠OAN=90°,∠EAO+∠OAN=90°,∴∠BAN=∠EAO=∠COM,在△ABN和△OCM中∴△ABN≌△OCM(AAS),∴BN=CM,∵点A(−1,2),点B的纵坐标是,∴BN= ,∴CM= ,∴MO==2CM=3,∴点C的坐标是:(3, ).故选:D.【分析】次题主要考查了矩形的性质以及相似三角形的判定与性质以及结合全等三角形的判定与性质等知识.构造直角三角形,正确得出CM的长是解题的关键.15.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A. 1B. 2C. 3D. 4【答案】 D【解析】【解答】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠C=90°=∠ACB,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB= FB•FG= S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故选:D.【分析】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB= FB•FG= S四边形CEFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.16.如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EF⊥ED,连结DF,M 为DF的中点,连结MA,ME.若AM⊥ME,则AE的长为()A. 5B.C.D.【答案】B【解析】【解答】设BE=x,则CE=6-x,∵四边形ABCD矩形,AB=4,∴AB=CD=4,∠C=∠B=90°,∴∠DEC+∠CDE=90°,又∵F是AB的中点,∴BF=2,又∵EF⊥ED,∴∠FED=90°,∴∠FEB+∠DEC=90°,∴∠FEB=∠CDE,∴△BFE∽△CED,∴=,∴=,∴(x-2)(x-4)=0,∴x=2,或x=4,①当x=2时,∴EF=2,DE=4,DF=2,∴AM=ME=,∴AE===2,②当x=4时,∴EF=2,DE=2,DF=2,∴AM=ME=,∴AE==2,AE==4,∴x=4不合题意,舍去故答案为:B.【分析】设BE=x,则CE=6-x,由矩形性质得出AB=CD=4,∠C=∠B=90°,又由EF⊥ED,根据同角的余角相等可得出∠FEB=∠CDE;由相似三角形的判定得出△BFE∽△CED,再根据相似三角形的性质得出=,由此列出方程从而求出x=2或x=4,分情况讨论:①当x=2时,由勾股定理算出AE===2,②当x=4时,由勾股定理算出AE==2,AE==4,故x=4不合题意,舍去.17.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH,其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【解答】∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.【分析】根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.18.如图,P是正方形ABCD内一点,∠APB=135,BP=1,AP=,求PC的值()A. B. 3 C. D. 2【答案】B【解析】【分析】解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.如图,把△PBC绕点B逆时针旋转90°得到△ABP′,点C的对应点C′与点A重合.根据旋转的性质可得AP′=PC,BP′=BP,△PBP′是等腰直角三角形,利用勾股定理求出,然后由∠APB=135,可得出∠APP′=90°,再利用勾股定理列式计算求出.故选B.二、填空题(共15题;共16分)19.如图所示,△ABC为边长为4的等边三角形,AD为BC边上的高,以AD为边的正方形ADEF的面积为________。
第十八章 平行四边形18.2 特殊的平行四边形1.矩形的定义:(1)有一个角是直角的平行四边形叫做__________,也称为长方形.(2)矩形的定义有两个要素:①四边形是__________;②有一个角是__________.二者缺一不可. 【注意】不要错误地把定义理解为有一个角是直角的四边形是矩形,矩形是特殊的平行四边形.2.矩形的性质:(1)矩形是特殊的平行四边形,具有平行四边形的所有性质,即对边互相平行,对边相等,对角相等,对角线互相平分.(2)矩形的性质可综述为:①矩形的对边__________; ②矩形的对角相等且四个角都是__________; ③矩形的对角线__________;④矩形是__________,对边中点所确定的直线是它的__________,矩形有__________对称轴. (3)矩形的两条对角线将矩形分成两对全等的等腰三角形,因此在解决相关问题时,常常用到等腰三角形的性质,并且分成的四个等腰三角形的面积相等.3.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于__________.【注意】定理的条件有两个:一是直角三角形;二是斜边上的中线.4.矩形的判定:(1)有一个角是直角的__________是矩形; (2)有三个角是__________的四边形是矩形; (3)对角线__________的四边形是矩形. 【注意】(1)判定矩形的常见思路有三个角是直角→矩形四边形对角线相等→矩形平行四边形有一个角是直角→矩形⎧⎪⎧⎨⎨⎪⎩⎩(2)用定义判定一个四边形是矩形必须满足两个条件:一是有一个角是直角;二是平行四边形.也就是说,有一个角是直角的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.(3)用对角线判定一个四边形是矩形,也必须满足两个条件:一是对角线;二是平行四边形.也就是说,对角线相等的四边形不一定是矩形,必须加上“平行四边形”这个条件,它才是矩形.5.菱形的定义:(1)有一组邻边相等的平行四边形叫做__________.菱形必须满足两个条件:一是四边形必须是平行四边形;二是邻边相等.不要错误地认为有一组邻边相等的四边形是菱形.(2)菱形是除矩形外的又一种特殊的平行四边形,即有一组邻边相等的平行四边形.菱形的定义既是菱形的性质,也是菱形的判定方法.6.菱形的性质:(1)菱形具有平行四边形的所有性质.(2)菱形的四条边都__________.学-科网(3)菱形的两条对角线__________,并且每一条对角线__________一组对角.(4)菱形是轴对称图形,它的两条对角线所在的直线即是它的对称轴.【注意】菱形的两条对角线不是对称轴,对角线所在直线才是菱形的对称轴.因为对称轴是直线,对角线是线段.菱形既是轴对称图形又是中心对称图形,菱形被两条对角线所分得的四个直角三角形全等.(5)菱形的面积等于__________乘积的一半.7.菱形的判定:(1)一组邻边__________的平行四边形是菱形.(2)对角线__________的平行四边形是菱形.(3)四条边__________的四边形是菱形.(4)对角线__________的四边形是菱形.【注意】上述菱形的判定方法中,(1)和(2)是以平行四边形为基础的,(3)和(4)是以四边形为基础的.8.正方形的定义:(1)有一组邻边__________并且有一个角是__________的平行四边形叫做正方形.(2)正方形是在平行四边形的前提下定义的,它包含两层意思:①有一组邻边相等的平行四边形(即菱形);②并且有一个角是直角的平行四边形(即矩形).(3)正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.9.正方形的性质:(1)正方形具有平行四边形、矩形、菱形的一切性质,特别地: ①正方形的四个角都是__________,四条边都__________;②正方形的两条对角线__________并且互相__________,每条对角线__________一组对角.(2)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.10.正方形的判定:(1)根据正方形的定义;(2)有一组邻边相等的__________是正方形; (3)有一个角是直角的__________是正方形; (4)既是矩形又是菱形的四边形是正方形.一、矩形的性质1.有一个角是直角的平行四边形叫做矩形,即:矩形=平行四边形+一个内角是直角.2.矩形是特殊的平行四边形,具有平行四边形的所有性质,即对边互相平行,对边相等,对角相等,对角线互相平分.【例1】如图,在矩形ABCD 中,1205BOC AB ︒∠==,,则BD 的长为A .5B .10C .12D .13二、矩形的判定1.定义法;2.对角线相等的平行四边形是矩形; 3.对角线平分且相等的四边形是矩形; 4.有三个角是直角的三角形是矩形.【例2】下列说法正确的是A .有一组对角是直角的四边形一定是矩形B .有一组邻角是直角的四边形一定是矩形C .对角线互相平分的四边形是矩形D .对角互补的平行四边形是矩形三、直角三角形斜边中线的性质1.直角三角形斜边上的中线等于斜边的一半;2.直角三角形斜边上的中线把直角三角形分成两个等腰三角形,这两个等腰三角形的面积相等; 3.在直角三角形中,如果遇到斜边的中点,可以考虑利用此性质,注意直角边上的中线不具备这一性质. 【例3】已知直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长为 A .52B .6C .13D .132四、矩形中的折叠问题矩形折叠问题中,折叠前后的两个图形对应边相等,通常建立模型利用勾股定理进行求解.【例4】如图,长方形纸片ABCD 中,4AB =,3AD =,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为A .1B .32C .43D .2五、菱形的性质及应用1.菱形具有平行四边形的一切性质.2.菱形的四条边都相等,菱形的对角线互相垂直,并且每一条对角线平分一组对角.【例5】在菱形ABCD 中,M ,N 分别是边BC ,CD 上的点,且AM =AN =MN =AB ,则∠C 的度数为A .120°B .100°C .80°D .60°六、菱形的面积菱形的面积=底×高=对角线乘积的一半.【例6】已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是 A .212cm B .224cmC .248cmD .296cm七、菱形的判定菱形四种判定方法中,两种是以平行四边形为基础的,另两种是以四边形为基础的. 【例7】如图,在四边形ABCD 中,AB =AD,CB =CD,E 是CD 上一点,BE 交AC 于F ,连接DF . (1)求证:∠BAC =∠DAC ,∠AFD =∠CFE ; (2)若AB ∥CD ,试证明四边形ABCD 是菱形.八、正方形的性质正方形具有平行四边形、矩形、菱形的一切性质,正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角.【例8】如图,正方形ABCD满足∠AEB=90°,AE=12,BE=16,则阴影部分的面积是A.400 B.192C.208 D.304九、正方形的判定1.对角线互相垂直平分且相等的四边形是正方形;2.对角线互相垂直且相等的平行四边形是正方形;3.对角线互相垂直的矩形是正方形;4.对角线相等的菱形是正方形.【例9】如图,在△ABC中,∠ACB=90°,BC垂直平分线分别交BC,AB于D、E,过C作CF∥AB,交BC的垂直平分线于F,连接BF.(1)判定四边形BECF的形状,并证明;(2)当∠A满足什么条件时,四边形BECF是正方形?证明你的结论.1.下列条件中,能判定一个四边形为菱形的条件是 A .对角线互相平分的四边形 B .对角线互相垂直且平分的四边形 C .对角线相等的四边形D .对角线相等且互相垂直的四边形2.菱形的对角线长分别为3和4,则该菱形的面积是 A .6B .8C .12D .243.在四边形中,能判定这个四边形是正方形的条件是 A .对角线相等,对边平行且相等 B .一组对边平行,一组对角相等C .对角线互相平分且相等,对角线互相垂直D .一组邻边相等,对角线互相平分4.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,∠ADB =30°,AB =4,则OC =A .5B .4C .3.5D .35.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是A .18°B .36°C .45°D .72°6.在一个直角三角形中,已知两直角边分别为6 cm ,8 cm ,则下列结论不正确的是 A .斜边长为10 cmB .周长为25 cmC .面积为24 cm 2D .斜边上的中线长为5 cm7.在四边形ABCD 中,对角线,AC BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是A .90ABC ∠=︒B .AC BD ⊥C .AB CD =D .AB CD ∥8.如图,在长方形ABCD中,AB=3,BC=4,若沿折痕EF折叠,使点C与点A重合,则折痕EF的长为A.158B.154C.152D.159.如图,菱形ABCD的对角线交于点O,AC=8 cm,BD=6 cm,则菱形的高为A.485cm B.245cm C.125cm D.105cm10.如图,在菱形ABCD中,P、Q分别是AD、AC的中点,如果PQ=3,那么菱形ABCD的周长是A.30 B.24 C.18 D.611.在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,且E、F分别为BC、CD的中点,则∠EAF等于A.60°B.55°C.45°D.30°12.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是A.75°B.60°C.54°D.67.5°13.如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为_________.14.如图是一个平行四边形,当∠α的度数为________度时,两条对角线长度相等.15.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6 cm,BC=8 cm,则△AEF的周长为________cm.16.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则AC的长为__________.17.如图,菱形ABCD的边长为2,∠ABC=45°,则点D的坐标为__________.18.如图,等边三角形EBC在正方形ABCD内,连接DE,则ADE∠=__________.19.已知菱形ABCD中,对角线AC=16 cm,BD=12 cm,BE⊥DC于点E,求菱形ABCD的面积和BE的长.20.如图,已知四边形ABCD是正方形,延长BC到E,在CD上截取CF=CE,BF交DE于G,求证:BG ⊥DE.21.已知:如图,在四边形ABCD中,∠ABC=∠ADC=90°,点E是AC的中点.(1)求证:△BED是等腰三角形:(2)当∠BCD=________°时,△BED是等边三角形.22.如图,四边形ABCD 中,90A ABC ∠=∠=︒,1AD =,3BC =,E 是边CD 的中点,连接BE 延长与AD 的延长线相交于点F ,连接CF . (1)求证:四边形BDFC 是平行四边形. (2)已知CB CD =,求四边形BDFC 的面积.23.如图,在矩形ABCD 中,AD =12,AB =7,DF 平分∠ADC ,AF ⊥EF .(1)求证:AF =EF ; (2)求EF 长.24.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点. (1)求证:△ABM ≌△DCM ;(2)当AB ∶AD =__________时,四边形MENF 是正方形,并说明理由.25.如图,矩形ABCD 沿着AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠等于A .15°B .30°C .45°D .60°26.如图,在△ABC 中,∠BAC =90°,AD 是BC 边上的高,E 、F 分别是AB 、AC 边的中点,若AB =8,AC =6,则△DEF 的周长为A .12B .13C .14D .1527.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,∠DHO =20°,则∠CAD 的度数是A .20°B .25°C .30°D .40°28.如图,以A 点为圆心,以相同的长为半径作弧,分别与射线AM ,AN 交于B ,C 两点,连接BC ,再分别以B ,C 为圆心,以相同长(大于12BC )为半径作弧,两弧相交于点D ,连接AD ,BD ,CD .则下列结论错误的是A .AD 平分∠MANB .AD 垂直平分BC C .∠MBD =∠NCD D .四边形ACDB 一定是菱形29.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是A.3 B.4 C.5 D.630.如图,正方形ABCD的面积为1,则以相邻两边中点连线EF为边正方形EFGH的周长为A.2B.22C.2+1 D.22+131.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.32.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为____________.33.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确结论的序号是____________.34.如图,正方形ABCD中,AB=3,点E、F分别在BC、CD上,且∠BAE=30°,∠DAF=15°.(1)求证:DF+BE=EF;(2)求∠EFC的度数;(3)求△AEF的面积.36.(2018·浙江台州)下列命题正确的是A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形37.(2018·江苏淮安)如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是A.20 B.24 C.40 D.4838.(2018·山东烟台)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为A.7 B.6 C.5 D.439.(2018·四川内江)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为A.31°B.28°C.62°D.56°40.(2018·湖北宜昌)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥A B.EI ⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于A.1 B.12C.13D.1441.(2018·黑龙江牡丹江)如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为A.6 B.5 C.4 D.342.(2018·广西贵港)如图,在菱形ABCD 中,AC =62,BD =6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE +PM 的最小值是A .6B .33C .26D .4.543.(2018·湖南湘潭)如图,已知点E 、F 、G .H 分别是菱形ABCD 各边的中点,则四边形EFGH 是A .正方形B .矩形C .菱形D .平行四边形44.(2018·浙江嘉兴)用尺规在一个平行四边形内作菱形ABCD ,下列作法中错误的是A .B .C .D .45.(2018·四川甘孜州)如图,在菱形ABCD 中,对角线AC 与BD 相交于点86O AC BD ==,,, OE AD ⊥于点E ,交BC 于点F ,则EF 的长为__________.46.(2018·辽宁锦州)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为__________.47.(2018·四川攀枝花)如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.48.(2018·辽宁葫芦岛)如图,在菱形OABC中,点B在x轴上,点A的标为(2,3),则点C的坐标为__________.49.(2018·四川广安)如图,四边形ABCD是正方形,M为BC上一点,连接AM,延长AD至点E,使得AE=AM,过点E作EF⊥AM,垂足为F,求证:AB=EF.50.(2018·湖南郴州)如图,在ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC 于E,F,连接BE,DF.求证:四边形BFDE是菱形.51.(2018·辽宁沈阳)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是__________.。
第一章特殊平行四边形一、选择题1. 下列四边形对角线相等但不一定垂直的是( )A.平行四边形B.矩形C.菱形D.正方形2. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3. 如图,菱形ABCD的两条对角线AC,BD相交于点O,若AC=4,BD=6,则菱形ABCD的周长为( )A.16B.24C.413D.8134. 如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=3,BC=10,则OB的长为( )D.34 A.5B.4C.3425. 如图,菱形ABCD的对角线AC,BD的长分别为6 cm,8 cm,则这个菱形的周长为( )A.5 cm B.10 cm C.14 cm D.20 cm6. 如图,点P是矩形ABCD的边上的一动点,矩形的两条边AB,BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是( )A.4.8B.5C.6D.7.27. 如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90∘到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )A.4B.5C.217D.348. 如图,在矩形ABCD中,EG垂直平分BD于点G,若AB=4,BC=3,则线段EG的长度是( )A.32B.158C.52D.39. 如图,正方形ABCD的边长为2,点E,F分别为边AD,BC上的点,且EF=5,点G,H 分别边AB,CD上的点,连接GH交EF于点P.若∠EPH=45∘,则线段GH的长为( )A.5B.2103C.253D.710. 如图,在矩形ABCD中,AB=3,AD=4,以BC为斜边在矩形的外部作直角三角形BEC,点F是CD的中点,则EF的最大值为( )A.732B.4C.5D.92二、填空题11. 菱形的对角线长为6和8,则菱形的高为.12. 如图,连接四边形ABCD各边中点,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形.13. 在菱形ABCD中,对角线AC,BD交于点O,点F为BC中点,过点F作FE⊥BC于点F交BD于点E,连接CE,若∠BDC=34∘,则∠ECA=.14. 如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为.15. 在矩形ABCD中,AB=4,BC=3,折叠矩形ABCD,使点B与点D重合,则BF的长为.16. 如图,菱形ABCD中,AB=2,∠BAD=60∘,点E是边AB的中点,点P在对角线AC上移动.则PB+PE的最小值是.三、解答题17. 已知如图,在菱形ABCD中,对角线AC,BD相交于点O,DE∥AC,AE∥BD.(1) 求证:四边形AODE是矩形.(2) 若AB=6,∠BCD=120∘,求四边形AODE的面积.18. 如图,在正方形ABCD中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1) 若正方形ABCD边长为3,DF=4,求CG的长.(2) 求证:EF+EG=2CE.19. 在平行四边形ABCD中,对角线AC,BD相交于点O.EF过点O且与ABCD分别相交于点E,F.(1) 如图①,求证:OE=OF;(2) 如图②,若EF⊥DB,垂足为O,求证:四边形BEDF是菱形.20. 回答下列问题.(1) 提出问题:如图1,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.(2) 类比探究:如图2,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上,若EF⊥HG 于点O,探究线段EF与HG的数量关系,并说明理由.21. 如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1) 求证:四边形EGFH是平行四边形.(2) 当EG=EH时,连接AF.①求证:AF=FC.②若DC=8,AD=4,求AE的长.答案一、选择题1. B2. B3. C4. D5. D6. A7. D8. B9. B10. D二、填空题11. 24512. AC⊥BD13. 2214. 615. 25816. 3三、解答题17.(1) 因为DE∥AC,AE∥BD,所以四边形AODE是平行四边形,因为在菱形ABCD中,AC⊥BD,所以∠AOD=90∘,所以四边形AODE是矩形.(2) 因为∠BCD=120∘,AB∥CD,所以∠ABC=180∘−120∘=60∘,因为AB=BC,所以△ABC是等边三角形,所以OA=12×6=3,OB=32×6=33,因为四边形ABCD是菱形,所以OD=OB=33,所以四边形AODE的面积=OA⋅OD=3×33=93.18.(1) ∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90∘,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,{∠BCG=∠DCF=90∘,BC=CD,∠CBG=∠CDF,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG=42−32=7.(2) 过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90∘,∴∠MCG=∠ECF,在 △MCG 和 △ECF 中,{∠MCG =∠ECF,CG =CF,∠F =∠CGB,∴△MCG ≌△ECF (ASA),∴MG =EF ,CM =CE ,∴△CME 是等腰直角三角形,∴ME =2CE ,又 ∵ME =MG +EG =EF +EG , ∴EF +EG =2CE .19.(1) ∵ 四边形 ABCD 是平行四边形, ∴OB =OD ,AB ∥CD ,∴∠EBO =∠FDO ,在 △OBE 与 △ODF 中,{∠EBO =∠FDO,OB =OD,∠BOE =∠DOF, ∴△OBE ≌△ODF (ASA),∴OE =OF ;(2) ∵OB =OD ,OE =OF , ∴ 四边形 BEDF 是平行四边形, ∵EF ⊥BD ,∴ 四边形 BEDF 是菱形.20.(1) ∵ 四边形 ABCD 是正方形, ∴AB =DA ,∠ABE =90∘=∠DAH , ∴∠HAO +∠OAD =90∘,∵AE⊥DH,∴∠ADO+∠OAD=90∘,∴∠HAO=∠ADO,在△ABE和△DAH中,{∠BAE=∠HDA,AB=AD,∠B=∠HAD,∴△ABE≌△DAH(ASA),∴AE=DH.(2) EF=GH,理由:将PE平移到AM处,则AM∥EF,AM=EF,将GH平移到DN处,则DN∥GH,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,∴EF=GH.21.(1) ∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,且CH=AG,∠FCH=∠EAG,∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形.(2) ①连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF=AE.②设AE=x,则FC=AF=x,DF=8−x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8−x)2=x2,解得x=5,∴AE=5.。
特殊的平行四边形练习题一.选择题(共12小题)1.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.42.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.3.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D 是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)4.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.45.如图,菱形ABCD中,AB∥y轴,且B(﹣3,1),C(1,4),则点A的坐标为()A.(﹣3,5)B.(1,8) C.(﹣3,6)D.(1,9)6.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()A.﹣4+4B.4+4 C.8﹣4D.+17.如图,在正方形ABCD中,E、F分别是边BC、CD上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD的边长为()A.2 B.3 C.4 D.58.如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.410.如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于()A.12 B.16 C.4 D.811.如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE 沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为()A.1 B.C.2D.2﹣212.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为()A.4 B.3 C.2+D.二.填空题(共5小题)13.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE ⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.14.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是.15.如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为cm.16.如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为.17.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=50°,则∠APD等于.三.解答题(共13小题)18.如图1,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG 至点F使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.19.感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E 是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.20.如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A开始沿折线A﹣B﹣C ﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?21.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.22.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.23.如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.24.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF=∠B.(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;(2)求证:BF=EF﹣EM.25.如图,在菱形ABCD中,∠B=60°,点E、F分别在边BC、CD上.(1)若AB=4,试求菱形ABCD的面积;(2)若∠AEF=60°,求证:AB=CE+CF.26.如图,已知正方形ABCD中,边长为10厘米,点E在AB边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?27.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B 作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH 交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.28.如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG ⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=,求AG;(2)求证:2DF+ED=BD.29.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB 于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.30.在正方形ABCD中,点E为BC边上的一点,连接DE,点G为DE中点,连接GA、GB、GC,GB与AC交于点H,过点B作BM垂直DE延长线于点M.(1)求证:GA=GB;(2)若AH=CH,求证:AG=BM.特殊的平行四边形练习题参考答案与试题解析一.选择题(共12小题)1.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.4【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,=,∵S菱形ABCD∴,∴DH=,故选A.2.(2016•威海)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.【解答】解:连接BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选:D.3.(2016•苏州)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1) B.(3,)C.(3,)D.(3,2)【解答】解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小.∵D(,0),A(3,0),∴H(,0),∴直线CH解析式为y=﹣x+4,∴x=3时,y=,∴点E坐标(3,)故选:B.4.(2016•龙岩模拟)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【解答】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.5.(2016•青山区模拟)如图,菱形ABCD中,AB∥y轴,且B(﹣3,1),C(1,4),则点A的坐标为()A.(﹣3,5)B.(1,8) C.(﹣3,6)D.(1,9)【解答】解:作BM⊥CD于M,如图所示:∵B(﹣3,1),C(1,4),∴BN=3,BM=3+1=4,CM=4﹣1=3,ON=1,∴BC==5,∵四边形ABCD是菱形,∴AB=BC=5,∵AB∥y轴,∴点A的坐标为(﹣3,6);故选:C.6.(2016•高县一模)如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC 上,EF 与CD 交于点M ,得四边形AEMD ,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )A .﹣4+4B .4+4C .8﹣4D .+1【解答】解:∵四边形ABCD 是正方形,∴∠D=90°,∠ACD=45°,AD=CD=2,则S △ACD =AD•CD=×2×2=2; AC=AD=2,则EC=2﹣2,∵△MEC 是等腰直角三角形,∴S △MEC =ME•EC=(2﹣2)2=6﹣4,∴阴影部分的面积=S △ACD ﹣S △MEC =2﹣(6﹣4)=4﹣4. 故选:A .7.(2016•扬州二模)如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF=45°,△ECF 的周长为4,则正方形ABCD 的边长为( )A .2B .3C .4D .5【解答】解:将△DAF 绕点A 顺时针旋转90度到△BAF′位置,由题意可得出:△DAF ≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE和△EAF′中,,∴△FAE≌△EAF′(SAS),∴EF=EF′,∵△ECF的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故选A.8.(2016•苏州模拟)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.【解答】解:延长AE交DF于G,如图:∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.9.(2016•桂林模拟)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB 上一动点,过点D作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()A.5 B.4.8 C.4.6 D.4.4【解答】解:如图,连接CD.∵∠ACB=90°,AC=6,BC=8,∴AB==10,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFDE是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时,线段EF的值最小,=BC•AC=AB•CD,此时,S△ABC即×8×6=×10•CD,解得CD=4.8,∴EF=4.8.故选B.10.(2010•天门校级自主招生)如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6,那么AC的长等于()A.12 B.16 C.4 D.8【解答】解:在AC上取一点G使CG=AB=4,连接OG∵∠ABO=90°﹣∠AHB,∠OCG=90°﹣∠OHC,∠OHC=∠AHB∴∠ABO=∠OCG∵OB=OC,CG=AB∴△OGC≌△OAB∴OG=OA=6,∠BOA=∠GOC∵∠GOC+∠GOH=90°∴∠GOH+∠BOA=90°即:∠AOG=90°∴△AOG是等腰直角三角形,AG=12(勾股定理)∴AC=16.故选B.11.(2016•平房区模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC 边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F 的长度为()A.1 B.C.2D.2﹣2【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S=BA•AB′=2,S△ABE=1,△ABB′∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故选C.12.(2016•夏津县一模)如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB、BD于M、N两点,若AM=2,则正方形的边长为()A.4 B.3 C.2+D.【解答】解:过点M作MF⊥AC于点F,如图所示.∵MC平分∠ACB,四边形ABCD为正方形,∴∠CAB=45°,FM=BM.在Rt△AFM中,∠AFM=90°,∠FAM=45°,AM=2,∴FM=AM•sin∠FAM=.AB=AM+MB=2+.故选C.二.填空题(共5小题)13.(2016春•柳州期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.14.(2017•桂林一模)如图,在边长为4的菱形ABCD中,∠A=60°,M是AD 边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是2﹣2.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴MD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴MC==2,∴A′C=MC﹣MA′=2﹣2.故答案为:2﹣2.15.(2017春•广安月考)如图,平行四边形ABCD的周长为20cm,对角线相交于点O,且EO⊥BD于点O交AD于E,则△ABE的周长为10cm.【解答】解:∵AC,BD相交于点O,∴O为BD的中点,∵OE⊥BD,∴BE=DE,△ABE的周长=AB+AE+BE=AB+AD=×20=10(cm),故答案为:10.16.(2016•甘肃模拟)如图,P是平行四边形ABCD内一点,且S△PAB=5,S△PAD=2,则阴影部分的面积为3.【解答】解:∵S △PAB +S △PCD =S ▱ABCD =S △ACD ,∴S △ACD ﹣S △PCD =S △PAB ,则S △PAC =S △ACD ﹣S △PCD ﹣S △PAD ,=S △PAB ﹣S △PAD ,=5﹣2,=3.故答案为:3.17.(2016秋•安丘市校级月考)如图,D ,E 分别为△ABC 的AC ,BC 边的中点,将此三角形沿DE 折叠,使点C 落在AB 边上的点P 处.若∠CDE=50°,则∠APD 等于 50° .【解答】解:由折叠得:∠PDE=∠CDE=50°,∵D ,E 分别为△ABC 的AC ,BC 边的中点,∴DE ∥AB ,∴∠APD=∠PDE=50°,故答案为:50°.三.解答题(共13小题)18.(2016•重庆模拟)如图1,正方形ABCD 中,E 为BC 上一点,过B 作BG ⊥AE 于G ,延长BG 至点F 使∠CFB=45°(1)求证:AG=FG;(2)如图2延长FC、AE交于点M,连接DF、BM,若C为FM中点,BM=10,求FD的长.【解答】(1)证明:过C点作CH⊥BF于H点,∵∠CFB=45°∴CH=HF,∵∠ABG+∠BAG=90°,∠FBE+∠ABG=90°∴∠BAG=∠FBE,∵AG⊥BF,CH⊥BF,∴∠AGB=∠BHC=90°,在△AGB和△BHC中,∵∠AGB=∠BHC,∠BAG=∠HBC,AB=BC,∴△AGB≌△BHC,∴AG=BH,BG=CH,∵BH=BG+GH,∴BH=HF+GH=FG,∴AG=FG;(2)解:∵CH⊥GF,∴CH∥GM,∵C为FM的中点,∴CH=GM,∴BG=GM,∵BM=10,∴BG=2,GM=4,∴AG=4,AB=10,∴HF=2,∴CF=2×=2,∴CM=2,过B点作BK⊥CM于K,∵CK=CM=CF=,∴BK=3,过D作DQ⊥MF交MF延长线于Q,∴△BKC≌△CQD∴CQ=BK=3,DQ=CK=,∴QF=3﹣2=,∴DF==2.19.(2016•广水市一模)感知:如图1,在正方形ABCD中,E是AB上一点,将点E绕点C顺时针旋转90°到点F,易知△CEB≌△CFD.探究:如图2,在图1中的基础上作∠ECF的角平分线CG,交AD于点G,连接EG,求证:EG=BE+GD.应用:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC.E 是AB上一点,且∠DCE=45°,AD=6,DE=10,求直角梯形ABCD的面积.【解答】探究:证明:∵根据旋转的性质得:△EBC≌△FDC,∴CE=CF,DF=BE,∵CG平分∠ECF,∴∠ECG=∠FCG,在△ECG和△FCG中∴△ECG≌△FCG(SAS),∴EG=GF,∵GF=DG+DF=DG+BE,∴EG=BE+GD;应用:解:如图3,过C作CH⊥AD于H,旋转△BCE到△CHM,则∠A=∠B=∠CHA=90°,∵AB=BC,∴四边形ABCH是正方形,∵∠DCE=45°,AH=BC,∴∠DCH+∠ECB=90°﹣45°=45°,∵由已知证明知:△EBC≌△MHC,∴∠ECB=∠MCH,∴∠DCH+∠MCH=45°,∴CD平分∠ECM,∴由探究证明知:DE=BE+DH,在Rt△AED中,DE=10,AD=6,由勾股定理得:AE=8,设BE=x,则BC=AB=x+8=AH,即x+8=6+10﹣x,x=4,BE=4,AB=4+8=12,BC=AB=12,∴梯形ABCD的面积是×(6+12)×12=108.20.(2017•临沂模拟)如图,在矩形ABCD中,AB=24cm,BC=8cm,点P从A 开始沿折线A﹣B﹣C﹣D以4cm/s的速度移动,点Q从C开始沿CD边以2cm/s 的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?【解答】解:根据题意得:CQ=2t,AP=4t,则BP=24﹣4t,∵四边形ABCD是矩形,∴∠B=∠C=90°,CD∥AB,∴只有CQ=BP时,四边形QPBC是矩形,即2t=24﹣4t,解得:t=4,答:当t=4s时,四边形QPBC是矩形.21.(2016•黄埔区模拟)如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.(1)试探究BE与BF的数量关系,并证明你的结论;(2)求EF的最大值与最小值.【解答】解:(1)BE=BF,证明如下:∵四边形ABCD是边长为4的菱形,BD=4,∴△ABD、△CBD都是边长为4的正三角形,∵AE+CF=4,∴CF=4﹣AE=AD﹣AE=DE,又∵BD=BC=4,∠BDE=∠C=60°,在△BDE和△BCF中,,∴△BDE≌△BCF(SAS),∴BE=BF;(2)∵△BDE≌△BCF,∴∠EBD=∠FBC,∴∠EBD+∠DBF=∠FBC+∠DBF,∴∠EBF=∠DBC=60°,又∵BE=BF,∴△BEF是正三角形,∴EF=BE=BF,当动点E运动到点D或点A时,BE的最大值为4,当BE⊥AD,即E为AD的中点时,BE的最小值为,∵EF=BE,∴EF的最大值为4,最小值为.22.(2014秋•重庆月考)如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.【解答】解:(1)∵四边形ABCD是正方形,且边长为4,∴∠ABF=90°,AB=AD=4,∵在Rt△ABF中,AB=2FB,∴FB=×4=2,∴AF==2,∵AG=AD=4,∴FG=AF﹣AG=2﹣4;(2)证明:在BC上截取BM=AE,连接AM,∵AG=AD,AB=AD,∴AG=AB,∵AE⊥AF,∴∠EAG=∠ABM=90°,在△AGE和△BAM中,,∴△AGE≌△BAM(SAS),∴∠AMB=∠AEG,∠BAM=∠AGD,∵AG=AD,∴∠AGD=∠ADG,∴∠BAM=∠ADG,∵∠BAD=90°,∴∠FAB+∠BAE=∠BAE+∠EAD=90°,∴∠FAB=∠EAD,∴∠AEG=∠EAD+∠ADG=∠FAB+∠BAM=∠FAM,∴∠FAM=∠AMB,∴AF=FM=BF+BM=BF+AE.23.(2013•沙坪坝区校级模拟)如图,点E为矩形ABCD外一点,DE⊥BD于点D,DE=CE,BD的垂直平分线交AD于点F,交BD于点G.连接EF交BD于点H.(1)若∠CDE=∠DEH=∠HEC,求∠ABG的度数;(2)求证:H是EF的中点.【解答】(1)解:设∠CDE=x°,∵DE=CE,∴∠CDE=∠DCE=x°,∵∠CDE=∠DEH=∠HEC,∴∠deh=x°,∠HEC=2x°,∵∠CDE+∠DEC+∠DCE=180°,∴5x=180°,x=36°,∵DE⊥BD,∴∠EDB=90°,∴∠BDC=90°﹣36°=54°,∵四边形ABCD是矩形,∴AB∥CD,∴∠ABG=∠BDC=54°;(2)证明:连接AC,GE,∵四边形ABCD是矩形,∴AC=BD,AG=GC,BG=GD,∴GD=GC,∴G在CD的垂直平分线上,∵DE=CE,∴E在CD的垂直平分线上,∴GE为CD的垂直平分线,∴DM=CM,∵BG=DG,∴GM∥BC,∴∠DGE=∠DBC,∵四边形ABCD是矩形,∴AD∥BC,∴∠DBC=∠FDG,∴∠DGE=∠FDG,∴FD∥GE,∵FG⊥BD,DE⊥BD,∴FG∥DE,∴四边形FDEG是平行四边形,∴H为EF的中点.24.(2013•渝中区校级模拟)如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF=∠B.(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;(2)求证:BF=EF﹣EM.【解答】解:(1)过点D作DH⊥MC于点H,∵菱形ABCD的周长为8,∴CD=2,∵CD=CM,且∠D=67.5°,∴∠2=∠D=67.5°,∠DCH=45°,CM=2,在Rt△CDH中,DH=DC×sin45°=,=CM•DH=×2×=;∴S△MCD(2)延长AB到N,使BN=EM,连接CN,∵CD=CM,CD=CB,且∠ABC=∠D,∴BC=CM,∠2=∠ABC,∵∠1+∠ABC=∠2+∠5∴∠1=∠5在△BNC和△MEC中,,∴△BNC≌△MEC(SAS),∴∠4=∠3,CE=NC,∵AD∥BC,∴∠2=∠BCM=∠ABC,∵∠ECF=∠ABC,∴∠3+∠BCF=∠4+∠BCF=∠ECF,在△NCF和△ECF中,,∴△NCF≌△ECF(SAS),∴FN=EF,EF=FB+NB=FB+EM,∴FB=EF﹣EM.25.(2013•重庆模拟)如图,在菱形ABCD中,∠B=60°,点E、F分别在边BC、CD上.(1)若AB=4,试求菱形ABCD的面积;(2)若∠AEF=60°,求证:AB=CE+CF.【解答】(1)解:在菱形ABCD中,AB=BC,∵∠B=60°,∴△ABC是等边三角形,∵AB=4,∴等边△ABC底边BC上的高为4×=2,∴菱形ABCD的面积=4×2=8;(2)证明:如图,将△AEC绕点A顺时针旋转60°得到△AE′B,则△AEE′为等边三角形,∴∠AE′E=60°,∵∠AEF=60°,∴∠CEF=∠AEC﹣∠AEF=∠AEC﹣60°,又∵∠BE′E=∠AE′B﹣∠AE′E=∠AE′B﹣60°,∴∠BE′E=∠CEF,∵∠B=60°,菱形的对边AB∥CD,∴∠ECF=180°﹣60°=120°,又∵∠E′BE=∠ABC+∠ABE′=∠ABC+∠ACB=60°+60°=120°,∴∠E′BE=∠ECF,在△EE′B和△FEC中,,∴△EE′B≌△FEC(ASA),∴BE=CF,∴BC=CE+BE=CE+CF,∵AB=BC,∴AB=CE+CF.26.(2015•魏县二模)如图,已知正方形ABCD中,边长为10厘米,点E在AB 边上,BE=6厘米.(1)如果点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q 在线段CD上由C点向D点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPE与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动,求经过多长时间点P与点Q第一次在正方形ABCD边上的何处相遇?【解答】解:(1)①∵t=1秒,∴BP=CQ=4×1=4厘米,(1分)∵正方形ABCD中,边长为10厘米∴PC=BE=6厘米,(1分)又∵正方形ABCD,∴∠B=∠C,(1分)∴△BPE≌△CQP(1分)②∵V P≠V Q,∴BP≠CQ,又∵△BPE≌△CQP,∠B=∠C,则BP=PC,而BP=4t,CP=10﹣4t,∴4t=10﹣4t(2分)∴点P,点Q运动的时间秒,(1分)∴厘米/秒.(1分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得4.8x﹣4x=30,(1分)解得秒.(1分)∴点P共运动了厘米(1分)∴点P、点Q在A点相遇,∴经过秒点P与点Q第一次在A点相遇.(1分)27.(2015•重庆模拟)如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H 延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.【解答】证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;(2)连接DG,在△ABG和△ADG中,,∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.28.(2013•重庆模拟)如图,正方形ABCD中,对角线AC与BD相交于O,∠ADE=15°,过D作DG⊥ED于D,且AG=AD,过G作GF∥AC交ED的延长线于F.(1)若ED=,求AG;(2)求证:2DF+ED=BD.【解答】解(1)在正方形ABCD中,AC⊥BD,∠ADO=45°,∵∠ADE=15°,∴∠EDO=30°∵DE=4,∠EOD=90°,∴OD=6,在Rt△AOD中,AD=12,∴AG=AD=12;(2)延长GF,过C作CM∥AG,交GF的延长线于M,连接DM.∵AC∥GF,即AC∥GM,∴四边形ACMG是平行四边形,∴AG=AD=DC=CM,∠AED=∠DFM=120°,∵∠ADE=15°∴∠DAG=30°,∠GAE=∠CMF=75°,∠ACM=105°,∴∠DCM=60°,∴△DCM是等边三角形,∴DM=AD,∵∠DMF=∠ADE=15°∴△AED≌△DFM,∴FM=ED,AE=DF又∵AC=GM,即BD=GF+FM=GF+ED 又在RT△GDF中,∠GFD=60°,∴∠DGF=30°,∴GF=2DF,∴BD=2DF+ED.29.(2013•重庆模拟)已知正方形ABCD如图所示,连接其对角线AC,∠BCA 的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)若正方形ABCD的边长为4,求△ACP的面积;(2)求证:CP=BM+2FN.【解答】解:∵四边形ABCD是正方形,AC是对角线,∴∠1=∠2=22.5°,又∵CP⊥CF,∴∠3+∠FCD=∠1+∠FCD=90°∴∠3=∠1=22.5°∴∠P=67.5°又四边形ABCD为正方形,∴∠ACP=45+22.5=67.5°∴∠P=∠ACP∴AP=AC又AC=AB=4∴AP=4,=AP•CD=4×4=8;∴S△APC(2)∵在△PDC和△FBC中,∴△PDC≌△FBC∴CP=CF在CN上截取NH=FN,连接BH∵FN=NH,且BN⊥FH∴BH=BF∴∠4=∠5∴∠4=∠1=∠5=22.5°又∠4+∠BFC=∠1+∠BFC=90°∴∠HBC=∠BAM=45°在△AMB和△BHC中,,∴△AMB≌△BHC,∴CH=BM∴CF=BM+2FN∴CP=BM+2FN.30.(2013秋•重庆校级期中)在正方形ABCD中,点E为BC边上的一点,连接DE,点G为DE中点,连接GA、GB、GC,GB与AC交于点H,过点B作BM垂直DE延长线于点M.(1)求证:GA=GB;(2)若AH=CH,求证:AG=BM.【解答】(1)证明:∵四边形ABCD是正方形,∴AD=BC,∠BCD=90°,又∵点G为DE中点,∴CG=GE=GD,∴∠GCD=∠GDC,∴∠BCG=∠ADG,在△ADG与△BCG中,,∴△ADG≌△BCG(SAS),∴GA=GB.(2)证明:如图,过点H作HN⊥BC于N,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴△CHN为等腰直角三角形,∴HN=CN,易得AB∥HN,∴==,∴=,∴∠HBN=30°,∵∠ABC=90°,∴∠ABG=90°﹣30°=60°,∴△ABG是等边三角形,由(1)知GA=GB,∴AD=AG=AB,∴∠AGD=(180°﹣30°)=75°,∴∠BGM=180°﹣75°﹣60°=45°,∵BM⊥E,∴△BMG是等腰直角三角形,∴BG=BM,∴AG=BM.第41页(共41页)。
特殊的平行四边形练习题一、选择题1.下列命题中,真命题是( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形 2.下列命题中正确的是( )A .两条对角线互相平分的四边形是平行四边形B .两条对角线相等的四边形是矩形C .两条对角线互相垂直的四边形是菱形D .两条对角线互相垂直且平分的四边形是正方形 3.下列命题不正确的是( )A .对角线相等且互相平分的四边形是矩形B .邻边相等的矩形是正方形C .对角线互相垂直的四边形是菱形D .对角线相等的菱形是正方形 4.菱形具有而平行四边形不具有的性质是( )A.两组对边分别平行B.两组对角分别相等 C .对角线互相平分 D .对角线互相垂直 5.菱形的两条对角线的长分别是6和8 ,则这个菱形的周长和面积分别为( )A .24 ,48B .20 ,24C . 10 ,24D . 5 ,48 6.在平面直角坐标系中,已知点A (0,2),B (,0),C (0,),D (,0),则以这四个点为顶点的四边形是( ) A .矩形 B .菱形 C .正方形 D .梯形 7.如图1,菱形ABCD 中,∠B =60°,AB =2,E 、F 分别是BC 、CD 的中点,连接AE 、EF 、AF ,则△AEF 的周长为( )A .B .C .D .图2 图3 图48.如图2,在平行四边形ABCD 中,对角线和相交于点,则下面条件能判定平行四边形ABCD 是矩形的是( )A .B .C .且D . 9.如图3,平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是菱形,那么这个条件是( ) A . AB =CD B .AC =BD C . AC ⊥BD D .AB ⊥BD 10.如图4,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .14 11.下列命题中错误..的是( ) A.平行四边形的对边相等 B.两组对边分别相等的四边形是平行四边形 C.矩形的对角线相等 D.对角线相等的四边形是矩形 12.下列命题中错误..的是( ) A.平行四边形的对角线互相平分 B.对角线互相垂直平分且相等的四边形是正方形 C.矩形的对角线互相垂直平分 D.四边相等的四边形是菱形32-2-32ABCD 3233343AC BD O AC BD =AC BD ⊥AC BD =AC BD ⊥AB AD =图1 FAD E B CA CB D13.如图5,菱形ABCD 中,AB=4,∠BAD=120°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则的△AEF 的面积是( ) A .4 B .3 C .2 D .图5 图6 图7 图814.如图6,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B ′处,若AE =2,DE =6,∠EFB =60°,则矩形ABCD 的面积是( )A .12 B. 24 C. 12 3 D. 16 315.如图7,在菱形ABCD 中,AC 与BD 相交于点O ,AC=8,BD=6,则菱形的边长AB 等于( )A .10B .C .6D .5 16.如图8,下列条件之一能使平行四边形ABCD 是矩形的为( ) ① ② ③ ④ A .①③ B .②③ C .②④ D .③④二、填空题1. 如图9,菱形中,,对角线,则菱形的周长等于 .图9 图10 图11 图122.如图10,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE ,则CE 的长________.3.如图11,在四边形中,,,若再添加一个条件,就能推出四边形是矩形,你所添加的条件是 .(写出一种情况即可)4.如图12,菱形的边长为2,,则点的坐标为 . 5.如图13,在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOD =120°,AB =4cm ,则AC 的长为________cm .图13图14图15 6.如图14,已知P 是正方形ABCD 对角线BD 上一点,且BP = BC ,则∠ACP 度数是 °. 7.如图15, 正方形ABCD 的边长为4,点P 在DC 边上,且DP =1,点Q 是 AC 上一动点,则DQ +PQ 的最小值为____________.AC BD ⊥90BAD ∠=AB BC =AC BD =ABCD 60A ∠=8BD =ABCD ABCD AD BC ∥90D ∠=ABCD ABCD 45ABC ∠=D A B CD A B D F A D OE B C B C D A PF D OB E A 三、解答题1.如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB CD ,的延长线分别交于E F ,.(1)求证:BOE DOF △≌△; (2)当EF 与AC 满足什么关系时,以A E C F ,,,为顶点的四边形是菱形?证明你的结论.2.如图,在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:△AEF ≌△DEB ; (2)证明四边形ADCF 是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.3.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,过点E 作EF ∥AB ,交BC 于点F . (1)求证:四边形DBFE 是平行四边形;(2)当△ABC 满足什么条件时,四边形DBFE 是菱形?为什么?4.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC 于E,F两点,连结BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.5.如图,在△ABC中,点D是BC的中点,点E,F分别在线AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).请说明理由.6.已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD∶AB=__________时,四边形MENF是正方形(只写结论,不需证明).1.如图,在四边形ABCD中,点H是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.2.如图,在△ABC中,AB=AC,点D(不与点B重合)在BC上,点E是AB的中点,过点A作AF∥BC交DE延长线于点F,连接AD,BF.(1)求证:△AEF≌△BED.(2)若BD=CD,求证:四边形AFBD是矩形.3.如图,将平行四边形ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC 于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.4.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC 于点F,连接CE.求证:四边形BECD是矩形.A B P D E5.已知:如图,点E 是正方形ABCD 的边AB 上任意一点,过点D 作DF DE ⊥交BC 的延长线于点F .求证:DE DF =.6.已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M , 使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.7.如图,P 是边长为1的正方形ABCD 对角线AC 上一动点(P 与A 、C 不重合),点E 在射线BC 上,且PE=PB . (1)求证:PE=PD ;(2)PE ⊥PD ; 8.如图12,B 、C 、E 是同一直线上的三个点,四边形ABCD 与四边形CEFG 是都是正方形.连接BG 、DE.(1)观察猜想BG 与DE 之间的关系,并证明你的结论.(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说出旋转过程;若不存在,请说明理由.图12G FEDC BAA EBCFD 12330.(2015•简阳市模拟)已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.3.(2014•江苏盐城,第25题10分)菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.4、(2008泰州市)在矩形ABCD中,AB=2,AD=3.(1)在边CD上找.一点E,使EB平分∠AEC,并加以说明;(3分)(2)若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.①求证:点B平分线段AF;(3分)②△PAE能否由△PFB绕P点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)5.(2014•山东临沂,第25题11分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.14.(2013年内蒙古赤峰)如图4-3-47,在Rt△ABC中,∠B=90°,AC=60 cm,∠A=60°,点D从点C出发沿CA方向以4 cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2 cm/s的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(0 < t≤ 15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.新课标第一网图4-3-4713、(2008年江苏省苏州市)如图,在等腰梯形ABCD 中,AD BC ∥,5AB DC ==,6AD =,12BC =.动点P 从D 点出发沿DC 以每秒1个单位的速度向终点C 运动,动点Q 从C 点出发沿CB 以每秒2个单位的速度向B 点运动.两点同时出发,当P 点到达C 点时,Q 点随之停止运动.(1)梯形ABCD 的面积等于 ;(2)当PQ AB ∥时,P 点离开D 点的时间等于 秒;(3)当P Q C ,,三点构成直角三角形时,P 点离开D 点多少时间?26、(2008上海市)如图,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. (1)求证:四边形ABCD 是菱形;(2)若2AED EAD ∠=∠,求证:四边形ABCD 是正方形.38、(2008鸡西)已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交CB DC ,(或它们的延长线)于点M N ,.EB ACB当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=. (1)当M A N ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的数量关系?写出猜想,并加以证明.40.(2010福建南平)如图1,在△ABC 中,AB=BC ,P 为AB 边上一点,连接CP ,以PA 、PC 为邻边作□APCD ,AC 与PD 相交于点E ,已知∠ABC=∠AEP=α(0°<α<90°).(1)求证:∠EAP=∠EPA;(2)□APCD 是否为矩形?请说明理由;(3)如图2,F 为BC 中点,连接FP ,将∠AEP 绕点E 顺时针旋转适当的角度,得到∠MEN(点M 、N 分别是∠MEN 的两边与BA 、FP 延长线的交点).猜想线段EM 与EN 之间的数量关系,并证明你的结论.43.(2010 山东莱芜)在平行四边形ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;图1BBBMBCNCNM CNM 图1图2图3AAADDD(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ;(4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.46.(2010福建宁德)如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM.⑴ 求证:△AMB≌△ENB;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;⑶ 当AM +BM +CM 的最小值为时,求正方形的边长.13B C H G F EO D C B A 图① H G F E OD C B A 图② A B C DOE F G H 图③ A B C D OEF GH图④。
特殊的平行四边形1. 平行四边形、矩形、菱形、正方形的性质:2. 识别方法小结:(1) 识别平行四边形的方法:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。
(2) 识别矩形的方法:①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形。
(3) 识别菱形的方法:①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形。
(4) 识别正方形的方法:①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线互相垂直且相等的平行四边形是正方形;③有一组邻边相等的矩形是正方形;④对角线互相垂直的矩形是正方形;⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;⑦对角线互相垂直平分且相等的四边形是正方形。
小结:把以上识别方法的编号分别填入下图中的每一条带方向的线上:(如平行四边形的第一种识别方法的编号为(1) ①,其他方法类似)一、基础达标训练:(A组)1.填空:(1)两条对角线的四边形是平行四边形;(2)两条对角线的四边形是矩形;(3)两条对角线的四边形是菱形;(4)两条对角线的四边形是正方形;(5)两条对角线的平行四边形是矩形;(6)两条对角线的平行四边形是菱形;(7)两条对角线的平行四边形是正方形;(8)两条对角线的矩形是正方形;(9)两条对角线的菱形是正方形。
2.已知□ABCD的周长为42cm,AB:AD = 2∶5,则AB+AD=________3.已知矩形ABCD的一条对角线AC = 24,则另一条对角线BD = .4.矩形的两条对角线一夹角为60°,一条对角线与较短边的和为21cm,则对角线的长为.5.菱形的两条对角线长为7和16,则菱形的面积为.6.正方形的边长是5cm时,它的周长是,面积是.7.正方形的一条对角线长为8,则正方形的面积为.8.中点四边形:(1) 顺次连接四边形各边中点所得的四边形是.(2) 顺次连接平行四边形各边中点所得的四边形是.(3) 顺次连接矩形各边中点所得的四边形是.(4) 顺次连接菱形各边中点所得的四边形是.(5) 顺次连接正方形各边中点所得的四边形是.9.(2006年黑龙江省)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF ,AE 、BF 相交于点D ,下列结论①AE=BF ; ②AE ⊥BF ;③ AO=OE ; ④S △AOB =S 四边形DEOF 中,错误的有( ) A .1个 B .2个 C .3个 D .4个10. (2006年黑龙江省) 如图,在矩形ABCD 中,EF ∥AB ,GH ∥BC , 11. EF 、GH 的交点P 在BD 上,图中面积相等的四边形有( )A .3对B .4对C .5对D .6对12. (2006年海南省)如图,在菱形ABCD 中,E 、F 、G 、H 分别是菱形四边的 中点,连结EG 与FH 交于点O ,则图中的菱形共有( ) A .4个 B .5个 C .6个 D .7个13. (2006年云南省昆明市)己知:如图,菱形ABCD 中,∠B=600,AB =4,则以AC 为边长的正方形ACEF 的周长为 .14. (2006年宁夏回族自治区)菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为 2cm .15. 矩形ABCD 的对角线AC 、BD 相交于点O ,∠1=2∠2,若AC =1.8cm ,试求AB 的长。
特殊平行四边形练习题〔矩形,菱形,正方形〕矩形的习题精选一、性质1、以下性质中,矩形具有而平行四边形不一定具有的是〔 〕A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2.在矩形ABCD 中,∠AOD=130°,那么∠ACB=__ _3.矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,那么矩形的周长为______4.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm ,对角线是13cm ,那么矩形的周长是____________5.如下图,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____6、直角三角形斜边上的高与中线分别是5cm 和6cm ,那么它的面积为___7、,在Rt △ABC 中,BD 为斜边AC 上的中线,假设∠A=35°,那么∠DBC= 。
8、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F.求证:BE=CF.9.如图,△ABC 中,∠ACB=900,点D 、E 分别为AC 、AB 的中点,点F 在BC 延长线上,且∠CDF=∠A ,求证:四边形DECF 是平行四边形;:如图,在△ABC 中,∠BAC ≠90° ∠ABC=2∠C ,AD ⊥AC ,交BC 或CB 的延长线D 。
试说明:DC=2AB.11、在△ABC 中,∠C=90O ,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。
求证:DE=DF二、判定1、以下检查一个门框是否为矩形的方法中正确的选项是〔 〕A .测量两条对角线,是否相等B .测量两条对角线,是否互相平分C .用曲尺测量门框的三个角,是否都是直角D .用曲尺测量对角线,是否互相垂直2、平行四边形ABCD ,E 是CD 的中点,△ABE 是等边三角形,求证:四边形ABCD 是矩形A B E F O3、在平行四边形ABCD 中,对角线AC 、BD 相交于O ,EF 过点O ,且AF ⊥BC ,求证:四边形AFCE 是矩形4、平行四边形ABCD 中,对角线AC 、BD 相交于点O,点P是四边形外一点,且PA ⊥PC ,PB ⊥PD ,垂足为P。
特殊平行四边形练习题(答案已做) 特殊平行四边形专题练一、基础知识点复:一)矩形:1、矩形的定义:有四个直角的平行四边形叫矩形。
2、矩形的性质:①.矩形的四个角都是直角;矩形的对角线相等。
②.矩形既是对称图形,又是图形,它有一条对称轴。
3、矩形的判定:①.有四个直角的四边形是矩形。
②.对角线相等的平行四边形是矩形。
③.对角线互相垂直的四边形是矩形。
4、练:①矩形ABCD的两条对角线相交于O,∠AOD=120°,AB=4cm,则矩形对角线AC长为4cm。
②.四边形ABCD的对角线AC,BD相交于点O,能判断它为矩形的题设是()D.AO=CO,BO=DO,AC⊥BD③.四边形ABCD中,AD//BC,则四边形ABCD是平行四边形,又对角线AC,BD交于点O,若∠1=∠2,则四边形ABCD是矩形。
二)菱形:1、菱形的定义:有一组对边相等的平行四边形叫菱形。
2、菱形的性质:①.菱形的四条边相等;菱形的对角线相等,且每条对角线平分另一条对角线。
②.菱形既是对称图形,又是图形,它有一条对称轴。
3、菱形的判定:①.四个边都相等的四边形是菱形。
②.对角线相等的平行四边形是菱形。
③.对角线互相垂直的四边形是菱形。
4、菱形的面积与两对角线的关系是:面积等于两条对角线的乘积除以2.5、练:①.如图,BD是菱形ABCD的一条对角线,若∠ABD=65°,则∠A=115°。
②.一个菱形的两条对角线分别是6cm,8cm,则这个菱形的周长等于16cm,面积=24cm²。
三、正方形正方形是一种特殊的矩形,它的四边相等且四个角都是直角。
对角线相等且垂直平分。
正方形是一种对称图形,有4条对称轴。
判定一个四边形是正方形,首先需要判定它是矩形,然后再判定它是菱形。
练:1.如果正方形的面积为4,则它的边长为2,对角线长为2√2.2.已知正方形的对角线长为4,则它的边长为2,面积为4.3.在△ABC中,如果AB=AC,点D,E,F分别是边AB,BC,AC的中点,连接DE,EF,要使四边形ADEF是正方形,还需增加条件:∠BAC=90°。
特殊平行四边形综合题(培优)一.选择题(共9小题)1.如图.任意四边形ABCD中,E,F,G,H分别是各边上的点,对于四边形E,F,G,H的形状,小聪进行了探索,下列结论错误的是()A.E,F,G,H是各边中点,且AC=BD时,四边形EFGH是菱形B.E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH是矩形C.E,F,G,H不是各边中点,四边形EFGH可以是平行四边形D.E,F,G,H不是各边中点,四边形EFGH不可能是菱形2.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=8,BD=6,则四边形EFGH的面积为()A.14B.12C.24D.483.依次连接四边形ABCD的四边中点得到的图形是正方形,则四边形ABCD的对角线需满足()A.AC=BD B.AC⊥BDC.AC=BD且AC⊥BD D.AC⊥BD且AC与BD互相平分4.顺次连接正方形各边中点所成的四边形的面积与原正方形的面积之比为()A.1:B.1:C.1:3D.1:25.如图,正方形ABCD中,AE=BF,下列说法中,正确的有()①AF=DE;②AF⊥DE;③AO=OF;④S△AOD=S四边形BEOF.A.1个B.2个C.3个D.4个6.顺次连接凸四边形各边中点所得到的四边形是正方形时,原四边形对角线需满足的条件是()A.对角线相等且垂直B.对角线相等C.对角线垂直D.一条对角线平分另一条对角线7.如图,矩形ABCD中,对角线AC,BD交于点O,如果∠ADB=35°,那么∠AOB的度数为()A.35°B.45°C.70°D.110°8.下列命题中,正确的是()A.一组对边平行且另一组对边相等的四边形是平行四边形B.两组邻边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形9.如图,矩形ABCD的对角线AC与BD相交于点O,∠ADB=30°,AB=6,则OC=()A.12B.C.6D.3二.填空题(共21小题)10.如图,点A、B、C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M、N、P、Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在无数个中点四边形MNPQ是正方形.所有正确结论的序号是.11.如图,点A,B,C为平面内不在同一直线上的三点,点D为平面内一个动点,线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④中点四边形MNPQ不可能是正方形;所有结论正确的序号是.12.如图,点A,B,C为平面内不在同一直线上的三点.点D为平面内一个动点.线段AB,BC,CD,DA的中点分别为M,N,P,Q.在点D的运动过程中,有下列结论:①存在无数个中点四边形MNPQ是平行四边形;②存在无数个中点四边形MNPQ是菱形;③存在无数个中点四边形MNPQ是矩形;④存在两个中点四边形MNPQ是正方形.所有正确结论的序号是.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.14.小明作生成“中点四边形”的数学游戏,具体步骤如下:(1)任画两条线段AB、CD,且AB与CD交于点O,O与A、B、C、D任意一点均不重合.连接AC、BC、BD、AD,得到四边形ACBD;(2)分别作出AC、CB、BD、DA的中点A1,B1,C1,D1,这样就得到一个“中点四边形”.①若AB⊥CD,则四边形A1B1C1D1的形状一定是,这样作图的依据是.②请你再给出一个AB与CD之间的关系,并写出在该条件下得到的“中点四边形”A1B1C1D1的形状.15.如图,矩形ABCD中,AD=a,AB=b,依次连接它的各边中点得到第一个四边形E1F1G1H1,再依次连接四边形E1F1G1H1的各边中点得到第二个四边形E2F2G2H2,按此方法继续下去,得到的第n个四边形E n F n G n H n的面积等于.16.已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有个;第2014个图形中直角三角形的个数有个.17.已知:四边形ABCD的面积为1.如图1,取四边形ABCD各边中点,则图中阴影部分的面积为;如图2,取四边形ABCD各边三等分点,则图中阴影部分的面积为;…;取四边形ABCD各边的n(n为大于1的整数)等分点,则图中阴影部分的面积为.18.梯形的高为4cm,中位线长为5cm,则梯形的面积为cm2.19.如图,点E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下面四个结论:(1)AE=BF,(2)AE⊥BF,(3)AO=OE,(4)S△AOB=S四边,其中正确结论的序号是.形DEOF20.若梯形的面积为12cm2,高为3cm,则此梯形的中位线长为cm.21.已知一个梯形的面积为22cm2,高为2cm,则该梯形的中位线的长等于cm.22.如图,正方形ABCD中,O是AC的中点,E是AD上一点,连接BE,交AC于点H,作CF⊥BE于点F,AG⊥BE于点G,连接OF,则下列结论中,①AG=BF;②OF平分∠CFG;⑤CF﹣BF=EF;④GF=OF,正确的有.(填序号)23.如图,点E是正方形ABCD的对角线BD上一点.EF⊥BC,EG⊥CD,垂足分别是F,G,GF=5,则AE=.24.如图,平行四边形ABCD的对角线AC与BD相交于点O,且∠OCD=90°.若E是BC边的中点,AC=6,BD=10,则OE的长为.25.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=2,BC=5,则DE =.26.如图,菱形ABCD的边长为2,∠BAD=60°,点E是AD边上一动点(不与A,D重合),点F是CD边上一动点,DE+DF=2,则∠EBF=°,△BEF面积的最小值为.27.在平面直角坐标系xOy中,菱形ABCD的四个顶点都在坐标轴上.若A(﹣4,0),B (0,﹣3),则菱形ABCD的面积是.28.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,使得点D落在点D'处,则FC=.29.如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是.30.在数学家吴文俊主编的《“九章算术”与刘徽》一书中,小宇同学看到一道有趣的数学问题:古代数学家刘徽使用“出入相补”原理,即割补法,把筝形转化为与之面积相等的矩形,从而得到“筝形的面积等于其对角线乘积之半”.(说明:一条对角线垂直平分另一条对角线的四边形是筝形)请根据如图完成这个数学问题的证明过程.证明:证明:S筝形ABCD=S△AOB+S△AOD+S△COB+S△COD.易知,S△AOD=S△BEA,S△COD=S△BFC,由等量代换可得:S筝形ABCD=S△AOB++S△COB+=S矩形EFCA=AE•AC=•.三.解答题(共30小题)31.在正方形ABCD中,P是边BC上一动点(不与点B、C重合),E是AP的中点,过点E作MN⊥AP,分别交AB、CD于点M,N.(1)判定线段MN与AP的数量关系,并证明;(2)连接BD交MN于点F.①根据题意补全图形;②用等式表示线段ME,EF,FN之间的数量关系,直接写出结论.32.如图,已知在四边形中,AC⊥BD交于点O,E、F、G、H分别是四边上的中点,求证:四边形EFGH是矩形.33.我们规定:一组邻边相等且对角互补的四边形叫做“完美四边形”.(1)在①平行四边形,②菱形,③矩形,④正方形中,一定为“完美”四边形的是(请填序号);(2)在“完美”四边形ABCD中,AB=AD,∠B+∠D=180°,连接AC.①如图1,求证:AC平分∠BCD;小明通过观察、实验,提出以下两种想法,证明AC平分∠BCD:想法一:通过∠B+∠D=180°,可延长CB到E,使BE=CD,通过证明△AEB≌△ACD,从而可证AC平分∠BCD;想法二:通过AB=AD,可将△ACD绕点A顺时针旋转,使AD与AB重合,得到△AEB,可证C,B,E三点在一条直线上,从而可证AC平分∠BCD.请你参考上面的想法,帮助小明证明AC平分∠BCD;②如图2,当∠BAD=90°,用等式表示线段AC,BC,CD之间的数量关系,并证明.34.如图,在等边△ABC中,作∠ACD=∠ABD=45°,边CD、BD交于点D,连接AD.(1)请直接写出∠CDB的度数;(2)求∠ADC的度数;(3)用等式表示线段AD、BD、CD三者之间的数量关系,并证明.35.如图,四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点.(1)判断四边形EFGH是何种特殊的四边形,并说明你的理由;(2)要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.36.在正方形ABCD中,点E是边BC上的中点,在边CD上取一点F,使得AE平分∠BAF.(1)依题意补充图形;(2)小玲画图结束后,通过观察、测量,提出猜想:线段AF等于线段BC与线段CF 的和.小玲把这个猜想与同学们进行交流.通过讨论,形成了证明该猜想的几种想法:想法1:考虑到AE平分∠BAF,且∠B=90°.若过点E作EM⊥AF,则易证AM=AB =BC.这样,只需证明FM=FC即可.因∠EMF=∠C=90°,证FM=FC即证EF平分∠MEC,所以连接EF.想法2:考虑到E是BC中点,若延长AE,交DC的延长线于点G,则易证CG=AB,则CF+BC=CF+CG=FG.要证AF=BC+CF,只需证F A=FG即可.想法3:小米在课外小组学习了梯形中位线的相关知识,考虑到正方形ABCD所以有BC =AB,因此BC+CF=AB+CF,是梯形上、下底之和,结合“E是BC中点”,易联想到梯形中位线的性质,从而解决问题.…请你参考上面的想法,帮助小玲证明AF=BC+CF.(一种方法即可)37.已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.38.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;(3)如图3,在(2)的条件下,连接GF、HD.求证:①FG+BE≥BF;②∠HGF=∠HDF.39.已知:如图,梯形ABCD中,AD∥BC,AD+BC=10,M是AB的中点,MD⊥DC,D 是垂足,sin∠C=,求梯形ABCD的面积.40.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:.41.如图,在梯形ABCD中,AD∥BC,∠B=∠ACD.(1)请再写出图中另外一对相等的角;(2)若AC=6,BC=9,试求梯形ABCD的中位线的长度.42.已知:如图,梯形ABCD中,AB∥CD,中位线EF长为20,AC与EF交于点G,GF ﹣GE=5.求AB、CD的长.43.已知:在梯形ABCD中,AD∥BC,点E在AB上,点F在DC上,且AD=a,BC=b.(1)如果点E、F分别为AB、DC的中点,如图.求证:EF∥BC,且EF=;(2)如果,如图,判断EF和BC是否平行,并用a、b、m、n的代数式表示EF.请证明你的结论.44.如图,在正方形ABCD中,点E在线段CB的延长线上,连接AE,并将线段AE绕点E 顺时针旋转90°,得到线段FE,连接AF,BD,CF,线段AF与线段BD相交于点M.(1)请写出∠ECF的度数,并给出证明;(2)求证:点M是线段AF的中点;(3)直接写出线段CF,BM和AD的数量关系.45.四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,CE=CD,连接DE,过点B作BF⊥DE交DE的延长线于点F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.46.在正方形ABCD中,P是射线CB上的一个动点,过点C作CE⊥AP于点E,射线CE 交直线AB于点F,连接BE.(1)如图1,当点P在线段CB上时(不与端点B,C重合).①求证:∠BCF=∠BAP;②求证:EA=EC+EB;(2)如图2,当点P在线段CB的延长线上时(BP<BA),依题意补全图2并用等式表示线段EA,EC,EB之间的数量关系.47.如图,在正方形ABCD中,点E是直线AC上任意一点(不与点A,C重合),过点E 作EF⊥BE交直线CD于点F,过点F作FG⊥AC交直线AC于点G.(1)如图1,当点E在线段AC上时,猜想EG与AB的数量关系;(2)如图2,当点E在线段AC的延长线上时,补全图形,并判断(1)中EG与AB的数量关系是否仍然成立.如果成立,请证明;如果不成立,请说明理由.48.已知正方形ABCD,点E是直线BC上一点(不与B,C重合),∠AEF=90°,EF交正方形外角的平分线CF所在的直线于点F.(1)如图1,当点E在线段BC上时,①请补全图形,并直接写出AE,EF满足的数量关系;②用等式表示CD,CE,CF满足的数量关系,并证明.(2)当点E在直线BC上,用等式表示线段CD,CE,CF之间的数量关系(直接写出即可).49.如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB',FD′相交于点O.简单应用:(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是.(2)请你结合图1写出一条完美筝形的性质.(3)当图3中的∠BCD=120°时,∠AEB′=.(4)当图2中的四边形AECF为菱形时,对应图③中的“完美筝形”有(写出筝形的名称:例筝形ABCD).50.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明:CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.51.在平行四边形ABCD中,E是AD上一点,AE=AB,过点E作射线EF.(1)若∠DAB=60°,EF∥AB交BC于点H,请在图1中补全图形,并判断四边形ABHE 的形状;(2)如图2,若∠DAB=90°,EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG,请在图2中补全图形,猜想线段EG,AG,BG之间的数量关系,并证明你的结论;(3)如图3,若∠DAB=α(0°<α<90°),EF与AB相交,在EF上取一点G,使得∠EGB=∠EAB,连接AG.请在图3中补全图形(要求:尺规作图,保留作图痕迹),直接写出线段EG,AG,BG之间的数量关系(用含α的式子表示).52.如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文根据筝形的定义得到筝形边的性质是;(2)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:.证明:(3)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)53.如果一个四边形ABCD满足AB=AD且BC=CD,则称四边形ABCD为筝形.(1)如图1,连接筝形ABCD的对角线AC、BD交于点H,求证:AC⊥BD.(2)求证:筝形ABCD的面积S=AC•BD.(3)如图2,在筝形ABCD中,AB=AD=5,BC=CD,BD=8,过点B作BF⊥CD于点,交AC于点E,过点F作FM⊥AB于点M,若四边形ABED是菱形,求FM的长.54.已知,在菱形ABCD中,∠ADC=60°,点F为CD上任意一点(不与C、D重合),过点F作CD的垂线,交BD于点E,连接AE.(1)①依题意补全图1;②线段EF、CF、AE之间的等量关系是.(2)在图1中将△DEF绕点D逆时针旋转,当点F、E、C在一条直线上(如图2).线段EF、CE、AE之间的等量关系是.写出判断线段EF、CE、AE之间的等量关系的思路(可以不写出证明过程)55.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠P AB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.56.在菱形ABCD中,∠ABC=60°,点P在对角线BD上,点Q在直线AD上,且∠CPQ =120°.(1)如图1,若点P为菱形ABCD的对角线的交点.①依题意补全图1;②猜想PC与PQ的数量关系并加以证明;(2)如图2,若∠CPD=80°,连接CQ,写出求∠PQD度数的思路.57.在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:.58.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC =AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.59.请阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及数量关系.小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中线段PG与PC的位置关系及的值;(2)如图2,在正方形ABCD和正方形BEFG中,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC,探究PG与PC的位置关系及数量关系;(3)将图2中的正方形BEFG绕点B顺时针旋转,原问题中的其他条件不变(如图3),你在(2)中得到的两个结论是否发生变化?写出你的猜想并加以证明.60.在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.(1)如图1,求证:ME=MF;(2)如图2,点G是线段BC上一点,连接GE、GF、GM,若△EGF是等腰直角三角形,∠EGF=90°,求AB的长;(3)如图3,点G是线段BC延长线上一点,连接GE、GF、GM,若△EGF是等边三角形,则AB=.。
特殊的平行四边形基础练习姓名班级【知识要点】1、矩形、菱形的概念,知道它们之间的关系以及与平行四边形的关系;2、矩形、菱形、正方形的有关性质并能运用这些知识进行有关的证明和计算;3、分析四边形与特殊四边形、以及平行四边形与各种特殊平行四边形的概念之间的联系与区别.一、填空题(3分×10 = 30分)1.既是轴对称图形,又是中心对称图形的四边形是.2.在□ABCD中,若添加一个条件,则四边形ABCD是矩形;若添加一个条件,则四边形ABCD是菱形.3.已知正方形的面积为4,则正方形的边长为________,对角线长为________.4.已知矩形的对角线长为4cm,一条边长为23cm,则面积为________.5.矩形的两条对角线的夹角为60°,较短的边长为12㎝,则对角线长为.6.菱形的两条对角线分别是6cm、8cm,则菱形的边长为,面积为.7.若矩形的一条对角线与一边的夹角为40°,则两条对角线所夹钝角的度数为度.8.如图1,已知四边形ABCD是正方形,△CDE是等边三角形,则∠AED= 度,∠AEB= 度.9.如图2,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E•为垂足,连结DF,则∠CDF =__ ______度.图1 图2 图310.如图3,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,如果∠BAF=60°,那么∠DAE=度.二.选择题(3分×6 = 18分)1.下列说法中,不正确的是()(A)有三个角是直角的四边形是矩形(B)对角线相等的四边形是矩形(C)对角线互相垂直的矩形是正方形(D)对角线互相垂直的平行四边形是菱形2.已知一个四边形的对角线互相垂直,•那么顺次连接这个四边形的四边中点所得的四边形是()(A)矩形(B)菱形(C)等腰梯形(D)正方形3.用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是()(A)①②③(B)①④⑤(C)①②⑤(D)②⑤⑥4.下列说法中,错误的是( )(A)平行四边形的对角线互相平分(B)对角线互相平分的四边形是平行四边形(C)菱形的对角线互相垂直(D)对角线互相垂直的四边形是菱形5.给出四个特征:(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形.其中属于矩形和等腰梯形共同具有的特征的共有( ) (A)1个(B)2个(C)3个(D)4个6.一张矩形纸片按如图甲或乙所示对折,然后沿着图丙中的虚线剪下,得到①、•②两部分,将①展开后得到的平面图形是()(A)三角形(B)矩形(C)菱形(D)梯形三.解答题(6分×6 + 8分×2 = 52分)1.已知四边形ABCD中,AB=CD,AC=BD,试添加适当的条件使四边形ABCD成为特殊的平行四边形,并说明理由.2.如图,在菱形ABCD中,∠A与∠B的度数比为1:2,周长是48cm.求:(1)两条对角线的长度;(2)菱形的面积.3.如图,已知在正方形ABCD中,AE⊥BF,垂足为P,AE与CD交于点E,BF与AD 交于点F,求证:AE=BF.4.如图,△ABC中,AD平分∠BAC,DE∥AC,DF∥AB.试说明四边形AEDF是菱形.5.如图,矩形ABCD中,AB=2cm,BD=4cm,AE⊥BD,E是垂足,求AC的长和∠ADB、∠BAE的度数.6.如图,适当地改变方格图中的平行四边形的部分位置,并保持面积不变,先使其成为矩形,再将矩形向下平移3个格后,继续改变其中某些部分的位置并保持面积不变,使其成为菱形.说明在变化过程中所运用的图形变换.。
《特殊平行四边形》基础训练
(一)填空题
1.(2分)矩形除了具备平行四边形的性质外,还有一些特殊性质:四个
角,对角线。
2.(1分)在矩形ABCD中,对角线AC、BD交于点O,若100
∠=,
AOB ∠=。
则OAB
3.(1分)已知菱形一个内角为120,且平分这个内角的一条对角线长为
8cm,则这个菱形的周长为。
4.(3分)矩形的两条对角线把这个矩形分成了四个三角形。
菱形的两条对角线把这个菱形分成了四个三角形。
正方形的两条对角线把这个正方形分成了四个三角形。
5.(2分)如图,把两个大小完全相同的矩形拼成“L”型图案,则
FAC
∠=。
∠=,FCA
6.(2分)正方形的边长为a,则它的对角线长,若正方形的
对角线长为b,它的边长为。
7.(1分)边长为a的正方形,在一个角剪掉一个边长为的b正方形,则
所剩余图形的周长为。
8.(4分)顺次连接四边形各边中点,所得的图形是。
顺次连
接对角线的四边形的各边中点所得的图形是矩形。
顺次连接对角线的四边形的各边中点所得的四边形是菱形。
顺次连接
对角线的四边形的各边中点所得的四边形是正方形。
(二)选择题
1.正方形具备而菱形不具备的性质是()
A.对角线互相平分
B.对角线互相垂直
C.对角线相等
D.每条对角线平分一组对角
2.下列命题是真命题的是( )
A.有一个角是直角的四边形是矩形
B.有一组邻边相等的四边形是菱形
C. 有三个角是直角的四边形是矩形
D. 有三条边相等的四边形是菱形
3.从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是( )
A.150
B. 135
C. 120
D.
100
4.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形满足条件的是( )
①平行四边形 ②菱形 ③等腰梯形 ④对角线互相垂直的四边形
A.①③
B.②③
C.③④
D.②④
5.在平行四边形、菱形、矩形、正方形中,能够找到一个点,使该点到各顶点距离相等的图形是( )
A.平行四边形和菱形
B.菱形和矩形
C.矩形和正方形
D.菱形和正方形
6.矩形的边长为10cm 和15cm ,其中一个内角的角平分线分长边为两部份,这两部份的长为( )
A.6cm 和9cm
B. 5cm 和10cm
C. 4cm 和11cm
D. 7cm 和8cm
7.如图,点E 是正方形ABCD 对角线AC 上一点,AF BE 于点F ,交BD 于点G ,则下述结论中不成立的是( )
A.AG=BE
B.△ABG ≌△BCE
C.AE=DG
D.∠AGD=∠DAG
B
(三) 解答题
1.已知:如图Rt △ABC 中,∠ACB =90°,CD 为∠ACB 的平分线,DE ⊥BC 于点E ,DF ⊥AC 于点F 。
求证:四边形CEDF是正方形。
C B
2.已知,AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F。
求证:四边形AEDF是菱形。
C
3.菱形周长为40cm,它的一条对角线长10cm。
(1)求菱形的每一个内角的度数。
(2)求菱形另一条对角线的长。
(3)求菱形的面积。
参考答案
(一)填空题
1.都是直角,相等
2.40°
3.32cm
7.4a8.平行四边形,
4.等腰,直角,等腰直角
5.90°,45°,
2
互相垂直,相等,互相垂直且相等
(二)选择题
1.C
2.C
3.C
4.D
5.C
6.B
7.D
(三)解答题
1.∵CD平分∠ACB,DE⊥BC,DF⊥AC,
∴DE=DF,∠DFC=90°,∠DEC=90°
又∵∠ACB=90°,∴四边形DECF是矩形,∴矩形DECF是正方形。
2.∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∠EDA=∠FAD,
∵∠EAD=∠FAD,∴∠EAD=∠EDA,∴EA=ED,∴AEDF是菱形。
3.(1)60°和120°
(2)另一条对角线长
(3)菱形面积为2
(四)。