音频测试中常用标准说明.doc
- 格式:doc
- 大小:59.50 KB
- 文档页数:3
发声书检测标准一、音质检测1.声音是否清晰,无模糊、杂音或刺耳的噪音。
2.声音是否圆润,无破音或刺耳的共鸣。
3.声音是否流畅,无停顿、中断或语速过快的现象。
二、音量检测1.音量是否适中,足够大以覆盖背景噪音,但不超过最大音量限制。
2.音量在不同段落或不同部分是否保持相对稳定。
三、音色检测1.音色是否自然,无明显的音色偏差。
2.音色是否符合不同角色的设定,如有必要。
四、音调检测1.音调是否适中,既不过于单调也不过于花哨。
2.音调在不同情感或语境下是否有所变化。
五、音频稳定性检测1.音频是否稳定,无断续、卡顿或延迟现象。
2.音频质量是否达到专业水准,无明显失真或压缩痕迹。
六、声音清晰度检测1.发音是否清晰,易于理解。
2.对某些特定的语言表达(如生僻词汇或外来词)是否准确发音。
七、发音准确性检测1.发音是否准确,遵循标准普通话发音规则。
2.对多音字或方言用词的发音是否正确。
八、语速检测1.语速是否适中,既不过于缓慢也不过于快速。
2.在不同语境下,语速是否有相应的变化。
九、语境理解能力检测1.对文本中的语境是否有深入的理解和把握。
2.是否能根据语境的变化调整语言表达方式。
十、语言表达能力检测1.是否能用清晰、流畅的语言表达复杂的思想和情感。
2.是否能在不同语境下运用适当的语言表达方式。
十一、语法和用词检测1.是否能正确使用基本的语法结构,无明显的语法错误。
2.是否能准确使用词汇,无明显的用词不当或误用情况。
3.是否能正确使用标点符号和停顿,增强语言表达效果。
4.是否能根据不同的语境和文体要求,运用适当的语言表达方式。
5.是否能准确传达原文的情感和意图,增强阅读体验。
6.是否能根据不同阅读者的特点和需求,进行个性化的演绎和表达。
音频测试中常用标准说明
现代音视频产品已经进入到了每个人的生活中,不断追求产品的音频表现是整个音频行业的持续追求。
如何衡量一个产品音频指标的好坏,这往往需要对其进行音频性能测试。
常见的音频测试的项目可以粗略的分类为:动态范围,频率响应,灵敏度,谐波失真,互调失真,信噪比,最大输入输出电平等。
在目前应用广泛的音频标准中都是分别从不同的角度考察了音频常见产品的性能,现将分类如下:
针对常见的音频测试标准,成都摩尔实验室(MORLAB)在此领域积累了较为丰富的相关经验并配备了专业而完备的音频测试系统及经验丰富的音频测试工程师,相信通过摩尔实验室的专业测试与分析将对提高您产品的音
效起到重要作用。
2012-10-10 来源:摩尔实验室。
硬件测试中的音频质量和音频解码性能评估随着科技的不断进步,音频设备在我们的日常生活中扮演着越来越重要的角色,从智能手机到家庭影音系统,音频质量和音频解码性能的评估成为硬件测试的重要一环。
本文将介绍硬件测试中音频质量和音频解码性能评估的方法和标准。
一、音频质量评估方法1. 主观评估主观评估是最直观、常用的音频质量评估方法之一。
它通过人工听觉对音频进行评价,通过听感、音质、细节表现等方面来判断音频的质量。
常用的主观评估方法包括听测、调查问卷和专家打分等。
2. 客观评估客观评估是一种基于物理参数的音频质量评估方法。
通过使用专业的测试仪器测量音频设备输出的信号的各项参数,如频率响应、失真、信噪比等来判断音频的质量。
客观评估方法可以提供客观的数据,但不如主观评估能够全面评估人的听觉感受。
二、音频质量评估标准1. 频率响应频率响应是评估音频质量的重要指标之一。
它描述了音频设备在不同频率下对信号的响应能力,通常以频率响应曲线表示。
频率响应应该尽可能平坦,即在整个频率范围内信号的衰减程度保持一致,不出现明显的失真。
2. 失真失真是指音频信号在传输或放大过程中发生的形变。
常见的失真类型有谐波失真、交调失真、互调失真等。
音频设备的失真程度应尽可能小,以保证信号的准确传输。
3. 信噪比信噪比是评估音频设备性能的重要指标之一,它表示设备输出信号与背景噪声之间的比例关系。
信噪比越大,表示设备输出的信号中包含的噪声越少,音质越好。
常见的信噪比测试方法有A加权信噪比和C加权信噪比。
三、音频解码性能评估方法1. 解码准确性解码准确性是评估音频解码性能的重要指标之一。
它反映了音频设备对不同格式的音频信号解码的能力。
常见的音频解码格式包括MP3、AAC、FLAC等。
解码准确性应尽可能高,以保证音频信息的完整性和准确性。
2. 解码延迟解码延迟是指音频信号解码所需的时间,它对于实时音频应用非常重要。
解码延迟越低,表示设备对实时音频的处理能力越强。
一、SLR=Lg(标准信号/麦克风接收到的信号);当测试结果大于11dB时,适当增加麦克风电路增益;当测试结果小于5dB时,适当降低麦克风电路增益;二、RLR=Lg(标准信号/听筒发出的音频信号)当测试结果小于-1dB时,适当降低听筒电路增益;当测试结果大于5dB时,适当增加听筒电路增益;三、SFR麦克风的质量,质量的好坏直接影响SFR的测试结果;手机物理结构;基带电路;四、RFR1>听筒的质量直接反映在测试结果上;2>听筒的声学中心如果与其物理中心不一致,也会影响测试结果;3>不正确的测试方法会导致测试结果的不可比;4>RF模式和DAI模式的不同,对测试结果有一定的影响;五、STMR=Lg(仿真嘴发出的音频信号/听筒发出的仿真嘴发出的音频信号)1>从麦克风到听筒的声传输称为侧音(Side tone);2>电话的侧音通道就是发话者讲话时能听到自己声音的一种通道,其他侧音通道还有头传导通道和嘴与耳朵之间经过耳承泄漏形成的声通道。
这些附加侧音通道的存在影响了用户对侧音的感觉,因此也影响了他对侧音的反映。
3>侧音从几个方面影响电话传输质量。
如果侧音损耗太小,则回到自己耳朵的话音声级太响;另一方面,若侧音损耗太大,还会使发话者趋于降低其讲话的声级或形成对方误以为发话者的麦克风远离嘴巴,从而使收话者的受听声级下降。
六、失真1>当系统的输入与输出不呈线性关系时,就要产生非线性失真;2>非线性失真对数据传输而言比语音传输更重要,但是对语音传送也很重要;3>量化失真:在数字系统中,当模拟信号被抽样,再把每个抽样信号编码为有限数字时就会出现量化失真。
把原始信号与量化后又复原的信号作比较,将差异叫做量化失真和非线性失真。
现在采用编码公式A律或者U律PCM都采用接近对数的压扩率。
七、稳定度余量将手机放在坚硬平面上,传感器面向平面,如果有音量控制器,将其置为最大。
测试仪器:1、FM 信号发生器JSG-1051B (单声道FM信号发生器)2、音频分析仪KENWOOD V A-2230A连接示意图如下:测试指标:(1)接收灵敏度(2)接收频带宽度(3)接收解调输出幅度(4)解调输出信噪比(5)解调输出失真度(6)RSSI 检测电平对于立体声还需要多测以下几项:(1)立体声分离度(2)左右声道输出幅度(3)左右声道输出信噪比以上指标的点测的测试方法如下:一、接收灵敏度●把RF线焊接在天线电容的输入端,设置JSG-1051B的发射频率为98MHZ (87~108的中间频率),调制信号为1KHZ,调制频偏为22 .5KHZ;●把音频分析仪KENWOOD V A-2230A 设到测SINDA的功能,滤波带宽设为高通200HZ,低通15KHZ●调节RF输出的电平,测试MPX(单声道输出)的信号,SINDA为26DB的时候,此时的输出幅度側是接收灵敏度。
二、接收频带宽度●把RF线焊接在天线电容的输入端,设置JSG-1051B的发射频率为分别为高108MHZ,低87MHZ,调制信号为1KHZ,调制频偏为22 .5KHZ;●重复灵敏度的测试。
三、接收解调输出幅度、解调输出信噪比(SINDA)、解调输出失真度(DIS)●把RF线焊接在天线电容的输入端,设置JSG-1051B的发射频率为98MHZ (87~108的中间频率),调制信号为1KHZ,调制频偏为22 .5KHZ;●把音频分析仪KENWOOD V A-2230A 设到测SINDA的功能,滤波带宽设为高通200HZ,低通15KHZ●设置RF输出的电平为-50DBM,测试MPX(单声道输出)的信号幅度,VPP幅度既为解调输出幅度,此时V A-2230A 可以读出解调输出的失真度和信噪比(SINDA)对于偶合测试我们基本上测不出一个绝对值,只能测试个大概对比,方法如下:用一个标准天线接在JSG-1051B的发射头上,手机接上耳机,重复测试灵敏度的方法对比于样机相同的距离是否能达到类似的接受效果就行了。
类别音频测试版本R1文件编号C304-VOICE-制定部门品保部制定日期2011年12月02日页次1/3 我们用专门的仪器设备来测试音频功放的电性能是否正常,相对于用耳朵来听要客观许多。
★输入信号源输入信号源我们采用标准的正弦波,用低频信号发生器来产生。
1)信号源频率:为了便于操作,信号源我们选此3个信号频率:100Hz、1KHz和10KHz。
2)信号源电压:信号源电压我们用500mV。
低频信号发生器的信号电压调好后,不要随意改动。
★输出监控为了测量标准信号经过音频功放放大后,有无失真或者说失真有无超过一定限度,我们必须对音频功放输出端进行监控。
1)波形监控:我们用示波器来监控信号输出波形是否有明显失真。
如音量调到很小时的截止失真,调到很大时的饱和失真,标准的正弦波经过放大后变成了其它波形等都可以通过示波器一眼就看出来。
注意在测不同频率时,示波器的时间系数开关应打到相应档。
100 Hz对应5mS 1KHz对应0.5mS 10K Hz对应50uS 2)幅度监控:我们用交流毫伏表来监控信号输出幅度是否有明显失真。
像声音调大后左右音量不一致,音量调不到最大等不良通过交流毫伏表一眼就可以看出来。
这些故障反应在交流毫伏表上,指针指示位置会有明显不同。
通常我们定义指针左右偏转超过额定值的10%即为不良。
例如某功放输出额定值为2V(在交流毫伏表上指针指示为2V),如果交流毫伏表指针指示在1.8V~2.2V范围外即为不良品。
3)谐波监控:我们用失真仪来监控信号输出的谐波成分是否超过规定值。
如听音乐时有杂音,声音听不清晰,感到怪怪的等等,有时就是因为信号的谐波成分含量太高引起的,谐波成分太高就会产生噪音。
这些谐波用失真仪能很好的检测出来。
失真度的指标须根据不同的产品具体制定,高品质、高保真的产品失真度不能超过1%,而有些简易的功放只要失真度不超过10%就可以了。
类别音频测试版本R1文件编号C304-VOICE-制定部门品保部制定日期2011年12月02日页次2/3★接线方框图低频信号发生器待测试功放板左右声道转换盒示波器交流毫伏表失真仪★接线说明1)将低频信号发生器的输出端与功放板的输入端相连。
THD(Total Harmonic Distortion,总谐波失真):谐波失真是指音箱在工作过程中,由于会产生谐振现象而导致音箱重放声音时出现失真。
尽管音箱或耳机中只有基频信号才是声音的原始信号,但由于不可避免地会出现谐振现象(在原始声波的基础上生成二次、三次甚至多次谐波),这样在声音信号中不再只有基频信号,而是还包括由谐波及其倍频成分,这些倍频信号将导致音箱放音时产生失真。
对于普通音箱允许一定谐波信号成分存在,但必须是以对声音基频信号输出不产生大的影响为前提条件。
而总谐波失真是指用信号源输入时,输出信号(谐波及其倍频成分)比输入信号多出的额外谐波成分,通常用百分数来表示。
一般说来,1000Hz频率处的总谐波失真最小,因此不少产品均以该频率的失真作为它的指标。
所以测试总谐波失真时,是发出1000Hz的声音来检测,这一个值越小越好。
注:一些产品说明书的总谐波失真表示为THD<0.5%,1W,这样看来总谐波失真较小,但只是在输出功率为1W的总谐波失真,这与标准要求的测量条件下得到的总谐波失真是不同的。
SNR(Signal to Noise Ratio,信噪比):指在规定输入电压下的输出信号电压与输入电压切断时,输出所残留之杂音电压之比,也可看成是最大不失真声音信号强度与同时发出的噪音强度之间的比率,通常以S/N表示。
一般用分贝(dB)为单位,信噪比越高表示音频产品越好,常见产品都选择60dB以上。
Sample(采样):这个字同时为动词与名词。
做为名词之用时,表示一段录进来的声音(Audio);做为动词使用时,则表示录一段取样声音的录音动作。
会用到"采样"这个字眼的场合,多半是针对采样过程,特别在不是录一整首歌曲,而只是录一段声音的状况。
Resolution(解析力、分辨率):若是用在数字声音信号的领域当中,解析度是指一个取样值的位数,位数越大所能表现的数值范围就越广。
解析力也叫还原度,顾名思义,是声音的还原能力。
音频客观测量指标概念音频指标简介及测试原理方法音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。
两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。
信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷1、信噪比SNR(Signal to Noise Ratio):(1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。
一般来说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否则相反。
信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以上。
音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号强度的比值(2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps和Pn 分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。
(3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率计权:这样的测量方式完全可以体现设备的性能了。
音频测试中常用标准说明现代音视频产品已经进入到了每个人的生活中,不断追求产品的音频表现是整个音频行业的持续追求。
如何衡量一个产品音频指标的好坏,这往往需要对其进行音频性能测试。
常见的音频测试的项目可以粗略的分类为:动态范围,频率响应,灵敏度,谐波失真,互调失真,信噪比,最大输入输出电平等。
在目前应用广泛的音频标准中都是分别从不同的角度考察了音频常见产品的性能,现将分类如下:对应标准标准名称主要测试项目对应主要产品3GPP26.131 终端的声学特性技术要求发送频率响应发送响度评定值接受频率响应接受响度评定值发送方向的空闲信道噪声声学回声控制稳定度储备手机3GPP26.132 语音和视频电话终端声学测试规范EN-50332-1 最大声压测试方法及极限值第一部分Player + Headset (MSPL)FM Tuner + Headset (MSPL)MP3 播放器FM 播放器耳机EN-50332-2 最大声压测试方法及极限值第二部分Headphoneonly (WBCV)Player only (MOV)FM Tuner only (MOV)GB/T 9396 扬声器主要性能测试阻抗额定功率最低共振频率灵敏度频率响应频率范围极性异音测试扬声器IEC 268-5 扬声器测量方法GB/T 14471 头戴式耳机通用技术条件纯音检测额定阻抗特性声压级频率范围频率响应左右声道频率响应之差(立体声耳机)总谐波失真特性电压头环夹力头戴式耳机GB 6832 头戴耳机测量方法GB/T 13581高保真头戴耳机最低性能要求GB/T 9401 传声器测量方法阻抗灵敏度频率响应输出电压指向性特性极性特性麦克风IEC 268-4 声系统第四部分:传声器GB 6881_ISO374 声压法测定噪声源声功率级混响室精密法电器类噪声电器类产品:如电源、音视频播放器、电视机等GB 6882-2008-T 声压法测定噪声源声功率级GBT 6657-1986 助听器电声特性的测量方法助听器GB/T 18697 声学汽车车内噪声测量方法GB/T 21231 声学小型通风装置辐射空气噪声的测量方法I-ETS 300245-2ISDN 电话终端的电气特性ISDN 电话CS-03 Part VAcoustic shock 电话终端TIA-920 电话终端设备-宽带数字有线电话的传输要求数字有线电话TIA-810电话终端设备-窄带数字有线电话的传输要求数字有线电话IEC 268-3-1991 声频放大器测量方法IEC 268-6-1971 辅助无源器件IEC 268-7-1996 送受话器和耳机IEC 268-8-1973 自动增益控制装置IEC 268-9-1977 人工混响装置、时间延迟和移频装置测量方法GB/T 18697 声学汽车车内噪声测量方法GB/T 21231 声学小型通风装置辐射空气噪声的测量方法tips:感谢大家的阅读,本文由我司收集整编。
手机音频测试中常见测试标准与测试项目在多技术集成的复杂电磁环境中,越来越多的外界干扰影响着音频的实际使用效果,然而终端产品(如手机)的音频质量是影响用户体验的关键因素,针对近期众多客户咨询音频测试的情况,摩尔实验室(MORLAB)的工程师依据相关标准,跟广大读者解析国内外音频测试的常见主要要求。
音频测试的主要标准:国内标准:GB/T 15279-2002 YD/T 1538-2011 国外标准加拿大CS-03 PartVIII 美国FCC Part68 欧洲标准EN50332/300903 国际标准TIA-968/810/920 和3GPP TS 51.010-1 系列等等测试项名词解析:SLR-发送响度评定值:SLR(Sending loud rating)是计算发射方向的绝对响度,以此判定话音信号是否适合听众,它是一种基于目标单音测量来表示发送频率响应的方法,灵敏度单位为dBv/Pa。
根据ITU-T P.79 公式计算频段4 至17 频段的SLR。
并m=0.175,和ITU-T P.79 中的发送加权因子。
RLR-接收响度评定值:RLR (Receive Loudness Rating)是计算接收方向的绝对响度, 以此判定话音信号是否适合听众,它是一种基于目标单音测量来表示接收频率响应的方法。
灵敏度单位为dBPa/v。
根据ITU-T P.79 的公式计算频段4 至17 的RLR,采用下表的接收加权系数,m=0.175。
STMR-侧音掩蔽评定值:STMR(Side Tone Masking Rating)侧音通道指的是麦克风接收到的信号输出到电话听筒之间的通道。
从送话器到受话器的声传输称之为侧音。
侧音掩蔽评定值是基于客观单音的测试,表示仿真嘴至仿真耳间的通路损耗。
参照ITU-T P.79 公式和下表的加权系数(非密合情形),使用m=0,225 计算侧音损耗(dB)和STMR(dB)值。
并显示侧音衰减曲线。
YD/T 1215—20026.3 音频性能本条的测试适用于支持话音通信的MS。
因为无法定义测试方法,所有对免提操作仅描述稳定度储备一项测试方法。
6.3.1发送灵敏度/频率响应6.3.1.1定义发送灵敏度/频率响应是输入测试音频率的函数,是指输出电平与输入声压(人工嘴处)之比。
6.3.1.2一致性要求发送灵敏度/频率响应应在表10中给出的容限范围内。
在对数(频率)/线性(dB灵敏度)坐标上,对表8中的间断点之间画直线得到一个框罩,测试结果应落在框罩内。
表10 发送灵敏度/频率响应频率(Hz) 上限(dB) 下限(dB)a=100 -12 -b=200 0 -c=300 0 -12D=1000 0 -6E=2000 4 -6F=3000 4 -6G=3400 4 -9H=4000 0 -6.3.1.3 测试方法6.3.1.3.1 初始条件MS装在LRGP中(按照CCITT P.76附录1执行),将耳承密合于CCITT建议P.51定义的仿真耳的刃形边缘上。
TE与MS之间建立全速率话音呼叫。
TE用CCITT建议P.51定义的仿真嘴在CCITT建议P.64描述的嘴参考点(MRP)送一个声压为-4.7dBPa的纯单音(符合CCITT建议P.64 )。
6.3.1.3.2 程序在100Hz至4000Hz频段内,TE用1/12倍频间隔(依据ISO 3 的R40系列)测试输出电平。
6.3.2 发送响度评定值(SLR) 5—11dB6.3.2.1 定义发送响度评定值(SLR)是一种基于客观单音频测试的表示发送频率响应的方法,这种测试表征收听者对话音信号的感受。
6.3.2.2 一致性要求SLR应为8±3dB。
6.3.2.3 测试方法6.3.2.3.1 初始条件MS装在LRGP中(按照CCITT P.76附录1执行),将耳承密合于CCITT建议P.51定义的仿真耳的刃形边缘上。
TE与MS之间建立全速率话音呼叫。
Frequency Response频率响应音响系统的频率特性常用分贝刻度的纵坐标表示功率和用对数刻度的横坐标表示频率的频率响应曲线来描述。
频率响应是对MP3播放器的数模/模数转换器频率响应能力的一个评价标准。
好的频率响应,是在每一个频率点都能输出稳定足够的信号,不同频率点彼此之间的信号大小均一样。
然而在低频与高频部分,信号的重建比较困难,所以在这两个频段通常都会有衰减的现象。
输出品质越好的装置,频率响应曲线就越平直,反之不但在高低频处衰减得很快,在一般频段,也可能呈现抖动的现象。
频率响应是指将一个以恒电压输出的音频信号与系统相连接时,音箱产生的声压随频率的变化而发生增大或衰减、相位随频率而发生变化的现象,这种声压和相位与频率的相关联的变化关系(变化量)称为频率响应,频率响应范围是最低有效声音频率到最高有效声音频率之间的范围,单位为赫兹(Hz)THD+N 总谐波失真+噪声THD+N是英文Total Hormonic Distortion +Noise 的缩写译成中文是“总谐波失真加噪声”。
它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。
实际的音频功率放大器有各种谐波造成的失真及由器件内或外部造成的噪声,它有一定的THD+N的值。
这个值一般在0.00n%-10%之间(n=1~9)。
THD+N表示失真+噪声,因此THD+N自然越小越好。
但这个指标是在一定条件下测试的。
同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。
一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。
输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般为10-4;输出功率在1~2W,其THD+N更大些,一般为0.1~0.5%。
THD+N这一指标大小与音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。
音频测试中常用标准说明
现代音视频产品已经进入到了每个人的生活中,不断追求产品的音频表现是整个音频行业的持续追求。
如何衡量一个产品音频指标的好坏,这往往需要对其进行音频性能测试。
常见的音频测试的项目可以粗略的分类为:动态范围'频率响应,灵敏度'谐波失真,互调失真,信噪比,最大输入输出电平等。
GB/T 18697
声学汽车车内噪声测量方法
针对常见的音频测试标准,成都摩尔实缢室(MORLAB)在此领域积累了较为丰富的相关经验并配备了专业血完备的音频测试系统及经验丰富的音频测试工程加,相信通过摩尔实验室的专业测试与分析将对提高您产品的音效起到重要作用。
2012-10-10 来源:摩尔实验室。