双棱镜干涉实验
- 格式:docx
- 大小:145.83 KB
- 文档页数:5
实验25-2 双棱镜干涉[实验目的]1.观察分波阵面干涉—双棱镜干涉现象并研究其定性规律。
2.掌握用干涉法测定钠光灯波长,学习测微目镜的使用,并对测量结果的不确定度进行评定。
[实验仪器]光具座、钠光灯、狭缝、双棱镜、测微目镜、凸透镜等。
[实验原理]双棱镜干涉实验在光具座上进行。
图25-1是本实验的装置和光路俯视简图。
从钠光灯M 发出的单色光照亮狭缝S ,S 作为次级光源照射到双棱镜B 上。
双棱镜是由两个很小的锐角(约0.5º~1º)和一个很大的钝角(约178º~179º)构成的三棱镜。
经过双棱镜后光被折射成两束,即光的波阵面经过双棱镜后被分成前进方向不同的两部分,这两部分波阵面如同从两个虚光源S 1 、S 2 直接发出。
S l 、S 2 即为相干光源,在它们各自发出光束的重叠区域就会产生干涉现象,利用测微目镜F 观察和测量重叠区域内干涉条纹的分布。
本实验中,任意相邻两明(或两暗)条纹.的间距为λd D x =∆两虚光源之间的距离d 可用二次成像法测量。
在双棱镜和测微目镜之间放一凸透镜L ,设凸透镜的焦距为f 0 ,在狭缝与双棱镜的距离小于2f 0 ,狭缝与测微目镜分划板之间的距离D > 4 f 0 ,狭缝、双棱镜和测微目镜位置不变的条件下,只移动凸透镜,当分划板上分别出现两个虚光源的缩小像和放大像时,分别测出两虚光源像之间相应的间距d 1 和d 2 ,则虚光源的间距21d d d =图25-1[实验内容及步骤]一、调整光路。
二、研究双棱镜干涉的定性规律。
三、用测微目镜测量干涉条纹的间距。
四、测量两个虚光源之间的距离d。
[数据表格及数据处理]表25-1用测微目镜测量干涉条纹的间距单位:mmD=0.5654m,Δm(D)=0.5×10-3 m,Δm(Δx)=Δm(d)=0.001mm。
表25-2测量两个虚光源之间的距离d单位:mmnm 94.586m 1094.5865654.010114.010911.2933=⨯=⨯⨯⨯=∆⋅=---D x d λm 1029.03105.03)()()(33--⨯=⨯=∆==D D u D u m B()()()[]mm1036.0001.0001.00001.00001.0301561)(32222612-=⨯=+-++-++-⨯=⨯=∆∑i iA x u ν mm 1058.03001.03)()(3-⨯==∆∆=∆x x u m Bmm 1068.0)1058.0()1036.0()()()(3232322---⨯=⨯+⨯=∆+∆=∆x u x u x u B A()()[]mm1036.0001.00001.0001.0001.00301561)(22222612-=⨯=++-+-++⨯=⨯=∑i i A d u ν mm 1058.03001.03)()(3-⨯==∆=d d u m Bmm 1068.0)1058.0()1036.0()()()(332322---⨯=⨯+⨯=+=d u d u d u B A%5.000512.0911.21058.0114.01058.05654.01029.0)()()()(232323222≈=⎪⎪⎭⎫⎝⎛⨯+⎪⎪⎭⎫ ⎝⎛⨯+⎪⎪⎭⎫ ⎝⎛⨯=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡∆∆+⎥⎦⎤⎢⎣⎡=---d d u x x u D D u u cr λ nm 3005.300512.094.586)()(≈=⨯=⋅=λλλcr c u unm )3587()(±=±=λλλc u。
菲涅尔双棱镜实验报告一、实验目的本实验旨在通过菲涅尔双棱镜实验,观察光的干涉现象,测量光波波长,并加深对光的波动性的理解。
二、实验原理菲涅尔双棱镜是由两个折射角很小的直角棱镜底边相接而成。
当一束单色平行光垂直照射在双棱镜的棱脊上时,经双棱镜折射后,其折射光可视为由两个虚光源发出的相干光。
这两个虚光源发出的光在空间相遇,会产生干涉条纹。
根据光的干涉原理,相邻两亮条纹或暗条纹之间的距离与光波波长、双棱镜到观察屏的距离以及两虚光源之间的距离有关。
通过测量条纹间距、双棱镜到观察屏的距离以及两虚光源之间的距离,就可以计算出光波波长。
三、实验仪器钠光灯、菲涅尔双棱镜、凸透镜、测微目镜、光具座等。
四、实验步骤1、调节光具座上各元件,使其共轴。
将钠光灯、双棱镜、凸透镜和测微目镜依次放置在光具座上,调节它们的高度和位置,使它们的中心大致在同一水平轴线上。
2、调整钠光灯的位置,使其发出的平行光垂直照射在双棱镜的棱脊上。
3、移动凸透镜,使通过双棱镜折射后的光线在测微目镜中形成清晰的像。
4、调节测微目镜,使其十字叉丝清晰,并使干涉条纹清晰可见。
5、测量条纹间距。
通过测微目镜测量相邻十条亮条纹或暗条纹之间的距离,多次测量取平均值。
6、测量双棱镜到测微目镜的距离。
使用直尺测量双棱镜到测微目镜的距离,同样多次测量取平均值。
7、测量两虚光源之间的距离。
利用凸透镜成像法测量两虚光源之间的距离。
五、实验数据及处理1、条纹间距的测量测量次数 1:_____mm测量次数 2:_____mm测量次数 3:_____mm平均值:_____mm2、双棱镜到测微目镜的距离的测量测量次数 1:_____cm测量次数 2:_____cm测量次数 3:_____cm平均值:_____cm3、两虚光源之间的距离的测量测量次数 1:_____mm测量次数 2:_____mm测量次数 3:_____mm平均值:_____mm根据实验原理,光波波长的计算公式为:\\lambda =\frac{d \times \Delta x}{D}\其中,\(\lambda\)为光波波长,\(d\)为两虚光源之间的距离,\(\Delta x\)为条纹间距,\(D\)为双棱镜到测微目镜的距离。
双棱镜干涉测波长资料双棱镜干涉是一种常见的光学干涉实验,通过使用两个棱镜来创建和测量光的干涉条纹,从而测量光波的波长。
以下是双棱镜干涉测波长的一些资料。
一、实验原理双棱镜干涉实验的原理是利用两个棱镜来拆分和重新组合光波,从而在空间中产生干涉现象。
当光通过棱镜时,会被折射并偏转一定的角度。
通过调整两个棱镜之间的距离和角度,可以使得从两个棱镜出来的光波在空间中产生干涉现象,形成明暗交替的干涉条纹。
干涉条纹的间距与光波的波长有关,可以根据干涉条纹的间距来计算光波的波长。
具体来说,假设两个棱镜之间的距离为d,棱镜的折射率为n,入射光的角度为θ,则干涉条纹的间距可以表示为:Δx = λ × n / (2 × sinθ)其中,λ为光波的波长,n为棱镜的折射率,θ为入射光的角度。
二、实验步骤1.准备实验器材:两个相同尺寸的三棱镜、单色光源(如激光笔)、角度计、尺子、实验用的记录纸和笔等。
2.将两个棱镜放置在一张记录纸上,调整两个棱镜之间的距离和角度,使得从两个棱镜出来的光波在空间中产生干涉现象,形成明暗交替的干涉条纹。
3.用单色光源(如激光笔)照射棱镜,使光线垂直于棱镜的平面。
调整光源与棱镜的距离,使得光线可以通过棱镜并照射到干涉条纹上。
4.用角度计测量入射光的角度,并记录下来。
5.用尺子测量干涉条纹之间的距离,并记录下来。
6.改变光源与棱镜的距离或调整棱镜之间的角度,重复步骤2至步骤6,得到多组数据。
7.利用上述公式计算光波的波长,并求出平均值。
三、注意事项1.在实验过程中要保持安静,避免由于环境的干扰而影响实验结果。
2.确保两个棱镜之间的距离和角度调整准确,以免影响干涉条纹的形状和间距。
3.在测量角度和干涉条纹间距时要准确细致,避免误差过大。
4.在使用激光笔等光源时要注意安全,避免直射眼睛或照射易燃物品。
5.在计算光波波长时要根据多组数据求平均值,以提高结果的准确性。
四、实验结果分析根据实验数据,利用上述公式可以计算出光波的波长。
双棱镜干涉菲涅耳双棱镜实验是一种分波阵面的干涉实验,实验装置简单,但设计思想巧妙。
它通过测量毫米量级的长度,可以推算出小于微米量级的光波波长。
1881年菲涅耳用双棱镜实验和双面镜实验再次证明了光的波动性质,为波动光学奠定了坚实的基础 一、实验目的1. 观察双棱镜产生的双光束干涉现象,进一步理解产生干涉的条件;2. 学会用双棱镜测定光波波长。
二、实验仪器双棱镜、扩束镜、辅助透镜(两片),测微目镜、光具座、白屏、激光光源三、实验原理将一块平玻璃板的上表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于1︒)(如图1)。
从激光器S 发出的光经扩束镜到达狭缝S ,使S 成为具有较大光亮度的线状光源。
当狭缝S 发出的光波投射到双棱镜AB 上时,经折射后,其波前便分割成两部分,形成沿不同方向传播的两束相干柱波。
通过双棱镜观察者两束光,就好像它们是由虚线光源1S 和2S 发出的一样,故在两束光相互交叠区域1P ,2P 内产生干涉。
如果狭缝的宽度较小且双棱镜的棱脊和光源狭缝平行,便可在白屏P 上观察到平行于狭缝的等间距干涉条纹如(图2)。
将白屏放到1P 、2P 区域中的任何位置,均可以看到明暗交替的干涉条纹。
设'd 代表两虚光源1S 和2S 间的距离,d 为虚光源所在的平面(近似的在光源狭缝S 的平面内)至观察屏P 的距离,若观察屏中央O 点与1S 、2S 的距离相等,则由1S 、2S 射束的两束光的光程差等于零,在O 点处两光波互相加强,形成中央明条纹;其余的明条纹分别排列在O 点的两旁。
假定Q 是观察屏上任意一点,它离中央点O 的距离为x 。
在'd d =时,121Δ'S S S 和ΔSOQ 可看做相似三角形,且有δ'xd d=(因QSO ∠很小,可用直角边d 代替斜边),当 'δλx d k d ==(0,1,2,3k =±±±…)或 λ'dx k d ==(0,1,2,3k =±±±…)则两光束在Q 点相互加强,形成明条纹。
双棱镜干涉实验双棱镜干涉实验是一种经典的光学实验。
它利用双棱镜将入射光分成两束光线,然后再让两束光线重新相遇,形成干涉条纹,从而研究光的干涉现象。
以下将介绍双棱镜干涉实验的原理、实验步骤和实验结果等内容。
一、实验原理1.干涉现象在介质边缘,当光线从一种介质进入另一种介质时,会发生反射和折射两种现象。
如果入射光线与介质表面成一定角度,同时介质表面具有平行的微小凹凸,就会发生干涉现象。
干涉的产生是由于反射光与折射光在一定条件下加强或相消的结果。
双棱镜是一种由两个尖端相对的三棱镜组成的光学器件。
双棱镜干涉实验中,通过将入射光线分成两束光线,然后再让两束光线重新相遇,形成干涉条纹。
其中一束光线是由顶面的反射光构成的,另一束光线是由斜面的折射光构成的。
两束光线相遇后,在空气中形成干涉条纹,用显微镜观察即可。
3.干涉的条件(1)光波长应该是一定的。
(2)两条干涉光线的振幅应该是一致的。
二、实验步骤1.制备准备一个几何平双棱镜、一支白色的 LED 手电筒、一台相机和一个红色滤光片。
将手电筒置于几何平双棱镜的一侧,以使双棱镜的光轴与手电筒的光轴垂直。
将红色滤光片放在相机的前面以便观察干涉条纹。
2.实验操作打开手电筒并将光线照向双棱镜上。
用相机拍摄出照射双棱镜的光斑。
将滤光片调整到最佳位置,观察干涉条纹。
3.记录结果记录所有实验结果,包括干涉条纹的形态、数量等。
三、实验结果在实验过程中,我们可以清晰地观察到干涉条纹的形态、数量和亮度等。
当两束干涉光线相遇时,如果它们的相位差为奇数倍的半波长,就会出现暗条纹;如果相位差为偶数倍的半波长,就会出现亮条纹。
实验结果可能因几何平双棱镜的不同而有所不同,不过大致上都应该能够观察到干涉条纹的形成。
四、实验注意事项1.在进行双棱镜干涉实验时,要注意保持实验环境的稳定性。
2.调整实验仪器时,要仔细调整各个部件的位置,以消除可能存在的误差。
3.拍摄干涉条纹时,要注意调整相机的曝光时间,保证能够拍摄到清晰的干涉条纹。
实验十三双棱镜干涉一、实验目的(一)观察双棱镜干涉现象;(二)利用双棱镜干涉测定单色光的波长。
二、实验器材氦氖激光器(1套)扩束透镜(f=5cm)(1个)双棱镜(1个)读数显微镜(1台)透镜夹(3个)光具座(1付)小灯(1个)太阳眼镜(1付)光屏(1个)三、实验原理与仪器描述观察光波干涉现象的方法很多,双棱镜干涉是其中之一。
双棱镜是一块表面光滑。
顶角接近于180°的玻璃棱镜,其顶端的直线称为双棱镜的脊,两侧的表面称为棱面,双棱镜干涉的实验装置如图13-1所示。
图13-1 双棱镜干涉光路图从激光光管发出的单色光经扩束透镜扩束后入射在双棱镜的两个棱面上,经棱镜的折射后分成两束光A1A2和B1B2。
在A2B2之间的区域内,这两束光互相叠加而形成干涉。
由于激光束有很好的平行性,通过扩束透镜后的光必会聚于透镜的后焦点F上,因此,可以认为入射双棱镜的光束是从位于F的点光源S发射出来的。
将A1A2向后延长,其交点S1就是由双棱镜造成的S的虚像点。
同样,B1B2向后延长的交点S2也是S的虚象点,由此可以看到,这里的双棱镜干涉相当于以S1和S2为双孔的杨氏干涉。
我们知道杨氏干涉在屏上形成明暗相间的条纹,相邻两亮条纹或相邻两暗条纹之间的距离为(13-1)式中d是两个虚光源(相当于杨氏干涉实验的两个小孔)S1和S2之间的距离,D是虚光源与光屏的距离,λ是光源的波长,由几何光学可推得以下结果:D=L1+L2 (13-2)d=L1 (13-3)=(n-1)(π-) (13-4) 上式由双棱镜玻璃的折射率n和双棱镜顶角(以弧度为单位)所决定,可称为双棱镜常数。
假设我们测得第一条暗纹至第K+1条暗纹的距离是L K,则相邻两暗纹的距离为(13-5)将(13-2)、(13-3)、各式代入(13-1)式,得到(13-6) 本实验通过测量干涉条纹的距离及各光学元件在光路中的位置,间接测出氦氖激光的波长。
四、实验方法与步骤(1)按图13-1在光具座上顺次摆好各器件。
实验二十九双棱镜干涉一.实验目的1.掌握获得双光束干涉条纹的一种方法,进一步理解光的干涉本质。
2.学习一种测量光波波长的方法。
3.学会测微目镜的使用。
二.实验仪器光具座、测微目镜、钠光灯及电源、双棱镜、透镜、狭缝三.实验原理产生光的干涉现象需要用相干光源,即用频率相同、振动方向相同和位相差恒定的光源。
为此,可将由同一光源发出的光分成两束光,在空间经过不同路径,会合在一起而产生干涉。
分光束的方法有分波阵面和分振幅两种:双棱镜干涉属于前类;薄膜干涉属于后类。
双棱镜是由两个折射角极小的直角棱镜组成的。
借助棱镜界面的两次折射,可将光源(狭缝)发出的光的波阵面分成沿不同方向传播的两束光。
这两束光相当于由虚光源S1、S2发出的两束相干光(如图所示)。
于是它们在相重叠的空间区域内产生干涉。
将光屏插进上述区域中的任何位置,均可看到明暗相间的干涉条纹。
可以证明,相邻两明(或暗)条纹间的距离为:ΔX=X k+1-X k=(D/d)λ式中:D为狭缝到观察屏的距离;d为两虚光源之间的间距;λ为入射光波波长。
上式表明,只要测出d、D和ΔX,就可算出光波波长λ。
四.实验内容及步骤1.调整光路并定性观察双棱镜干涉现象及其特点。
实验的光路装置如图所示。
先用单色光均匀照亮狭缝,利用狭缝所获得的柱面波射向双棱镜,并使其均匀照亮棱脊部位,然后依次作如下调整并观察:(1)按照同轴等高的要求,调整光源(若用激光作光源需加扩束镜)、单缝、双棱镜、2L:光源(钠光灯);L1:扩束镜(用钠光灯时取消);S:狭缝;B:双棱镜;L2:透镜;Q:光屏;F:测量目镜双棱镜干涉实验装置(2)使单缝的取向与棱脊平行并同时垂直于光具座。
(3)逐渐减小单缝的宽度,使能看清干涉条纹(条纹不能太窄,否则视场太暗,以致看不清干涉条纹)。
反复调整单缝的取向和宽度,直到干涉条纹清晰为止。
(4)缓慢调整单缝与双棱镜间的距离,观察干涉条纹疏密程度的变化,找出这种变化的定性规律,并作出解释。
双棱镜干涉测量光波波长实验报告示例文章篇一:《双棱镜干涉测量光波波长实验报告》嘿,亲爱的小伙伴们!今天我要跟你们分享一个超级神奇的实验——双棱镜干涉测量光波波长!实验开始前,我满心期待,就像要去探索一个神秘的宝藏一样!老师把实验器材摆在桌上,那一堆东西看着就让人兴奋不已。
我和小伙伴小明、小红一组,我们仨围在实验桌前,眼睛都直勾勾地盯着那些器材。
老师先给我们讲解了原理,可我一开始听得云里雾里的,心里直犯嘀咕:“这能行吗?”不过,等老师亲自示范了一遍,我好像有点明白了。
这不就像我们一起跳绳,绳子甩起来形成的波浪一样嘛!我们开始动手啦!小明负责调整仪器的位置,那认真的模样,仿佛他是个专业的科学家。
我呢,负责记录数据,眼睛都不敢眨一下,生怕错过了什么重要的信息。
小红则在旁边给我们加油打气,还时不时地提醒我们要小心操作。
“哎呀,小明,你轻点儿,别把仪器碰坏啦!”我着急地喊道。
“放心吧,我心里有数!”小明自信地回答。
经过一番努力,我们终于看到了干涉条纹。
“哇塞,这也太漂亮了吧!”小红忍不住惊叹起来。
我们仔细地观察着条纹,测量着数据。
这过程可不轻松,一会儿这个数据不对,一会儿那个角度又偏了。
我都有点不耐烦了,“怎么这么麻烦呀!”但是,一想到马上就能得出结果,我们又鼓足了劲儿。
终于,所有的数据都测量好了,接下来就是计算波长啦。
这可真是个考验耐心和细心的活儿。
“哎呀,我算得脑袋都大了!”我抱怨着。
“别着急,咱们慢慢算,肯定能算对的。
”小明安慰我。
经过反复的计算和核对,我们得出了结果。
当看到那个数字的时候,我们高兴得差点跳起来。
这次实验可真是太有趣啦!它让我明白,科学可不是随便玩玩的,需要我们认真、耐心,还得团结协作。
难道这不是一次让人难忘的经历吗?难道我们从中学到的知识还不够多吗?我觉得这次实验就像一场冒险,充满了挑战和惊喜!我的观点就是:通过这次实验,我不仅学到了知识,还懂得了合作的重要性,以后我要更加努力地探索科学的奥秘!示例文章篇二:《双棱镜干涉测量光波波长实验报告》哇塞!今天我们在学校做了一个超级有趣的实验——双棱镜干涉测量光波波长!这可把我激动坏了!实验开始前,老师把我们分成了几个小组。
双棱镜干涉的深入研究实验一、问题提出实验课上我们已经掌握了用双棱镜获得双光束干涉的方法,加深对干涉条件的理解,并且学会了如何用双棱镜测定钠光的波长。
本次设计性实验中我们将进一步掌握双棱镜的干涉原理及调节方法,测定两个虚光源之间的距离与狭缝-双棱镜间距之间的关系。
主要从以下问题探讨:(一)实验测量双棱镜的楔角,并比较角度不同干涉现象的差异;(二)用多种方法来测两个虚光源之间的距离,并比较优缺点;(三)测定两虚光源之间的距离与狭缝-双棱镜间距之间的关系曲线;(四)利用双棱镜干涉观察He-Ne激光的干涉条纹,并测量氦氖光的波长;(五)将钠光灯换成大灯泡,观察白光的干涉条纹。
二、实验原理(一)双棱镜楔角的测量利用分光计测量:将分光机调平处于使用状态,使望远镜光轴与双棱镜的一个面垂直,这时在望远镜的视野中能够清晰看见绿色小十字叉丝的像。
C双棱镜的外形图:A B一束沿AB面法线方向的平行光投射于望远镜中, 测量α时, 当望远镜对准AB面时, 由望远镜物镜的焦面上发出的光束射到AB面上,一部分反射,形成要测量的像,一部分透射进入棱镜后,分别在AC和BC面上反射回到望远镜中, 所以在测量中, 实际看到的是三个绿色小十字叉丝像。
AB面反射的像较亮,AC和BC 面反射的像较暗,望远镜叉丝对准较亮的十字叉丝像测量。
当望远镜转到AC和BC 面一侧时,在望远镜中实际看到4个十字像,中间2个像较暗,边上2个较亮,望远镜叉丝应对准A一侧的亮像测量[2]。
将待测双棱镜置于分光计的载物台上,固定望远镜子,点亮小灯照亮目镜中的叉丝,旋转分光计的载物台,使双棱镜的一个折射面对准望远镜,用自准直法调节望远镜的光轴与此折射面严格垂直,即使十字叉丝的反射像和调整叉丝完全重合。
记录刻度盘上两游标读数V1、V2;再转动游标盘联带载物平台,依同样方法使望远镜光轴垂直于棱镜第二个折射面,记录相应的游标读数V1',V2',由此得双棱镜的楔角α为:α=(|V1'-V1|+|V2'-V2|)/4(二)多种方法测两光源之间的间距1.二次成像法在“用双棱镜干涉测量光波的波长”时关键是测量两虚相干光源的间距d,目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距,其实验装置和光路图如图1所示:图1中狭缝光源S发出的光波经双棱镜上下两部分折射后形成两虚相干光源S1和S2,d通过透镜L在两个不同位置的二次成像求得,即d=21dd,d1为两虚相干光源通过透镜所成的放大实像间的距离d2为两虚相干光源通过透镜所成的缩小实像间的距离[3]。
菲涅耳双棱镜干涉实验思考题摘要:1.菲涅耳双棱镜干涉实验的基本原理2.实验中观察到的现象及其解释3.实验原理在实际应用中的案例4.总结与拓展思考正文:一、菲涅耳双棱镜干涉实验的基本原理菲涅耳双棱镜干涉实验是一种基于光的波动性质的实验,用以观察和分析光在两种介质之间的传播特性。
该实验主要涉及到光的干涉现象,即同一光源经过两个光学元件(如棱镜)折射后,产生的两束光线在叠加区域内形成干涉条纹。
二、实验中观察到的现象及其解释在菲涅耳双棱镜干涉实验中,当光线经过第一个棱镜后,会在第二个棱镜的输入端形成干涉。
观察到的干涉条纹表现为亮暗相间的图案。
干涉条纹的亮暗程度受限于光源的亮度、棱镜的材料和入射角等因素。
通过调整光源与双棱镜的相对位置,可以观察到不同干涉现象,从而研究光的传播特性。
三、实验原理在实际应用中的案例1.光纤通信:菲涅耳双棱镜干涉实验原理在光纤通信领域有重要应用。
光纤通信利用光的全反射现象,将光信号在光纤中传播。
通过干涉技术,可以实现光信号的调制和解调,提高通信速率。
2.光学测量:在精密光学测量领域,菲涅耳双棱镜干涉实验原理被广泛应用于测量物体的厚度、折射率等参数。
通过分析干涉条纹,可以精确地计算出物体的几何尺寸和光学性质。
3.光学薄膜:菲涅耳双棱镜干涉实验原理在光学薄膜的设计和制备中具有重要作用。
通过调节薄膜的厚度、材料和结构,可以实现对光的干涉效应的控制,从而达到光学薄膜的特定功能,如反射、透射和聚焦等。
四、总结与拓展思考菲涅耳双棱镜干涉实验揭示了光的波动性质及其在两种介质间的传播特性。
实验原理在光纤通信、光学测量和光学薄膜等领域具有广泛应用。
深入理解菲涅耳双棱镜干涉实验,有助于我们更好地掌握光学知识,为实际应用提供理论支持。
双棱镜干涉测波长实验报告一、实验目的1、观察双棱镜干涉现象,掌握获得双棱镜干涉条纹的方法。
2、测量钠光的波长。
3、学会使用测微目镜测量干涉条纹间距。
二、实验原理双棱镜干涉是一种分波阵面干涉。
将单色光源(如钠光灯)发出的光通过狭缝 S 照亮双棱镜的棱脊,经双棱镜折射后,形成两束频率相同、振动方向相同、相位差恒定的相干光。
这两束光在空间相遇,产生干涉条纹。
设两相干光源 S1 和 S2 之间的距离为 d,屏幕到双棱镜的距离为 D,干涉条纹间距为Δx,光波波长为λ,则根据干涉条纹的明暗条件和几何关系,可以得到:\\lambda =\frac{d \times \Delta x}{D}\因此,只要测量出 d、D 和Δx,就可以计算出光波的波长λ。
三、实验仪器钠光灯、双棱镜、凸透镜、测微目镜、光具座、白屏等。
四、实验步骤1、仪器调节将钠光灯、双棱镜、凸透镜、测微目镜依次放置在光具座上,调整它们的高度和中心,使它们大致在同一光轴上。
使钠光灯通过狭缝 S 照亮双棱镜的棱脊,在白屏上观察到清晰的干涉条纹。
调节凸透镜的位置,使干涉条纹清晰、明亮、宽窄适中。
2、测量相关物理量用测微目镜测量干涉条纹间距Δx。
测量时,应沿同一方向移动测微目镜,依次测量多条干涉条纹的间距,然后取平均值。
测量双棱镜到测微目镜的距离 D。
可以通过在光具座上读取相应的刻度值来确定。
测量两相干光源 S1 和 S2 之间的距离 d。
可以通过小孔成像法或其他方法来测量。
3、数据处理与计算根据测量得到的数据,代入公式\(\lambda =\frac{d \times \Delta x}{D}\),计算出钠光的波长λ。
对测量数据进行误差分析,讨论实验结果的准确性和可靠性。
五、实验数据记录与处理1、测量干涉条纹间距Δx测量次数 1:Δx1 =______ mm测量次数 2:Δx2 =______ mm测量次数 3:Δx3 =______ mm测量次数 4:Δx4 =______ mm测量次数 5:Δx5 =______ mm平均值:\(\overline{\Delta x} =\frac{\Delta x1 +\Delta x2 +\Delta x3 +\Delta x4 +\Delta x5}{5}\)=______ mm2、测量双棱镜到测微目镜的距离 DD =______ mm3、测量两相干光源 S1 和 S2 之间的距离 dd =______ mm4、计算钠光的波长λ将测量数据代入公式\(\lambda =\frac{d \times \Delta x}{D}\),得到:\(\lambda =\frac{d \times \overline{\Delta x}}{D}\)=______ mm5、误差分析测量误差的主要来源包括干涉条纹间距的测量误差、双棱镜到测微目镜距离的测量误差以及两相干光源距离的测量误差等。
217实验38 光的干涉实验(三)——双棱镜干涉实验利用菲涅尔(A.J.Fresnel )双棱镜可以实现光的干涉。
菲涅尔双棱镜干涉实验曾在历史上为确立光的波动学说起到过重要作用,它提供了一种用简单仪器测量光的波长的方法。
【重点、难点提示】光的波动性;双棱镜干涉现象;双棱镜干涉测波长;光路的调整 【目的和要求】1.观察由双棱镜所产生的干涉现象,并测定单色光波长。
2.加深对光的波动性的了解,学习调节光路的一些基本知识和方法。
【实验仪器】1.光源;2.光具座;3.狭缝;4.双棱镜;5.凸透镜;6.测微目镜。
【实验原理】双棱镜形状如图6.38.1所示,其折射角很小,因而折 射棱角接近180︒。
今设有一平行于折射棱的缝光源S 产生 的光束照射到双棱镜上,则光线经过双棱镜折射后,形成 两束犹如从虚光源S 1和S 2发出的相干光束。
它们在空间传播时有一部分重叠而发生干涉(画有双斜线的区域), 图6.38.1 双棱镜示意图 结果在屏幕E 上显现干涉条纹,如图6.38.2所示。
S S 1S 2OE图6.38.2 双棱镜产生的相干光束示意图干涉条纹以O 点为对称点上下交错地配置。
用不同的单色光源作实验时,各亮条纹的距离也不同,波长越短的单色光,条纹越密;波长越长的单色光,条纹越稀。
如果用白色光作实验,则只有中央亮条纹是白色的,其余条纹在中央白条纹两边,形成由紫而红的彩色条纹。
利用干涉条纹可测出单色光的波长。
单色光的波长λ由下式决定x Da∆=2λ (6.38.1) 式中2a 为S 1S 2间的距离、D 为S 1S 2到E 幕的距离,∆x 为任意两条暗条纹之间距离。
【实验内容与步骤】 一、调整光路本实验的具体装置如图6.38.3所示,由光源发出的光通过狭缝变为缝光源,再经双棱镜折射,就可获得两个相干光源,因而能在测微目镜里看到干涉条纹。
测微目镜的构造和使用参见第三章§3.3.4“常用光学仪器”4。
218图6.38.3 双棱镜干涉装置图1.开亮光源,先将狭缝稍放大点,观察光通过狭缝后是否照射到双棱镜的棱背和射入目镜,若不能,则须调整光源及目镜的位置以达到上述目的。
菲涅耳双棱镜干涉实验思考题一、实验介绍菲涅耳双棱镜干涉实验是一种经典的干涉实验,通过使用两个菲涅耳双棱镜,利用光的干涉现象来观察和研究光的波动性质。
这个实验可以帮助我们深入理解光的干涉现象以及光的波动性质。
二、实验原理菲涅耳双棱镜干涉实验基于以下原理:1.光的波动性:光既可以被看作是一种粒子,也可以被看作是一种波动。
而菲涅耳双棱镜干涉实验主要研究的是光的波动性质。
2.光的干涉:当两束光波相遇时,它们会发生干涉现象。
干涉可以分为构造干涉和破坏干涉两种情况。
3.菲涅耳双棱镜:菲涅耳双棱镜是一种特殊的光学元件,它由两个等厚度、等宽度的棱镜组成。
菲涅耳双棱镜可以将入射光分成两束,然后使这两束光发生干涉。
三、实验步骤1.准备实验装置:将两个菲涅耳双棱镜放置在光路上,使得光线可以通过双棱镜。
2.调整角度:调整双棱镜的角度,使得两束光线在接触处形成干涉条纹。
调整角度时,可以逐渐改变其中一个棱镜的角度,观察干涉条纹的变化。
3.观察干涉条纹:使用透镜或目镜观察干涉条纹。
可以调整透镜或目镜的位置,使得干涉条纹清晰可见。
4.记录实验结果:记录不同角度下的干涉条纹,观察并分析干涉条纹的变化规律。
四、思考题1.干涉条纹的产生机制是什么?干涉条纹的产生是由于光的波动性质和波的叠加原理导致的。
当两束光波相遇时,它们会发生叠加,形成干涉现象。
在双棱镜干涉实验中,入射光通过第一个棱镜后被分成两束,然后通过第二个棱镜后再次合成一束光。
由于光的波动性质,这两束光波会相互干涉,形成干涉条纹。
2.干涉条纹的形态和双棱镜的角度有关吗?干涉条纹的形态和双棱镜的角度是密切相关的。
当双棱镜的角度改变时,入射光经过双棱镜后的路径长度差会发生变化,进而影响干涉条纹的形态。
当角度逐渐改变时,干涉条纹的间距和亮暗的分布也会发生变化。
3.如何解释干涉条纹的亮暗变化?干涉条纹的亮暗变化是由于光的波动性质和波的叠加原理导致的。
当两束光波相遇时,它们会发生叠加,形成干涉现象。
双棱镜干涉实验
【实验目的】
1 •掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解.
2 •学会用双棱镜测定钠光的波长.
【实验仪器】光具座、白屏、单色光源钠灯、测微目镜、短焦距扩束镜、白炽灯、氦氖激光
器、毛玻璃屏、滑块(若干个)、手电筒可调狭缝、双棱镜、辅助透镜、白屏、凸透镜(不 同焦距的数个)。
【实验原理】
如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变
为加强,在另一些地方表现为减弱
(甚至可能为零),
这种现象称为光的干涉.
菲涅耳利用图1所示的装置,获得了双光束的干涉现象•图中
AB 是双棱镜,它的外形
结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角 A
较小(一般小于10) •从单色光源发出的光经透镜
L 会聚于狭缝S,使S 成为具有较大亮度的
线状光源.从狭缝 S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就 好像它们是由虚光源 S1和
S2发出的一样,满足相干光源条件,因此在两束光的交叠.
区域
图1
图2
P1P2 内产生干涉•当观察屏 P 离双棱镜足够远时,在屏上可观察到平行于狭缝
S 的、
明暗相间的、等间距干涉条纹.
设两虚光源S1和S2之间的距离为d ,虚光源所在的平面(近似地在光源狭缝 S 的平面 内)到观察屏P 的距离为
d ,且d d ,干涉条纹间距为
X ,则实验所用光源的波长
为
d x
d
因此,只要测出d 、d 和x ,就可用公式计算出光波波长. 【实验内容】
1 •调节共轴
(1) 将单色光源 M 会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用
目视法粗略地调节它们中心等高、共轴,棱脊和狭缝
S 的取向大体平行.
(2)
点亮光源M 通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:
经双棱镜折
化,那么在两列
二少
在某些地方表现
光波相交的区 域,光强分布是 不均匀的,而是
射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加
区是否逐渐向左、右(或上、下)偏移?
根据观测到的现象,作出判断,进行必要的调节使之共轴.
2. 调节干涉条纹
⑴减小狭缝S的宽度,一般情况下,可从测微目镜中观察到不太清晰的干涉条纹(测微目镜的结构及使用调节方法见实验基础知识有关内容)。
绕系统的光轴缓慢地向左或右旋转双棱镜AB,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可
观察到清晰的干涉条纹.
(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S的缝宽,以保持干涉条纹
有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,S1、S2间距也
将减小,这对d的测量不利.)
3. 测量与计算
(1) 用测微目镜测量干涉条纹的间距X •为了提高测量精度,可测出n条(10〜20条)干
涉条纹的间距x,除以n,即得X •测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,
然后旋转测微螺旋,使叉丝移过n个条纹,读出两次读数•重复测量几次,求出x.
(2) 用光具座支架中心间距测量狭缝至观察屏的距离 d •由于狭缝平面与其支架中心不
重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导
致测量结果的系统误差•测量几次,求出d.
(3) 用透镜两次成像法测两虚光源的间距d•参见图3,保持狭缝S与双棱镜AB的位
置不变,即与测量干涉条纹间距X时的相同(问:为什么不许动?),在双棱镜与测微目镜
之间放置一已知焦距为f
的会聚透镜L,移动测微目镜使它到狭缝S的距离
d 4f
,然
后维持恒定•沿光具座前后移动透镜L,就可以在L的两个不同位置上从测微目镜中看到两虚光源S1和S2经透镜所成的实像S l和S,其中一组为放大的实像,另一组为缩小的实
像.分别测得两放大像的间距d i和两缩小像的间距d2 ,则
按下式即可求得两虚光源的间距d•多测几次,取平均值
d
.
d . d1d2
(5)计算波长测量值的标准不确度. -D-图3
(4)用所测得的x、d、d值,代入式(7-1),求出光源的波长
【注意事项】
(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转
读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.
(2)在测量d值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准
线(支架中心)共面,必须引人相应的修正(例如,GP一78型光具座,狭缝平面位置的修正量为42.5mm MCU 一15型测微目镜分划板平面的修正量为27.0mm),否则将引起较大的系统误差.
(3)测量di、d2时,由于透镜像差的影响,将引入较大误差,可在透镜L上加一直径
约lcm的圆孔光阑(用黑纸)以增加di、d2测量的精确度.(可对比一下加或不加光阑的测量结果.)
数据记录和处理
1.测X
由上表和上图可知条纹各间距基本相等,但第16序号数据产生较大问题,可能原因为:
1. 使用测微目镜时反向旋转螺旋,造成回程差•
2. 中心十字准星移到边缘遮挡光强看不太清楚.
所以将错误数据排除其他数据产生的平均值为:
X 0.1426mm
2.测单缝到测微目镜叉丝分划板的距离 d.
3.测虚光源间距L
L= l1l2=2.20mm
波长入
由d o x
入二220.1425 649 10-6mm =649nm
483
与钠黄光的已知值 D 589.3nm相差较大
不确定度的计算已没有意义
实验值偏差大的原因;
仪器和设计
1. 各光器件难以精确调到共轴,带来较大误差.
2. 测量d时两底座的距离不是叉丝到单缝距离,悬空测量又会导致更大的误差.
3. 由于狭缝平平面和测微目镜的分划板平面不与光具座的滑块的读数刻度线共面而
引入的系统误差.
操作
使用测微目镜时有反方向旋转的情况出现.
测量d时碰到单缝和测微目镜导致两仪器产生角度.
测量光源间距和x时人眼分辨率限制和疲劳错觉.
测量过程中,有零点误差.
思考:
虽然本次实验失败了,但是我学会了使用菲涅尔双棱镜测波长,同时对光的干涉和衍射有了更直观的认识,也体会了实验的严密和精确的重要性.
若将钠灯换为水银灯可能会产生七种颜色相间的干涉条纹.。