当前位置:文档之家› 物理学三大发现

物理学三大发现

物理学三大发现

物理学是一门研究自然界基本规律和物质运动的学科,其发展历史可以追溯到古希腊时期。在现代物理学的发展过程中,有三大重要的发现,它们深刻地改变了人们对宇宙和自然界的认识。

第一大发现是相对论,由爱因斯坦提出。相对论揭示了时间、空间、质量等基本概念之间的关系,进而推导出了质能等效原理和光速不变原理等重要理论。相对论深刻地揭示了物质世界的本质和规律,成为现代物理学和现代科学的基石。

第二大发现是量子力学,由玻尔、海森堡等人创立。量子力学揭示了微观世界的规律,解决了许多经典物理学无法解释的难题。量子力学的基本观念包括波粒二象性、不确定性原理等,深刻地改变了人们对物质世界的认识。

第三大发现是宇宙膨胀,由霍勒赫提出。宇宙膨胀理论揭示了宇宙的起源、演化和结构,成为了宇宙学的基础。宇宙膨胀理论提出了宇宙大爆炸的假设,揭示了宇宙的起源和演化过程,成为了人类认识宇宙的重大里程碑。

这三大发现不仅深刻地改变了人们对自然界和宇宙的认识,也推动了科学技术的发展和人类文明的进步。

- 1 -

物理学史

物理学史 一、力学 1.1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快。并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的)。 2.1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验。 3.1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4.17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5.英国物理学家胡克对物理学的贡献:胡克定律。经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6.1638年,伽利略在《两种新科学的对话》一书中,运用观察——假设——数学推理的方法,详细研究了抛体运动。 7.人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表。而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8.17世纪,德国天文学家开普勒提出开普勒三大定律。 9.牛顿于1687年正式发表万有引力定律。1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量。 10.1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 11.我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同。但现代火箭结构复杂,其所能达到的最大速度主要取决于喷气速度和质量比(火箭开始飞行的质量与燃料燃尽时的质量比)。俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。多级火箭一般都是三级火箭,我国已成为掌握载人航天技术的第三个国家。 12.1957年10月,苏联发射第一颗人造地球卫星。1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 13.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学 13.1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律--库仑定律,并测出了静电力常量k的值。 14.1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 15.1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16.1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 17.1826年德国物理学家欧姆(1787~1854)通过实验得出欧姆定律。 18.1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象--超导现象。 19.19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳--楞次定律。

19世纪末期物理学的三大发现及其意义

19世纪末期物理学的三大发现及其意义 19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。 由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。其后,随着研究的深入,X射线被广泛应用于晶体结构的分析以及医学和工业等领域。对于促进20世纪的物理学以至整个科学技术的发展产生了巨大而深远的影响。 而1896年法国物理学家贝克勒尔,受到伦琴发现X射线启发,着手研究X

19世纪末期物理学的三大发现及其意义

19世纪末期物理学的 三大发现及其意义 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

19世纪末期物理学的三大发现及其意义 19世纪末,以牛顿力学、热力学、麦克维斯电磁学理论和原子论为基础的经典物理学理论体系已相当完善。正当物理学界陶醉于成功的喜悦中时,一些有远见的科学家却与意识到,在物理学晴朗的天空中出现了乌云。 1900年4月27日,一向以保守著称的英国皇家学会主席、著名物理学家达尔文发表长篇演说,指出:经典物理学本来十分晴朗的天空上出现了两朵“乌云”。一是“紫外灾难”——热辐射在位于短波的紫外线部分的实验结果与经典统计力学、电磁学理论相背;二是“以太危机”——当时的实验结果表明:麦克维斯电磁学理论中光、电、磁传播所需要的介质——“以太”可能根本就不存在。经典物理学正在发生危机,这预示着即将发生一场革命。 其实从1895年开始,连续三年的三大发现,x射线,放射性和电子的发现已经成为揭开物理学革命序幕的三声春雷。1895年伦琴发现了X射线,1896年法国的贝克勒尔发现了铀盐的放射性,1897年英国的J·J汤姆逊发现了电子。这些新发现猛烈的冲击着经典物理学理论,打破了物理学界沉闷的空气,被誉为“世纪之交的三大发现”,是现代物理学发轫的标志。 早在19世纪三四十年代,人们就发现,真空管内的金属电极在通电时其阴极会发出某种射线,这种射线受磁场影响,具有能量,被称为阴极射线。而对阴极射线性质的深入研究导致了X射线的发现。1895年德国物理学家伦琴在赫兹和勒纳德发表了论阴极射线的穿透力的论文后,准备对这一问题做进一步研究。他重复了勒纳德的实验,发现阴极射线确实能穿透铝箔在空气中行进几厘米,使涂有铂氰化钡的荧光屏上产生荧光。在多次实验后,他意外地发现了一种新的射线,但因为不了解其本性,伦琴且称它为X射线,又被人们称之为“伦琴射线”。 由于X射线可以穿透皮肉透视骨骼,所以在医疗上作用很大,如今我们到医院拍张X光片已是很平常的事情,然而在19世纪末X射线刚发现时,却被视为世界科技革命的一声号角。其后,随着研究的深入,X射线被广泛应用于晶

19世纪末物理学三大发现

各领风骚仅一年——19世纪末物理学三大发现著名物理学家开尔文说:“19世纪已经将物理大厦全部建成,今后物理学家只是修饰和完美这所大厦。” 但这种固步自封的思想很快被打破。19世纪末物理学的三大发现(X射线1895年、放射线1896年、电子1897年),揭开了物理学革命的序幕,它标志着物理学的研究由宏观进入到微观,标志着现代物理学的产生。列宁曾谈到,现代物理学的临产诞生了辩证唯物主义。 一、1895年,妙手偶得之的“X”光 1895年11月8日晚, 德国的维尔芝堡大学的伦琴用黑的厚纸板把阴极射线管子包起来,意外的发现1米以外的荧光屏在闪光,而这绝不是阴极射线,因阴极射线穿不透玻璃,只能行进几厘米远。 伦琴断定这是一种新射线,用它拍出了一张手掌照片,一时引起轰动。 由于X射线与原子中内层电子的跃迁有关,这说明了物理学还存在亟待搜索的未知领域。X射线本身在医疗、研究物质结构等方面都有很多的实用价值。 很多人都曾观察到过X射线的现象,但未深究而错过机会。伦琴善于观察,精心分析,因此他发现了“X”光。1901年,伦琴获首届诺贝尔物理奖,当之无愧。 二、1896年,天然放射性现象的发现 法国巴黎的贝克勒尔在一次阴雨绵绵的日子,将用黑纸包的感光底片与铀盐一起锁进了抽屉,结果底片仍旧被铀盐感光了,这是人类第一次发现某些元素自身也具有自发辐射现象,引起了人们对原子核问题的关注。贝克勒尔因此获1903 年诺贝尔奖。原子核物理学起源于放射性的研究,1933年中子的发现,核物理学诞生。核能的开发利用,大大促进了核物理和高能物理的发展,这其中居里夫妇功不可没。 居里夫人(1867-1934) 波兰中学毕业,获金质奖章,由于波兰当时女子不能上大学,做了8年家庭教师,筹了费用,于1891年到巴黎大学学习。1893年获物理硕士学位。1894年与法国物理学家皮埃尔·居里相恋。1903年获诺贝尔物理奖,1911年获诺贝尔化学奖。 居里夫妇进行了艰苦的提炼工作,从铀矿渣中提炼出了钋,它比纯铀放射性强400倍!1898年7月,为纪念自己的祖国波兰,居里夫人宣布这种元素为“钋”。1898年12月,居里夫人又宣布发现了镭(radium)! 居里夫人自传中写到:“为达到这样的目的,设备是极其简陋的,——我们没有资金,没有适宜的实验室,没有任何帮助。”镭矿渣非常贵,奥地利送了一吨,在低矮的棚屋里,

评述19世纪末物理学三大发现对物理学的发展的意义

评述19世纪末物理学三大发现对物理学的发展的意义 19世纪末,物理学上出现了三大发现 X射线、放射性和电子。这些新发现,揭开了物理学革命的序幕,它标志着物理学的研究由宏观进入微观,标志着现代物理学的产生。 著名物理学家开尔文说:“19世纪已经将物理大厦全部建成,今后物理学家只是修饰和完美这所大厦。”但很快物理学上三大发现的出现打破了这种固步自封的思想。同时,这些新发现猛烈地冲击了道尔顿关于原子不可分割的观念,从而打开了原子和原子核内部结构的大门,揭露了微观世界中更深层次的奥秘。 1895年11月8日晚,伦琴陷入了深深的沉思。他以前做过一次放电实验,为了确保实验的精确性,他事先用锡纸和硬纸板把各种实验器材都包裹得严严实实,并且用一个没有安装铝窗的阴极管让阴极射线透出。可是,他却惊奇地发现,对着阴极射线发射的一块涂有氰亚铂酸钡的屏幕发出了光而放电管旁边这叠原本严密封闭的底片,现在也变成了灰黑色,这说明它们已经曝光了!这个一般人很快就会忽略的现象,却引起了伦琴的注意,使他产生了浓厚的兴趣。 后来,伦琴用黑的厚纸板把阴极射线管子包起来,意外的发现1米以外的荧光屏在闪光,而这绝不是阴极射线,因阴极射线穿不透玻璃,只能行进几厘米远。伦琴意识到这可能是某种特殊的从来没有观察到的射线,它具有特别强的穿透力,断定这是一种新射线。他一连许多天将自己关在实验室里,集中全部精力进行彻底研究。6个星期后,伦琴确认这的确是一种新的射线。1895年12月22日,伦琴和他夫人拍下了第一张X射线照片。 其实很多人都曾观察到过X射线的现象,但未深究而错过机会。正因为伦琴善于观察,精心分析,因此他发现了“X”光。1901年,伦琴获首届诺贝尔物理奖,当之无愧。 天然放射性的发现与X 射线的发现直接相关。1895 年末,伦琴发现X 射线后,把他的论文的预印本和一些X 射线照片分别寄给了欧洲各国著名的物理学家,其中包括法国科学家庞加莱。在1896 年1 月20 日的法国科学院每周例会上,庞加莱展示了伦琴的论文和照片,立即引起了贝克勒耳的极大兴趣。 1896年2月24日,贝可勒尔向法国科学院提交了“论磷光辐射”的报告。他发现,硫酸钾铀酰在阳光下曝晒几小时后能发出一种射线,这种射线能穿透黑

物理学史论文-X射线

X射线——世纪之交物理学的三大发现之一 学院:姓名:学号:关键词:X射线三大发现之一伦琴本性原理特性 摘要:19世纪末20世纪初,电子的发现、X射线的发现和放射性现象的发现,被人们称为世纪之交物理学的三大发现,在物理学上具有重要的意义。在发现X射线的研究上,许多物理学家做出了不少努力,但他们都没有发现X射线,直到1895年伦琴的研究,才有了这一重大的发现。然而,尽管发现了X射线,人们却不知道X射线的本质是什么,在一段时期内,对X射线的本性众说纷纭。随着科学的发展,人们对X射线的研究更加深入,并逐渐发现了其产生原理和特性,X射线对人们来说已不再陌生。 一、X射线的发现 X射线的发现起源于对阴极射线的研究。 德国物理学家伦琴为了探明阴极射线的性质,重复做了赫兹、勒纳德等人的实验。1895年11月8日晚,为了防止外界对放电管的影响,同时也不使管内的可见光线漏出管外,他用黑纸板把放电管完全包了起来,房间也是完全遮光的暗室。实验时,他意外地发现在一米以外的涂有亚铂氰化钡的荧光屏发出了微弱的荧光。这一现象使他十分惊奇。他全神贯注地继续进行实验:把屏反转过来,使没有涂氰化钡的一面朝着管子,屏仍然发出荧光;将屏逐渐移远,即使移到远离管子两米以外,仍有荧光,只是稍弱一些而已。那时已经查明,阴极射线在空气中只能穿过几厘米,而在远离管子两米以外的屏上仍有荧光,所以,伦琴确信这种现象是无法用阴极射线的性质来解释的。 伦琴确信他已经发现了一种新的射线,为了进一步研究这种射线的性质,他连续六个星期吃住在实验室,废寝忘食地用各种方法反复进行实验。他发现,这种射线能穿透千页的书、2-3厘米厚的木板、几厘米厚的橡胶板、15毫米厚的铝板等等。这表明这种人眼看不见的射线具有很强的穿透能力,但对不同物质的穿透能力是不同的。1.5毫米厚的铅片几乎就能完

19世纪物理学三大发现

天津科技大学 自然科学简史论文 评述19世纪末物理学三大发现对物理学的发展的意义 姓名:原媛 学号:09111232 学院:理学院 指导老师:苏萍 19世纪末物理学三大发现对物理学的发展的意义,包括发现的简述、发现者成功的原因分析、对20世纪物理学发展的影响等。

评述19世纪末物理学三大发现对物理学的发展的意义 著名物理学家开尔文说:“19世纪已经将物理大厦全部建成,今后物理学家只是修饰和完美这所大厦。” 但这种固步自封的思想很快被打破。19世纪末物理学的三大发现(X射线1895年、放射线1896年、电子1897年),揭开了物理学革命的序幕,它标志着物理学的研究由宏观进入到微观,标志着现代物理学的产生。 1.X射线的发现 1895年11月8日晚, 德国的维尔芝堡大学的伦琴用黑的厚纸板把阴极射线管子包起来,意外的发现1米以外的荧光屏在闪光,而这绝不是阴极射线,因阴极射线穿不透玻璃,只能行进几厘米远。伦琴断定这是一种新射线,用它拍出了一张手掌照片,一时引起轰动。 由于X射线与原子中内层电子的跃迁有关,这说明了物理学 还存在亟待搜索的未知领域。X射线本身在医疗、研究物质结构等方面都有很多的实用价值。 很多人都曾观察到过X射线的现象,但未深究而错过机会。 伦琴善于观察,精心分析,因此他发现了“X”光。1901年,伦琴获首届诺贝尔物理奖,当之无愧。 2.放射性的发现 1896年,法国物理学家贝克勒尔在研究铀盐的实验中,首先

发现了铀原子核的天然放射性。在进一步研究中,他发现铀盐所放出的这种射线能使空气电离,也可以穿透黑纸使照相底片感光。他还发现,外界压强和温度等因素的变化不会对实验产生任何影响。贝克勒尔的这一发现意义深远,它使人们对物质的微观结构有了更新的认识,并由此打开了原子核物理学的大门。 1898年,居里夫妇又发现了放射性更强的钋和镭。由于天然放射性这一划时代的发现,居里夫妇和贝克勒尔共同获得了1903年诺贝尔物理学奖。此后,居里夫妇继续研究了镭在化学和医学上的应用,并于1902年分离出高纯度的金属镭。因此,居里夫 人又获得了1911年诺贝尔化学奖。在贝可勒尔和居里夫妇等人 研究的基础上,后来又陆续发现了其它元素的许多放射性核素。 3.电子的发现 早在古希腊时期,人们就发现摩擦过的琥珀能吸引轻小物体,他们称这种现象为电。 在中国,古人王充所著书籍《论衡》中有关于静电的记载:“顿牟掇芥”,顿牟就是琥珀,当琥珀经摩擦后,即能吸引像草芥一 类的轻小物体。但古代中文对于电并没有更深入的了解。 英国人威廉·吉尔伯特、法国人查尔斯·杜菲等先后研究和发表了许多关于电的现象和电的特性。但是他们都是通过摩擦的方法产生的电,并且都没有办法存储住大量的电荷。一直到荷兰莱顿大学的物理学教授彼德·马森布罗克发明出了用电容原理储存电 荷的莱顿瓶,才为人类进一步研究打下基础。

考生必知:物理的历史发展

考生必知:物理的历史发展 物理学史在高考中是占有一席之地的,学生在物理学习过程要是了解掌握物理发展的历史,在学习物理的过程中也能够增加学习的乐趣。今天小编就为大家来介绍一下物理的历史发展,让大家能够更加详细的了解。 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家

物理学大全,史上最全物理史学!

物理学大全,史上最全物理史学! 物理是一门非常有意思的一门学科,它可以体现出生活中各种有趣的现象,以下是史上最全高中物理学史! 物理学史在高考中是占有一席之地的,大家不妨在假期的时候多看看这篇《物理学史汇总》,赶紧收藏吧! 1.力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律;经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家

轰动物理学界的大事件

原子核的今世前缘 ●19世纪末物理学的三大发现,均与小小原子核休戚相关 ●今天,核技术研究、应用与发展已成为现代化的重要标志 ●预计到2030年,伴随核技术突飞猛进人类将迈进核能源时代 轰动物理学界的大事件 X射线、放射性和电子,被誉为19世纪末物理学三大发现,细细解读这些成果不难发现,他们都与“原子核”这个词紧密相关。 原子核的发现,如一声春雷,打破了“原子不可再分”的神话,不仅撼动了经典物理学数百年基业,而且深刻影响和改变着百年之后民众生活的每个角落。 时间追溯到1895年,德国物理学家伦琴发现了一种当时世人还一无所知的射线,伦琴将其命名为“X射线”,从此,它射穿了长期以来盘踞人类头脑中“原子不可再分”的思想壁垒。 随着玛丽·居里、卢瑟福、波尔、查德威克、费米等科学巨匠对原子核研究的不断深入,原子核内因蕴藏巨大能量而轰动了整个物理学界。 1938年,瑞典物理学家迈特纳用一个中子轰击铀原子核,试验后用爱因斯坦著名质能公式计算表明:碰撞释放的能量约为2亿电子伏特,形象一点说,即当1公斤铀核全部裂变时,释放出的能量相当于2500吨优质煤完全燃烧时所放出的能量,可使一列火车开动4万公里。1939年1月,迈特纳在《自然》杂志公布了这一重大发现,整个物理学界为之振奋,原子能时代的序幕就此徐徐拉开。 解开谜中谜 谁打开了“潘多拉魔盒” 古希腊神话中,“潘多拉魔盒”被比喻为带来灾难与不幸的礼物。

那么,在核技术研究领域究竟是谁打开了“潘多拉魔盒”呢?正是历史上赫赫有名的“曼哈顿”计划。1939年9月,德国闪击波兰,二战正式爆发。在确切得知纳粹德国已经开始研制原子弹的消息后,美国1942年正式启动了代号为“曼哈顿”的计划。从此,原本用于造福人类的核能,在诞生后不久就被披上了恐怖的战争外衣。 由于技术储备上的优势,美国始终步步领先。1945年7月16日,人类第一颗原子弹在美国新墨西哥州空军基地试爆成功,爆炸产生了相当2万吨梯恩梯的能量,其威力震惊了整个世界。 正如恩格斯所言,“一旦技术上的进步可以用于军事目的并已经用于军事目的,它们便立刻几乎强制地,而且往往是违反人们的意志而引起作战方式上的改变甚至变革”。核武器对环境、生态破坏的严重性、全球性和久远性,使得许多原本持支持态度的科学家开始反对使用原子弹。“原子弹之父”奥本海默认为:日本战败已是必然,没有必要使用原子弹。但这时的美国政府和军方,却坚持把两枚原子弹投向了大洋彼岸。 1945年8月6日,美军在广岛上空投下人类历史上第一枚用于战争的原子弹,代号“小男孩”,造成10万居民死亡;8月9日在长崎空投下代号为“胖子”的原子弹,导致近4万人直接死亡,总计14万人员死伤。而核爆后产生的核辐射、核沾染、核恐惧带给自然环境和民众心灵的破坏,难以用数字估量。 核事故可控可防不可怕 从二战结束后到冷战期间,美、苏两个超级大国展开了以核武库争夺为核心的军备竞赛,但是核能的和平开发利用不容置疑地成为世界的中坚和主流。 核电站的建设使用,是人类和平利用核能的重要标志。1954年,前苏联建成世界上第一座原子能发电站。历经60年发展,截至2013年1月,全球目前正在运行的核电机组达500余个,核电发电量约占全球发电总量的16%。国际原子能机构估计,到2030年人类对核能依赖度将达到70%,届时地球村将迈入核能源时代。 如同化工厂发生化学泄漏事故、采煤矿井发生瓦斯爆炸一样,核电站在建运行中也曾出现过核事故。历史上较典型的有前苏联的切尔诺贝利核电厂泄漏事故、美国三里岛核泄漏事件以及2011年的日本福岛核事故。那么面对核事故该怎么看?该怎样关注核安全问题呢? 首先,核电站不会像原子弹那样发生爆炸。因为原子弹爆炸依靠的是高浓缩铀235,浓度在90%以上,而核电站用的铀235浓度还不足0.7%,形象地说,如同烈度白酒可以点燃,而啤酒却不会点燃的道理一样。

19世纪的物理学危机所引发的思考

革命前夕的物理界 物理学发展史上,物理学理论的三次大综合。 一、英国物理学家牛顿把物体的运动规律归结为三条基本运动定律和一条万有引力定律,由此建立起一个完整的力学理论体系。牛顿力学到了十九世纪中叶,显示出无比强大的威力。1846年年海王星的发现,证实了根据牛顿理论所作的预言。四十年代能量守恒定律的发现,揭示了各种物质运动形式不仅可以相互转化,而且在量上还有确定的关系。 二、力学、热学、化学甚至生物学贯通在一起,使牛顿力学成为各门物理科学的理论基础。气体动理论就是这次大综合的产物。气体动理论是用牛顿理论研究大量的分子运动,这是人类第一次进入微观领域进行定量描述。由此,大至日月星辰,小至分子原子,无不为牛顿理论体系所包罗。 三、法拉第、麦克斯韦电磁理论的建立,把电学、磁学和光学合成一体,完成了物理学第三次伟大的综合,并为现代人类文明开辟了道路。物理学的巨大成功,使当时不少物理学家认为,物理理论已接近最后完成,今后只能在细节上作些补充和发展,物理学已发展到顶峰。著名理学家开尔文就说:“19世纪已经将物理大厦全部建成,今后物理学家只是修饰和完美这所大厦。” 危机的产生

1、危机的产生:关于“以太”的争议。1887年,著名的迈克尔。莫雷否定了以太的存在,并且告诉人们:没有绝对运动或绝对空间。这一实验结果动摇了经典物理学的基础。 2、危机的扩大:到了十九世纪末,X射线(1895年),放射性元素(1896年),电子(1897年)以及镭(1898年)的发现,在世纪交替时,经典物理学领域中,几乎所有的原理、基本概念都受到怀疑和重新审查,如物质的不灭性、能量守恒性、原子的不可分割和不变性、时空的绝对性、运动的连续性等。 3、电子和各种放射性现象的发现,第一次冲开了原子的大门,深刻揭 示了能和一般运动过程的非连续性,动摇了以前一向认为“原子是物质的最小单位”、“不可再分割”了的旧结论;以经典物理学为基础的关于能和一般运动过程是连续性的传统观念,受到了巨大冲击,从而标志着物理学革命的开始。在新发现的事实面前,由于物理学家们一时还得不出合理的解释,使物理学界产生了深刻分歧,即所谓“现代物理学危机”。 此次危机对哲学的冲击 1、三大发现猛烈地冲击着原子不可分、不可变的形而上学观点。 2、X 射线的发现严重地冲击了“原子是坚硬的、不可入的最小实体”的机械唯物论的观念。 3、电子的发现打破了“原子不可再分”的形而上学观点,电子就是比原子更小的实物粒子,它是原子的组分部分。

二十世纪初物理学的三大发现

二十世纪初物理学的三大发现 20世纪三项最伟大的发现分别为:天然放射性的发现与电子和X 射线的发现. 19世纪末20世纪初物理学的三大发现(X射线1896年、放射线1896年、电子1897年),其中电子的发现标志着现代物理学的产生. 19世纪末,阴极射线是物理学研究课题,许多物理实验室都开展了这方面的研究.1984年11月8日,德国物理学家伦琴将阴极射线管放在一个黑纸袋中,关闭了实验室灯源,他发现当开启放电线圈电源时,一块涂有氰亚铂酸钡的荧光屏发出荧光.用一本厚书,2-3厘米夺取的木板或几厘米厚的硬橡胶插在放电管和荧光屏之间,仍能看到荧光.他又用盛有水、二硫化碳或其他液体进行实验,实验结果表明它们也是“透明的”,铜、银、金、铂、铝等金属也能让这种射线透过,只要它们不太厚.伦琴意识到这可能是某种特殊的从来没有观察到的射线,它具有特别强的穿透力.他一连许多天将自己关在实验室里,集中全部精力进行彻底研究.6个星期后,伦琴确认这的确是一种新的射线. 1895年12月22日,伦琴和他夫人拍下了第一张X射线照片.1895年12月28日,伦琴向德国维尔兹堡物理和医学学会递交了第一篇研究通讯《一种新射线——初步研究》.伦琴在他的通讯中把这一新射线称为X射线,因为他当时无法确定这一新射线的本质. 自伦琴发出X射线后,许多物理学家都在积极地研究和探 索,1905年和1909年,巴克拉曾先后发现X射线的偏振现象,但对X

射线究竟是一种电磁波还是微粒辐射,仍不清楚.1912年德国物理学家劳厄发现了X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结构的周期性,发表了《X射线的干涉现象》一文. 劳厄的文章发表不久,就引起英国布拉格父子的关注,当时老布拉格(W H.Bragg)已是利兹大学的物理学教授,而小布拉格(W L.Bragg)则刚从剑桥大学毕业,在卡文迪许实验室.由于都是X射线微粒论者,两人都试图用X射线的微粒理论来解释劳厄地照片,但他们的尝试未能取得成功.年轻的小布拉格经过反复研究,成功地解释了劳厄的实验事实.他以更简结的方式,清楚地解释了X射线晶体衍射的形成,并提出著名的布拉格公式:nX=Zdsino这一结果不仅证明了小布拉格的解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构的信息1912年11月,年仅22岁的小布位格以《晶体对短波长电磁波衍射》为题向剑桥哲学学会报告了上述研究结果.老布拉格则于1913年元月设计出第一台X射线分光计,并利用这台仪器,发现了特征X射线.小布拉格在用特征X射线分析了一些碱金属卤化物的晶体结构之后,与其父亲合作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证.金刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键按正四面体形状排列的结论.这对尚处于新生阶段的X 射线晶体学来说用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接受. 随着研究的深入,X射线被广泛应用于晶体结构的分析以及医学和工业等领域.对于促进20世纪的物理学以至整个科学技术的发展产生

高中物理学史

高中物理学史 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。

(完整版)人教版物理学史归纳

一、力学: 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、1654年,德国的马德堡市做了一个轰动一时的实验——马德堡半球实验; 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 牛顿第一定律—惯性定律:一切物体中保持匀速直线运动或静止状态,除非作用在它上面的力迫使它改变这种状态。(力是改变物体运动状态的原因) 牛顿第二定律:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比,加速度的方向与作用力的方向相同。(作用力即合外力;F=ma) 牛顿第三定律:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。 4、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 5、英国物理学家胡克对物理学的贡献:胡克定律(F=kx);经典题目:胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) 6、17世纪,伽利略通过理想实验法指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 7、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 8、17世纪,德国天文学家开普勒提出开普勒三大定律; 开普勒第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆的,太阳处在椭圆的一个焦点上。 开普勒第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过的面积相等。 开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它轨道周期的二次方的比值都相等。 9、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 11、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:(选修3-1、3-2) 1、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 2、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 3、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 4、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 5、1911年,荷兰科学家昂尼斯(或昂纳斯)发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 6、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳——楞次定

20世纪初物理学三大成就及其对现代科学的影响

20世纪初物理学三大成就及其对现代科学的影响 20世纪初,物理学取得了一系列重大成就,由此引发了人类文明进入新的历史时期。这些成就是经典相对论、量子力学和原子核物理学,它们的认知的发展和研究对于当今科学领域有着深远的影响。 经典相对论是20世纪初物理学取得的第一大成就,它是由爱因斯坦于1905年提出的一套理论,该理论尝试解释宇宙的结构和运行规律。它给宇宙提供了一个新的视角,发现它存在的限度和结构,以及存在的高度相互作用性。它是宇宙中物质、能量、力学和时间空间之间的关系,被成功地解释和解释。 量子力学是20世纪初物理学成就的第二大成就,它是由德国物理学家汉斯埃尔伯特爱图斯廷发现的,该理论涉及光和物质之间的相互作用。量子力学最主要的概念是物质不能用物理参数来做准确的预测,而是具有粒子和波的双重性质,这种双重性质改变了人们对物质的认知。此外,量子力学的发展也使研究元子物理学成为可能,使得研究原子核物理学更为容易。 原子核物理学是20世纪初物理学取得的第三大成就,它是在经典相对论和量子力学的基础上,研究原子核结构和特性,以及物质组成和行为的物理学。原子核物理学发展迅速,它揭示了原子核的组成模型,并解释了它们是如何获得能量的,从而解释了核能的产生和原子裂变等现象。从原子核物理学中获得的认知也推动了核聚变技术的发展。 20世纪初物理学的三大成就,经典相对论、量子力学和原子核

物理学,已经对现代科学产生了深远影响。这些发现将物理学和其它相关学科带到了一个新的历史时期,为人类文明做出了巨大贡献。经典相对论拓宽了人类认识宇宙的视野,使人们进一步发展宇宙观;量子力学改变了人们对物质的认知,同时也使得研究元子物理学更为容易,为进一步探索宇宙奠定基础;原子核物理学揭示了原子核的组成模型,解释了核能的产生和原子裂变,为核聚变技术的发展提供了可能性。20世纪初物理学的三大成就,使我们进一步认识宇宙,并为未来的科学发展打下坚实的基础。

高中物理学史

高中物理学史 论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,使用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较正确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现绝绝大部分金属在温度降到某一值时,

物理学史考点汇总(全)

物理学史考点汇总(全) 物理学史考点总结 1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出S正比于t2 并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学家;发现了行星运动规律的开普勒三定律,奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学家;创立了把-273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。 10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e 。 11、欧姆:德国物理学家;在实验研究的基础上,欧姆把电流与

水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学家;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e/m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 19、赫兹:德国科学家;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯·杨:英国物理学家;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉) 22、伦琴:德国物理学家;继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线—伦琴射线。 23、普朗克:德国物理学家;提出量子概念—电磁辐射(含光辐射)的能量是不连续的,E与频率υ成正比。其在热力学方面也有巨大贡献。 24、爱因斯坦:德籍犹太人,后加入美国籍,20世纪最伟大的科学家,他提出了“光子”理论及光电效应方程,建立了狭义相对论及

相关主题
文本预览
相关文档 最新文档