高中数学专题均值不等式的应用,求最小值问题,利用好条件更简便
- 格式:docx
- 大小:36.49 KB
- 文档页数:1
均值不等式在最值问题中的应用及技巧【摘要】均值不等式是高中数学的重要内容, 求最值的问题一直都是高考试题中的一个热点,不难发现关于最值的问题大多数都能转化为解不等式的问题。
运用均值不等式解决最值问题、不等式证明以及实际生活中的数学应用问题,具有极为重要的意义。
【关键词】均值不等式,最值,应用引言如果b a 、是正数,那么ab ba ≥+2,当且仅当b a =时取“ = ”号,即两个正数的算术平均数不小于它们的几何平均数,这个不等式,我们通常把它称为均值不等式。
对均值不等式的深刻理解和掌握,弄清楚其运用条件,便能在解题中快速找到突破口,进而找到正确解决问题的方法。
使用均值不等式的条件可以归纳为三条,条件一:在所求最值的代数式中,各变数都是正数,否则变号转换;条件二:各变数的和或积要为常数,以确保不等式的一端为定值,否则执行拆项或添项变形;条件三:各变数必须有相等的可能。
简称:一正,二定,三相等。
一个题目同时满足上述三个条件,或者可以变形成适合以上条件的,便可使用均值不等式。
例如:若实数y x 、满足4y x =+,则yx33+的最小值是?解:,03,03>>yx ∴ yx33+y x 332∙≥1832324y x ===+当且仅当2y x 33yx ===,即时,等号成立 ∴yx33+的最小值是18。
一、均值不等式的相关结论对a > 0, b > 0,2a b +≥,显然有22a b ab +⎛⎫≤ ⎪⎝⎭,又由于等价的均值不等式()()222a b a b a b a b ≤+⇒+≤+⇒≤+⇒≤⇒ 因此,对于a > 0, b > 0,有三个重要结论:① 22a b ab +⎛⎫≤ ⎪⎝⎭②≤③2≤当且仅当a = b 时,上面三式取等号,这三个式子虽然是由均值不等式推广而得,但掌握并应用于解题之中,有时候比均值不等式更有效,起到事半功倍的效果。
下面举几个例子予以说明:例1:已知a ≥0, b ≥0, a + b = 1,解:由②得==。
例说利用均值不等式求函数最值的几种技巧利用均值不等式求函数最值是数学中常用的一种方法,通过这种方法,可以简单地确定函数的最大值和最小值。
本文将介绍几种利用均值不等式求函数最值的常用技巧。
1.权值平均:使用均值不等式时,通过给定变量的权重,我们可以找到一个平均值,该平均值应该落在函数的最大值和最小值之间。
例如,如果我们要找出一个函数f(x)在一些闭区间[a,b]上的最大值,我们可以找到一个适当的c,使得a<c<b,并应用以下均值不等式:f(a)≤f(c)≤f(b)然后,我们可以将函数的值乘以相应的权重(比如(a-c)和(b-c)),并利用均值不等式得出结论。
2.凸函数和凹函数:对于凸函数而言,任意两个点之间的连线位于这两个点所对应的函数值之上。
如果我们要找到函数f(x)在一些闭区间上的最大值,我们可以在该区间上找到两个点,判断这两个点的连线是否位于这个函数值之上。
如果是,那么函数值将成为该区间的最大值。
对于凹函数来说,与凸函数类似,只是方向相反。
3.形象化问题:通过将问题形象化,我们可以更好地理解利用均值不等式求函数最值的思路。
例如,我们有一个数轴上的几个点,我们想找到距离它们最近和最远的点。
我们可以将这些点放在数轴上,并根据它们的位置找到距离最近和最远的点。
同样地,在函数的最大值和最小值问题中,我们可以通过绘制图形并观察函数曲线来找到函数的最大值和最小值。
4.极值问题:利用均值不等式求函数最值时,我们可以寻找函数的极值点。
当函数的导数为0时,函数可能取得最大值或最小值。
我们可以计算导数,找到可能的极值点,并对这些极值点应用均值不等式,从而确定函数的最大值和最小值。
5.多元函数:均值不等式也可以应用于多元函数的情况。
在多元函数的情况下,我们可以将问题转化为一元函数的情况,并使用上述方法解决。
综上所述,利用均值不等式求函数最值是一个实用的方法。
通过使用权值平均、凸函数和凹函数特性、形象化问题、极值问题和多元函数等技巧,我们可以更好地利用均值不等式来确定函数的最大值和最小值,从而解决数学中的一些问题。
利用均值不等式求最值的方法均值不等式是数学中常见的一种不等式形式,可以用于求解各种最值问题。
该不等式提供了一种有效的方法来估算函数的最大值和最小值。
均值不等式最常见的形式是算术平均数和几何平均数之间的关系,即对于任意一组非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$\sqrt[n]{x_1x_2...x_n} \leq \frac{x_1+x_2+...+x_n}{n}$其中,算术平均数是$x_1,x_2,...,x_n$的和除以$n$,而几何平均数是$x_1,x_2,...,x_n$的乘积开$n$次方。
均值不等式的证明可以通过数学归纳法和对数函数的单调性来完成,具体证明过程超出本文篇幅,不过可以查阅相关数学教材进行学习。
步骤1:确定题目要求求解的最值问题,明确自变量和因变量。
一般来说,最值问题都是求解一些函数的最大值或最小值。
步骤2:将问题转化为均值不等式的形式。
利用均值不等式,可以将函数中的一些项转化为均值的形式,进而简化问题求解过程。
步骤3:确定均值的形式。
根据函数中的项,可以选择合适的均值形式,如算术平均数、几何平均数、调和平均数等。
步骤4:利用均值不等式进行变换。
将问题中的需要求解的部分,利用均值不等式进行变换,得到简化后的表达式。
步骤5:求解均值不等式中的最值问题。
根据均值不等式,可以得到简化后的表达式的最值。
具体求解方法,根据实际问题采取不同的手段,如求导法、取等法等。
步骤6:将最值结果回代到原始问题中。
将得到的最值结果回代到原始问题中,得到最终的结果。
下面通过一个简单的例子来说明利用均值不等式求最值的方法。
例题:已知$a,b,c$满足$a^2+b^2+c^2=1$,求$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。
解答:步骤1:确定题目要求求解的最值问题。
题目要求求解函数$\frac{a}{1-a^2}+\frac{b}{1-b^2}+\frac{c}{1-c^2}$的最大值。
第12集利用均值不等式求最值——2018年高考数学江苏卷第13题利用均值不等式求最值是高考的高频考点,主要以选择题或填空题出现,全国卷以解答题作为选考出现,难度一般中档。
利用均值不等式求最值应同时满足三个条件:(1)一正,即各项或各因式为正;(2)二定,即和或者积为定值;(3)三相等,即各项或各因式能取到使等号成立的条件。
若题目直接满足均值不等式的条件,则直接使用均值不等式求得最值;若不能直接满足均值不等式的条件,则改变结构,通过代换创造使用均值不等式的条件;若一次使用均值不等式不能达到目的,则多次使用,但要注意取等一致。
下面以2018年高考数学江苏卷第13题为例。
一·套路二·脑洞本题借助三角形考查不等式求最值,涉及解三角形、均值不等式、柯西不等式等知识点,考查分析与应用能力、逻辑推理与计算能力,属于中档题。
法1,消元法,这是解决二元问题最直观的想法,将二元转化为一元,然后利用分离常数法构造使用均值不等式的条件,由均值不等式求出最小值。
法2,1的代换,借1代换是数学中一个非常有用的技巧,在三角函数中也经常使用,通过1的代换后构造使用均值不等式,进而求得最小值。
法3,万能设t法,这其实是一种主元的思想,通过t的代换,得到一个关于主元的一元二次方程,然后利用判别式求得t的范围。
法4,柯西不等式,柯西不等式简直就是解决最值问题的一把屠龙刀,干脆利索。
值得说明的是,均值不等式求最值的难点在于构造,常常使用“拆、拼、凑”等技巧,使其满足均值不等式中“正、定、等”的条件。
三·迁移均值不等式求最值的类似题目不胜枚举,尤其是上述这种,几乎都是大同小异,所以下面随便举一例即可。
巧用均值不等式及其条件求最值(南京师范大学数学与计算机科学学院 张逸洁)均值不等式是高中阶段初等数学中最重要的基本不等式之一,在许多问题的解决中往往能发挥出它的独特功能,对于它及它各种变式的掌握和熟练运用也是求解很多与不等式有关的最值问题的重要方法。
本文将归纳介绍均值不等式在最值问题中的一些巧妙运用,希望能够开拓学生的思维,对高中生不等式的学习有所帮助。
一、均值不等式1.22,2,a b R ab ab ∈+≥、(当且仅当a=b 时取“=”)。
推论:,a b R a b +∈+≥、,(当且仅当a=b 时取“=”)。
2.变形,对a b R ∈、积向平方和转化:222a b a b +⋅≤。
对a b R ∈、积向和转化:2()2a b a b +⋅≤。
注:这里有“最值定理”: 若,,,x y R x y s xy p +⋅∈+==2()2x y xy +≥⇔≤则x+y 运用此定理求最值时必须具备“一正,二定,三相等”这三个条件。
3.333,3a b c Ra b c abc +∈++≥、、,(当且仅当a=b=c 时取“=”)推论:,a b c R a b c +∈++≥、、,(当且仅当a=b=c 时取“=”)4.变形:对3,()3a b c a b c R abc +++∈≤、、 方法小结:在运用均值不等式求正数和的最小值时,凑积为定值;求正数积的最大值时,凑和为定值。
二、巧用均值不等式求解最值问题在求解函数最值问题的过程中,我们通常运用不等式,函数单调性,数形结合等方法分析解答。
本文着重介绍均值不等式在求解此类问题中的妙用,旨在帮助读者系统归纳,拓展思维,灵活解题。
1. 连用例1:已知3222160,a b a b a b ab b-+>>-求的最小值。
解:32222222222161616166416()2a b a b a a a a b a b ab b ab b b a b a -+=+=+≥+=+≥+----()216.64a b a ⎧⎧=⎪⎪∴⎨⎨==⎪⎪⎩⎩2b=a-b 当且仅当即a分析:有时利用均值不等式求最值时只用一次并不能解决问题,通常需要连用来巧求最值。
高中数学专题韦达定理与均值不等式综合,解决求最小值问题数学中有许多关于求最小值的问题,其中最常用的方法就是韦达定理和均值不等式。
两个方法结合起来使用,可以解决各种求最小值问题。
一、韦达定理韦达定理是指在已知方程ax²+bx+c=0的情况下,求出其两个根x₁和x₂之和x₁+x₂和积x₁x₂的方法。
具体做法是:1.求出方程的根公式:x₁=(-b+√(b²-4ac))/2a, x₂=(-b-√(b²-4ac))/2a。
2.求出根之和:x₁+x₂=-b/a。
3.求出根之积:x₁x₂=c/a。
韦达定理可以用来解决各种求最小值的问题。
例如,已知两个正数x和y的和为a,它们的积为b,那么当x和y分别等于多少时,它们的和最小。
解题步骤如下:1.利用韦达定理,求出方程x²-ax+b=0的根,即x₁和x₂。
2.由于x和y的和为a,因此我们有x+y=a。
又因为x和y的积为b,因此我们有xy=b。
3.将x和y分别替换为x₁和x₂,得到两个方程:x₁+x₂=a,x₁x₂=b。
4.根据均值不等式,有a²/4≥b,即a²/4-b≥0。
我们将x₁和x₂代入这个不等式中,得到(x₁-x₂)²≥0。
结合x₁和x₂的定义,可得到2x₁x₂≥a²,即xy≥(a²/4)。
5.因此,当且仅当x=y=(a/2)时,xy最小,其最小值为(a²/4)。
二、均值不等式均值不等式是解决求最小值问题中常用的方法。
均值不等式分为算术平均数和几何平均数两种:1.算术平均数:a₁、a₂、...、aₙ的算术平均数是它们之和除以n。
2.几何平均数:a₁、a₂、...、aₙ的几何平均数是它们的积开n 次方。
均值不等式的基本形式是:对于任意的正实数a₁、a₂、...、aₙ和正整数p,q,有:(a₁ᵖ+a₂ᵖ+...+aₙᵖ)¹/ᵖ≥(a₁ᵩ+a₂ᵩ+...+aₙᵩ)¹/ᵩ当p=1,q=0时,即为算术平均数不小于几何平均数。
均值不等式求最值策略应用平均值不等式求最值时,要把握平均值不等式成立的三个条件“一正二定三相等”。
忽略了任何一个条件,就会导致解题失败,若出现问题,又怎样另辟蹊径,寻求新方法来求最值呢?本文提出一些思路。
1. 调整符号,化负为正,使之适合“一正”条件,过第一关例1. 已知45<x ,求函数54414-+-=x x y 的最值。
解:因为45<x 所以054<-x故045>-x 所以54414-+-=x x y 0454)45(24]454)45[(4=-⋅--≤-+--=xx xx 当且仅当x x 45445-=-,即47=x 或43=x 时,等号成立,但4547>不合条件,舍去,故当43=x 时,0max =y 2. 拆添配凑,变动为定,使之适合“二定”条件,过第二关利用均值不等式求最值,变形构造出“定值”是难点,其方法如下:(1)变形法例2. 求函数)(1222R x x x y ∈++=的最小值。
解:因为R x ∈ 所以0112>≥+x故11111)1(2222+++=+++=x x x x y 2111222=+⋅+≥x x 当且仅当11122+=+x x ,即0=x 时,2min =y(2)配凑法 例3. 已知3>x ,求函数382-+=x x y 的最小值。
解:因为3>x 则有038062>->-x x ,所以63862382+-+-=-+=x x x x y 14638)3(22638)3(2=+-⋅-≥+-+-=x x x x 当且仅当38)3(2-=-x x ,即5=x 时,14min =y3. 分离常数(1)拆项法 例4. 当1->x 时,求1132++-=x x x y 的最小值。
解:因为1->x所以01>+x 所以15)1(5)1(2+++-+=x x x y552515)1(2515)1(-=-+⋅+≥-+++=x x x x 当且仅当5)1(2=+x ,即15-=x 取等号 另一解151-<--=x (舍去) 所以552min -=y(2)倒数法例5. 若0>x ,求函数12++=x x x y 的最大值。
例谈均值不等式的运用条件和技巧运用均值不等式“121212,,,,nn n n a a a a a a R a a a n++++∈≥若则当且仅当n a a a === 21(2)n n N ≥∈且时等号成立”求最值是中学数学求最值的基本方法之一,许多外形与它截然相异的函数式,常常也能利用它巧妙地求出最值.且运用均值定理求最值是历年来高考的热点内容,因此必须熟练掌握他的运用条件和运用技巧.一、重视运用过程中的三个条件:“一正、二定、三相等”,三者缺一不可。
(1) 注意“正数”例1、求函数1y x x=+的值域 .误解:12x x +≥=(当且仅当1x =时取等号),所以值域为[)2,+∞. 这里错误在于使用均值定理ab b a 2≥+时忽略了条件:+∈R b a ,正确解法:1()0,2(1)a x x x x >+≥==当时仅当时取等号;11()0,0()()2(1)2b x x x x x x x<->-+-≥==-∴+≤-当时而仅当时取等号所以函数的值域是{}22y y y ≤-≥或. (2) 注意“相等”例2、设+∈R x ,求函数213x x y +=的最小值. 误解:拿到很容易想到用均值定理,所以有3min 3322232312312,=∴=⋅⋅≥++=∈+y xx x x x x y R x . 这里的错误是没有考虑等号成立的条件.显然要212x x x ==,这样的x 不存在,故导致错误.此题用均值定理,需要拆项,同时要等号成立,需要配一个系数.正确解法:时取等号)23322123(182312323312323xx x x x x x x y ==⋅⋅≥++=. 所以2183,3183min 3==y x . 例3、的最大值求且有设by ax y x b a R y x b a +=+=+∈,6,3,,,,2222.误解:2222222219,()(1)2222a xb y ax by ax by a b x y ++≤≤∴+≤+++=所以by ax +的最大值为29. 这里(1)取等号的条件是仅当b y a x ==,;由条件知这是不可能的,所以不可能取到上述的最大值.正确解法:2222222222,()()()a x b y axby a b x y ax by +≥∴++≥+仅当ax by=时取等,所以222236ax by ax by a b x y =⎧⎪+≤=+=⎨⎪+=⎩时取等号.如取23)(,3,26max =+====by ax y x b a (3)注意“定值”例4、已知的最大值求y x R y x y x 2,,,12+∈=+.误解:12),(27)2()3(332=+=+=++≤y x y x y x y x x y x 又时取等当, 271,312≤==∴y x y x 时. 以上过程只能说明当271312===y x y x 时.但没有任何理由说明,2712≤y x 这种似是而非的错误解法,关键在于运用重要不等式放缩后的式子不是定值,致使得不出正确的结果.正确解法:272)322(41)34(41441,,332=+⨯=++≤⋅⋅⋅=∴∈+y x y x x y x x y x R y x , 所以仅当24212,,,213627x y x y x y x y =⎧==∴⎨+=⎩即时取等号最大值为.二、常用的处理方法和技巧(1) 拆项:为了创设使用不等式的条件,有时需将一些项作适当的变形,拆为多项之积,从而达到凑积或和为定值的目的。
【热点聚焦】高考命题对基本不等式的考查比较灵活,重点考查应用基本不等式确定最值(范围)问题、证明不等式、解答函数不等式恒成立等问题.独立考查以选择、填空为主,有时以应用题的形式出现.有时与三角函数、数列、解析几何、平面向量函数等相结合,考查考生应用数学知识的灵活性.【重点知识回眸】1. 基本不等式 ab ≤a +b 2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1))2,0a b ab a b +≥>:多用在求和式的最小值且涉及求和的项存在乘积为定值的情况(2)22a b ab +⎛⎫≤ ⎪⎝⎭,,a b R ∈:多用在求乘积式的最大值且涉及乘积的项存在和为定值的情况(3)222a b ab +≥,,a b R ∈(4)222()22a b a b ++≤,,a b R ∈ (5)2,,b aa b a b+≥同号且不为零 (6)重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 上述不等式,当且仅当a =b 时等号成立 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)x +y ≥2xy ,若xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小).(2)xy ≤⎝⎛⎭⎫x +y 22,若x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值q 24(简记:和定积最大).提醒:在应用基本不等式求最值时,一定要检验求解的前提条件:“一正、二定、三相等”,其中等号能否取到易被忽视.特别是:① 若求最值的过程中多次使用均值不等式,则均值不等式等号成立的条件必须能够同时成立(彼此不冲突)② 若涉及的变量有初始范围要求,则使用均值不等式后要解出等号成立时变量的值,并验证是否符合初始范围. 5、常见求最值的题目类型 (1)构造乘积与和为定值的情况 (2)已知1ax by +=(a 为常数),求m nx y+的最值, 此类问题的特点在于已知条件中变量位于分子(或分母)位置上,所求表达式变量的位置恰好相反,位于分母(或分子)上,则可利用常数“1”将已知与所求进行相乘,从而得到常数项与互为倒数的两项,然后利用均值不等式求解.(3)运用均值不等式将方程转为所求式子的不等式,通过解不等式求解: 例如:已知0,0,24x y x y xy >>++=,求2x y +的最小值解:()22211222228x y x y xy x y ++⎛⎫=⋅⋅≤= ⎪⎝⎭所以()()2224248x y x y xy x y +++=⇒++≥即()()2282320x y x y +++-≥,可解得234x y +≥,即()min 2434x y += 注:此类问题还可以通过消元求解:42241xx y xy y x -++=⇒=+,在代入到所求表达式求出最值即可,但要注意0y >的范围由x 承担,所以()0,2x ∈【典型考题解析】热点一 直接法求最值【典例1】(2021·全国·高考真题(文))下列函数中最小值为4的是( ) A .224y x x =++ B .4sin sin y x x=+ C .222x x y -=+D .4ln ln y x x=+【答案】C 【解析】 【分析】根据二次函数的性质可判断A 选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出,B D 不符合题意,C 符合题意. 【详解】对于A ,()2224133y x x x =++=++≥,当且仅当1x =-时取等号,所以其最小值为3,A 不符合题意;对于B ,因为0sin 1x <≤,4sin 244sin y x x=+≥,当且仅当sin 2x =时取等号,等号取不到,所以其最小值不为4,B 不符合题意;对于C ,因为函数定义域为R ,而20x >,242222442x x xx y -=+=+≥=,当且仅当22x =,即1x =时取等号,所以其最小值为4,C 符合题意; 对于D ,4ln ln y x x=+,函数定义域为()()0,11,+∞,而ln x R ∈且ln 0x ≠,如当ln 1x =-,5y =-,D 不符合题意.故选:C .【典例2】(2021·全国·高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C 【解析】 【分析】本题通过利用椭圆定义得到1226MF MF a +==,借助基本不等式212122MF MF MF MF ⎛+⎫⋅≤ ⎪⎝⎭即可得到答案.【详解】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立). 故选:C .【典例3】(2023·全国·高三专题练习)若0a >、0b >,且411a b+=,则ab 的最小值为( ).A .16B .4C .116 D .14【答案】A 【解析】 【分析】根据基本不等式计算求解. 【详解】因为0a >、0b >,所以414112+≥⨯=a b a b ab114≥ab 4ab ≥,即16ab ≥,当仅当41a b=,即82a b ==,时,等号成立. 故选:A.【典例4】(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出. 【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=. 又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.热点二 配凑法求最值【典例5】(2023·全国·高三专题练习)已知102x <<,则函数(12)y x x =- 的最大值是( ) A .12 B .14C .18D .19【答案】C【解析】 【分析】将(12)y x x =-化为12(12)2x x ⨯-,利用基本不等式即可求得答案.【详解】 ∵102x <<,120x ∴-> , ∴1(12)2(12)2x x x x -=⨯-22(12)112[]28x x +-=≤⨯, 当且仅当212x x =- 时,即14x =时等号成立, 因此,函数(12)y x x =-,1(0)2x <<的最大值为18,故选:C .【典例6】(2023·全国·高三专题练习)已知a >b ,关于x 的不等式220ax x b ++≥对于一切实数x 恒成立,又存在实数0x ,使得2020ax x b ++=成立,则22a b a b+-最小值为_________.【答案】22【解析】 【分析】由220ax x b ++≥对于一切实数x 恒成立,可得0a >,且0∆≤;再由0x R ∃∈,使20020ax x b ++=成立,可得0∆≥,进而可得ab 的值为1,将22a b a b+-可化为()222a b a b a b a b+=-+--,利用基本不等式可得结果. 【详解】因为220ax x b ++≥对于一切实数x 恒成立, 所以0a >,且440ab ∆=-≤,所以1≥ab ;再由0x R ∃∈,使20020ax x b ++=成立,可得440ab ∆=-≥,所以1ab ≤, 所以1ab =,因为a b >,即0a b ->,所以()()2222222a b ab a b a b a b a b a b-++==-+≥--- 当且仅当2a b a b-=-,即2a b -= 所以22a b a b+-的最小值为22故答案为:22【典例7】(2023·全国·高三专题练习)已知 5<4x ,求函数14145y x x =-+- 的最大值. 【答案】2 【解析】 【分析】 将14145y x x =-+-变形为[()1]54454y x x=--++-,利用基本不等式即可求得答案. 【详解】根据题意,函数()114545444554y x x x x ⎡⎤=-++=--++⎢⎥--⎣⎦, 又由54x <,则540x -> ,则()(115425425454)x x x x-+≥---⋅, 当且仅当15454x x-=-时,即1x =时取等号, 则1[(54)]424254y x x=--++≤-+=-, 故函数14145y x x =-+-的最大值为2. 【总结提升】形如()2ax bx c f x dx e +++=的函数,可化为()11[()]f x x k m x k+++=的形式,再利用基本不等式求解热点三 常数代换法求最值【典例8】(2023·全国·高三专题练习)在ABC 中,E 为AC 上一点,3AC AE =,P 为BE 上任一点,若(0,0)AP mAB nAC m n =+>>,则31m n+的最小值是( ) A .3B .423+C .6 D .12【答案】D 【解析】 【分析】利用向量共线定理可得31m n +=,再根据3131(3)()m n m n m n+=++结合基本不等式即可得出答案. 【详解】 解:3AC AE =,∴3AP mAB nAC mAB nAE =+=+,,,P B E 三点共线,31m n ∴+=, ∴313199(3)()336212n m n m m n m n m n m n m n+=++=+++≥+⋅=, 当且仅当9n m m n=,132m n ==时取等号,所以31m n+的最小值是12. 故选:D .【典例9】(2020·天津·高考真题)已知0,0a b >>,且1ab =,则11822a b a b+++的最小值为_________. 【答案】4 【解析】 【分析】根据已知条件,将所求的式子化为82a b a b+++,利用基本不等式即可求解. 【详解】0,0,0a b a b >>∴+>,1ab =,11882222ab ab a b a b a b a b∴++=++++ 882422a b a b a b a b++=+≥⨯=++,当且仅当a b +=4时取等号, 结合1ab =,解得23,23a b =-=+23,23a b ==. 故答案为:4【典例10】(2017·山东·高考真题(文))若直线1(00)x ya b a b+=>,>过点(1,2),则2a b +的最小值为________. 【答案】8 【解析】 【分析】 由直线1(00)x y a b a b +=>,>过点(1,2),可得121a b +=,从而有()1222a b a b a b ⎛⎫+=++ ⎪⎝⎭,展开后利用基本不等式可求得其最小值 【详解】 解:因为直线1(00)x y a b a b+=>,>过点(1,2),所以121a b +=,因为00a b >,>所以()12442222428a b a b a b a b a b b a b a ⎛⎫+=++=+++≥+⋅ ⎪⎝⎭, 当且仅当4a bb a=,即2,4a b ==时取等号, 所以2a b +的最小值为8 故答案为:8 【总结提升】常数代换法主要解决形如“已知x +y =t (t 为常数),求a b x y+的最值”的问题,先将a x +b y 转化为()a b x y x y t++⋅,再用基本不等式求最值. 热点四 基本不等式的实际应用【典例11】(2023·全国·高三专题练习)迷你KTV 是一类新型的娱乐设施,外形通常是由玻璃墙分隔成的类似电话亭的小房间,近几年投放在各大城市商场中,受到年轻人的欢迎.如图是某间迷你KTV 的横截面示意图,其中32AB AE ==,90A B E ∠=∠=∠=︒,曲线段CD 是圆心角为90︒的圆弧,设该迷你KTV 横截面的面积为S ,周长为L ,则SL的最大值为( ).(本题中取π=3进行计算)A .6B .12315-C .3D .9【答案】B 【解析】 【分析】根据面积和周长的计算,可得SL,根据基本不等式即可求解最大值. 【详解】圆弧的半径为3(0)2r r <<,则32BC ED r ==-,π322CD rl r ==.所以周长162CD L AB BC l DE EA r =++++=-,面积2223139[()]22244r r S r r =-+⨯⨯=-. 所以22191(12)24(12)135********12[(12)]122(12)12315212212212212S r r r r r L r r r r---+--=⋅=⋅=-⋅-+-⋅-⋅-----.当且仅当1351212r r-=-,12315r =- 故选:B【典例12】(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是__________. 【答案】30 【解析】 【详解】 总费用为600900464()42900240x x x x +⨯=+≥⨯,当且仅当900x x=,即30x =时等号成立.故答案为30. 【总结提升】利用基本不等式解决实际问题的三个注意点(1)设变量时,一般要把求最大值或最小值的变量定义为函数. (2)解题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解,如利用()a f x x x=+(a >0)的单调性.热点五 利用均值不等式连续放缩求最值【典例13】(2022·江苏·南京市第一中学高三开学考试)已知0a b >>,且1,ab =则不正确的是( ) A .20a b +> B .22log log 1a b +> C .2222a b +>D .22log log 0a b ⋅<【答案】B 【解析】 【分析】利用不等式的性质和基本不等式的应用,结合指数函数与对数函数的单调性,对选项逐一分析判断. 【详解】对A ,根据指数函数的性质20a b +>,故A 正确; 对B ,2222log log log log 10a b ab +===,故B 错误;对C ,因为22a b ab +≥=,当且仅当a b =取等号,所以22222242a b a b +≥≥>+,故C 正确;对D ,因为1ab =,且0a b >>,故10>>>a b ,22log 0,log 0a b ><,所以22log log 0a b ⋅<;故D 正确. 故选:B【典例14】(2021·天津·高考真题)若0 , 0a b >>,则21a b ab ++的最小值为____________. 【答案】22【解析】 【分析】两次利用基本不等式即可求出. 【详解】0 , 0a b >>,2211222222a a b b a b a b b b b b∴++≥⋅=+≥⋅ 当且仅当21a a b =且2b b=,即2a b ==所以21ab ab ++的最小值为2 故答案为:22 【总结提升】第一次使用基本不等式是对原不等式的一次放缩,并为第二次使用基本不等式创造了条件,因此要使结果为原不等式的最值,两次使用基本不等式等号成立的条件应该是一致的.【精选精练】一、单选题 1.(2023·全国·高三专题练习)已知02x <<,则24y x x =- ) A .2 B .4C .5D .6【答案】A 【解析】 【分析】由基本不等式求解即可 【详解】 因为02x <<,所以可得240x ->, 则()()2222244422x x y x x x x+-=-⋅-=,当且仅当224x x =-,即2x24y x x =-的最大值为2.故选:A .2.(2023·全国·高三专题练习)已知a >0,b >0,且a +2b =ab ,则ab 的最小值是( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】利用基本不等式可得答案. 【详解】∵已知a >0,b >0,且a +2b =ab ,∴ab 2a b ⋅ 化简可得ab ≥2∴ab ≥8,当且仅当a =2b 时等号成立, 故ab 的最小值是8, 故选:B .3.(2022·江西·高三阶段练习(理))已知双曲线22:1(0,0)4n C mx y m n -=>>的一个焦点坐标为(1,0)-,当m n +取最小值时,C 的离心率为( ) A 5B 3C .2D 2【答案】B 【解析】 【分析】根据双曲线的标准方程可得22214,,1a b c m n===,根据,,a b c 的关系可得141m n +=,由基本不等式的求解即可得26n m ==,进而2311a m ==,即可求离心率. 【详解】由22:1(0,0)4n C mx y m n -=>>可得22114x y m n-=,所以22214,,1a b c m n===, 故可得141m n +=,所以(4144)5529n m n m m n m n m n m n m n ⎛⎫+=++=+++⋅= ⎪⎝⎭,当且仅当4n m m n =,即26n m ==时等号成立,所以2311a m ==,3a =1c =, 所以3==ce a故选:B .4.(2021·浙江·高考真题)已知,,αβγ是互不相同的锐角,则在sin cos ,sin cos ,sin cos αββγγα三个值中,大于12的个数的最大值是( ) A .0 B .1 C .2 D .3【答案】C 【解析】 【分析】利用基本不等式或排序不等式得3sin cos sin cos sin cos 2αββγγα++≤,从而可判断三个代数式不可能均大于12,再结合特例可得三式中大于12的个数的最大值. 【详解】法1:由基本不等式有22sin cos sin cos 2αβαβ+≤,同理22sin cos sin cos 2βγβγ+≤,22sin cos sin cos 2γαγα+≤,故3sin cos sin cos sin cos 2αββγγα++≤, 故sin cos ,sin cos ,sin cos αββγγα不可能均大于12. 取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.法2:不妨设αβγ<<,则cos cos cos ,sin sin sin αβγαβγ>><<, 由排列不等式可得:sin cos sin cos sin cos sin cos sin cos sin cos αββγγααγββγα++≤++,而()13sin cos sin cos sin cos sin sin 222αγββγαγαβ++=++≤,故sin cos ,sin cos ,sin cos αββγγα不可能均大于12.取6πα=,3πβ=,4πγ=,则116161sin cos ,sin cos ,sin cos 4222αββγγα=<=>=>, 故三式中大于12的个数的最大值为2, 故选:C.5.(2020·全国·高考真题(理))设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( ) A .4 B .8 C .16 D .32【答案】B 【解析】 【分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b =+结合均值不等式,即可求得答案. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限 联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b - ∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为2222222168c a b ab =+≥=当且仅当22a b == ∴C 的焦距的最小值:8故选:B.6.(2023·全国·高三专题练习)已知0a >,0b >,且2ab a b =+,若228a b m m +-恒成立,则实数m 的取值范围是( ) A .426426m -+ B .426m +或426m - C .19m - D .9m 或1m -【答案】C 【解析】 【分析】由题意化2ab a b =+为211b a=+,利用基本不等式求出2+a b 的最小值,再解关于m 的一元二次不等式即可. 【详解】解:0a >,0b >,且2ab a b =+,211b a∴=+, 1222222(2)()14529b a b aa b a b a b a b a b∴+=++=++++=,当且仅当3a b ==时取“=”; 若228a b m m +-恒成立, 则298m m -, 即2890m m --, 解得19m -,∴实数m 的取值范围是[1-,9].故选:C .7.(2023·全国·高三专题练习)已知ln ln 222+≥+-aa b b ,则a b +=( ) A .52B .4C .92D .6【答案】A 【解析】 【分析】根据基本不等式可得22222+-≥ab ab ,当且仅当4a b =时取等号,从而可到ln()2≥ab ab ,再构造函数分析可得ln()220-≤ab ab ,从而得到ln()220-=ab ab ,再根据基本不等式取得最值时的关系求解即可 【详解】 由题意得ln()222≥+-a ab b ,因为0a >,0b >,所以22222+-≥ab ab ,当且仅当4a b =时取等号,所以ln()2≥ab ab ,令()ln 22=-f x x x ,则11()-='=xf x x x,当(0,1)x ∈,()0f x '>,()f x 单调递增;当(1,)x ∈+∞时,()0,()f x f x '<单调递减,所以()(1)0f x f ≤=,当且仅当1ab =时取等号,即ln()20-≤ab ab ,所以ln()220-=ab ab ,所以1ab =,所以12,2a b ==,所以52a b +=. 故选:A8.(2017·天津·高考真题(理))已知函数23,1,()2, 1.x x x f x x x x ⎧-+≤⎪=⎨+>⎪⎩设a R ∈,若关于x 的不等式()||2xf x a ≥+在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[3,2]-D .39[23,]16- 【答案】A 【解析】 【详解】 不等式()2x f x a ≥+为()()2xf x a f x -≤+≤(*), 当1x ≤时,(*)式即为22332xx x a x x -+-≤+≤-+,2233322x x a x x -+-≤≤-+,又22147473()241616x x x -+-=---≤-(14x =时取等号),223339393()241616x x x -+=-+≥(34x =时取等号),所以47391616a -≤≤, 当1x >时,(*)式为222x x a x x x --≤+≤+,32222x x a x x--≤≤+, 又3232()2322x x x x --=-+≤-23x =,22222x x x x+≥⨯=(当2x =时取等号), 所以32a -≤≤, 综上47216a -≤≤.故选A . 【考点】不等式、恒成立问题 【名师点睛】首先满足()2x f x a ≥+转化为()()22x xf x a f x --≤≤-去解决,由于涉及分段函数问题要遵循分段处理原则,分别对x 的两种不同情况进行讨论,针对每种情况根据x 的范围,利用极端原理,求出对应的a 的范围. 二、多选题9.(2022·全国·高考真题)(多选)若x ,y 满足221+-=x y xy ,则( ) A .1x y +≤ B .2x y +≥- C .222x y +≤ D .221x y +≥【答案】BC 【解析】 【分析】根据基本不等式或者取特值即可判断各选项的真假. 【详解】因为22222a b a bab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ==,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当33x y ==221x y +≥不成立,所以D 错误.故选:BC .10.(2020·海南·高考真题)(多选)已知a >0,b >0,且a +b =1,则( ) A .2212a b +≥B .122a b -> C .22log log 2a b +≥- D 2a b ≤【答案】ABD 【解析】 【分析】根据1a b +=,结合基本不等式及二次函数知识进行求解. 【详解】对于A ,()222221221a b a a a a +=+-=-+21211222a ⎛⎫⎪⎭+ ⎝≥-=,当且仅当12a b ==时,等号成立,故A 正确; 对于B ,211a b a -=->-,所以11222a b-->=,故B 正确;对于C ,2222221log log log log log 224a b a b ab +⎛⎫+=≤==- ⎪⎝⎭, 当且仅当12a b ==时,等号成立,故C 不正确; 对于D ,因为(21212a bab a b =+++=,2a b ≤12a b ==时,等号成立,故D 正确; 故选:ABD11.(2023·全国·高三专题练习)(多选)已知a <b <0,则下列不等式正确的是( ) A .a 2>ab B .ln (1﹣a )>ln (1﹣b ) C .2a b ab+> D .a +cos b >b +cos a【答案】ABC 【解析】 【分析】利用不等式的性质判断A ,利用对数函数的单调性判断B ,利用基本不等式判断C ,利用构造函数判断D. 【详解】A:∵a <b <0,∴a 2>ab ,∴A 正确,B:∵a <b <0,1﹣a >1﹣b ,∴ln (1﹣a )>ln (1﹣b ),∴B 正确, C:∵a <b <0,∴2a bab -->2a b ab -+>C 正确, D:设f (x )=x ﹣cos x ,则()f x '=1+sin x ≥0,∴f (x )在R 上为增函数,∵a <b <0,∴a ﹣cos a <b ﹣cos b ,a +cos b <b +cos a ,∴D 错误. 故选:ABC .12.(2022·江苏省如皋中学高三开学考试)(多选)若实数x ,y 满足1221x y ++=,m x y =+,111()()22-=+x y n ,则( )A .0x <且1y <-B .m 的最大值为3-C .n 的最小值为7D .22m n ⋅<【答案】ABD 【解析】 【分析】根据指数函数的性质判断A ,利用基本不等式判断B 、C ,根据指数幂的运算判断D ; 【详解】解:因为1221x y ++=,若0x ≥,则21x ≥,又120y +>,显然不成立,即0x <, 同理可得10y +<,所以1y <-,即0x <且1y <-,故A 正确; 又1111222222x y x y x y ++++=+≥⋅=1222x y ++-≤,所以3x y +≤-,当且仅当11222x y +==,即1x =-,2y =-时取等号,即m 的最大值为3-,故B 正确; 又()111111112222222244x y x y x y x y n +-++⎛⎫=+=+=+⋅+ ⎪⎝⎭ 111144552922222222y x y xx y xy ++++⋅⋅=⋅+≥+=+, 当且仅当1142222y xx y ++⋅=,即2log 3x =-,22log 13y =-时取等号,故C 错误;对于D :()111112()()22222222m x y x y x y x y y x n -+--+++⎡⎤⋅=+⋅=+⋅=+⎢⎥⎣⎦,因为1221x y ++=,所以()12222x y ++=,即12222x y +++=,即12422x y ++⨯=,即122322x y y ++⨯=+,因为302y ⨯>,所以1222x y +<+,即22m n ⋅<,故D 正确; 故选:ABD 三、填空题13.(2020·江苏·高考真题)已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.【答案】45【解析】 【分析】根据题设条件可得42215y x y -=,可得4222222114+555y y x y y y y-+=+=,利用基本不等式即可求解.【详解】 ∵22451x y y +=∴0y ≠且42215y x y -=∴422222222114144+2555555y y y x y y y y y -+=+=≥⋅,当且仅当221455y y =,即2231,102x y ==时取等号. ∴22xy +的最小值为45.故答案为:45.14.(2019·天津·高考真题(文)) 设0x >,0y >,24x y +=,则(1)(21)x y xy++的最小值为__________. 【答案】92.【解析】 【分析】 把分子展开化为(1)(21)2212552x y xy x y xy xy xy xy xy++++++===+,再利用基本不等式求最值.【详解】由24x y +=,得2422x y xy +=≥2xy ≤(1)(21)221255592222x y xy x y xy xy xy xy xy ++++++===+≥+=,等号当且仅当2x y =,即2,1x y ==时成立. 故所求的最小值为92.15.(2018·江苏·高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.【答案】9 【解析】 【详解】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c =++=,因此11444(4)()5529,c a c aa c a c a c a c a c+=++=++≥+⋅当且仅当23c a ==时取等号,则4a c +的最小值为9.16.(2018·天津·高考真题(理))已知,R a b ∈,且360a b -+=,则128ab+的最小值为_____________.【答案】14【解析】 【分析】由题意首先求得3a b -的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件. 【详解】由360a b -+=可知36a b -=-,且:312228aa b b -+=+,因为对于任意x ,20x >恒成立, 结合均值不等式的结论可得:336122222224a b a b ---+≥⨯=.当且仅当32236a b a b -⎧=⎨-=-⎩,即31a b =-⎧⎨=⎩时等号成立.综上可得128ab +的最小值为14. 17.(2022·全国·高考真题(理))已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________. 31##3-【解析】 【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m m m m ++-++-===-+++++++ ()4433211m m ≥=-+⋅+当且仅当311m m +=+即31m =时,等号成立, 所以当AC AB取最小值时,31m =. 31.四、解答题18.(2023·全国·高三专题练习)设函数2()(2)3(0)f x ax b x a =+-+≠.(1)若不等式()0f x >的解集(1,1)-,求a ,b 的值;(2)若(1)3f =,0a >,0b >,求11a b +的最小值,并指出取最小值时a ,b 的值. 【答案】(1)3,2a b =-=(2)1a =,1b =时,11a b+的最小值是2 【解析】【分析】(1)由根与系数的关系可得答案;(2)由(1)3f =得2a b +=,再利用基本不等式可得答案.(1)由()0f x >的解集是(1,1)-知1,1-是方程()0f x =的两根,由根与系数的关系可得311211a b a ⎧-⨯=⎪⎪⎨-⎪-+=-⎪⎩ 解得32=-⎧⎨=⎩a b ,即32a b =-=,.(2)由(1)3f =得2a b +=,0a >,0b >,11111()2a b a b a b ⎛⎫∴+=++ ⎪⎝⎭12222b a a b ⎛⎫≥⋅= ⎪ ⎪⎝⎭, 当且仅当b a a b =,即1a =,1b =时取等号,11a b∴+的最小值是2.。
rhaOA利用平均不等式求最大(小)值一、引入:1、重要的结论:已知x ,y 都是正数,则:(1)、如果积xy 是定值P ,那么当x=y 时,和x+y 有最小值P 2; (2)、如果和x+y 是定值S ,那么当x =y 时,积xy 有最大值241S 。
二、典型例题:例1、当x 取什么值时,函数2294xx y +=有最小值?最小值是多少?例2、求函数1622++-=x x x y (0≥x )的最小值。
例3、小宁在某电脑城配置了一台总费用为6400元的电脑。
假定在电脑的使用过程中,每年的维修费用约为:第一年为200元,第二年400元,第三年600元,…,按等差数列递增。
这台电脑使用多少年报废最合算?分析:例4、如图,电灯挂在圆桌的正中央上方。
假定它与桌面上A 点的水平距离是a ,那么电灯距离桌面的高度h 等于多少时,A 点处最亮?(亮度公式:θsin 2rkI =,这里k 为常数,r 是电灯到照射点的距离,θ是照射到某点的光线与水平面所成的角)分析:例5、求函数)0(,322>+=x xx y 的最大值,下列解法是否正确?为什么? 解一: 3322243212311232=⋅⋅≥++=+=xx x x x x x x y∴3min 43=y解二:x xx x x y 623223222=⋅≥+=当x x 322=即2123=x 时 633min 3242123221262==⋅=y 答:以上两种解法均有错误。
解一错在取不到“=”,即不存在x 使得xx x 2122==;解二错在x 62不是定值(常数)正确的解法是:33322236232932323232323232==⋅⋅≥++=+=x x x x x x x x y 当且仅当x x 2322=即263=x 时3min 3623=y例6、若14<<-x ,求22222-+-x x x 的最值。
解:])1(1)1([21]11)1[(2111)1(21222222--+---=-+-=-+-⋅=-+-x x x x x x x x x∵14<<-x ∴0)1(>--x0)1(1>--x从而2])1(1)1([≥--+--x x 1])1(1)1([21-≤--+---x x即1)2222(min 2-=-+-x x x 。
几个重要的均值不等式 ①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2ab +≤≤≤222b a +。
三、用均值不等式求最值的常见的技巧1、 添、减项(配常数项)例1 求函数221632y x x =++的最小值.2、 配系数(乘、除项)例2 已知0,0x y >>,且满足3212x y +=,求lg lg x y +的最大值.3、 裂项例3 已知1x >-,求函数()()521x x y x ++=+的最小值.4、 取倒数例4 已知102x <<,求函数2(1)(12)x y x x +=-的最小值.5、 平方例5 已知0,0x y >>且22283y x +=求.6、 换元(整体思想)例6 求函数y =的最大值.7、 逆用条件例7 已知191(0,0)x y x y +=>>,则x y +的最小值是( ) .8、 巧组合例8 若,,0a b c >且()4a a b c bc +++=-求2a b c ++的最小值 .9、 消元例9、设,,x y z 为正实数,230x y z -+=,则2y xz 的最小值是.几个重要的均值不等式 ①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:b a 112+2a b +≤≤≤222b a +。
高中数学专题韦达定理与均值不等式综合,解决求最小值问题本文将介绍高中数学中的两个重要概念——韦达定理和均值不等式,并结合实例说明如何综合运用这两个概念来解决求最小值问题。
首先,我们来介绍韦达定理。
韦达定理是一个用于求解三角形中各条边的长度之间关系的定理,其表述为:三角形三边的平方和等于三角形内接圆半径的平方加上半周长的平方,即a^2+b^2+c^2=2s^2-2r^2-8Rr,其中a、b、c为三角形三边的长度,s 为半周长,r为内接圆半径,R为外接圆半径。
接下来,介绍均值不等式。
均值不等式是一个用于描述算术平均数和几何平均数之间关系的不等式,其表述为:对于任意正实数a1,a2,...,an,有a1+a2+...+an≥n√(a1a2...an),即算术平均数不小于几何平均数。
那么,如何综合运用韦达定理和均值不等式来解决求最小值问题呢?下面以一个实例来说明。
假设有一个三角形ABC,其周长为6,求当内接圆半径最小时,内接圆和外接圆的和为多少?首先,我们利用韦达定理求出内接圆半径r和外接圆半径R的关系式为:r=(a+b-c)/2,R=abc/4√(s(s-a)(s-b)(s-c)),其中a、b、c为三角形三边的长度,s为半周长。
然后,我们利用均值不等式,将R和r的和表示为算术平均数和几何平均数的形式,即(R+r)/2≥√(Rr)。
接着,我们将R和r的表达式代入上式,得到(a+b)/2≥2√((a+b-c)(abc)/(8s(s-a)(s-b)(s-c)))。
接着,我们将周长为6代入,化简后得到:(a+b)^2≥27c。
最后,我们利用平方差公式将左边平方并移项,得到(a-b)^2≥27(c-a-b),即(a-b)^2+54c≥27(a+b)。
由于(a-b)^2和c是固定值,因此要使(a+b)最小,就需要使27(a+b)最小。
根据均值不等式,我们知道当a=b时,27(a+b)取得最小值。
因此,当a=b=2时,27(a+b)取得最小值,此时(a-b)^2+54c ≥108,即c≥(108-(a-b)^2)/54=6-((a-b)^2)/54。
利用均值不等式求最值好方法一、添、减项(配常数项)例1 求函数y=3x2+162+x2的最小值.分析3x2+162+x2是二项“和”的形式,但其“积”的形式不为定值.而12+x2可与x2+2相约,即其积为定积1,因此可以先添、减项6,即y=3x2+6+162+x2-6,再用均值不等式.解x2+2>0,y=3x2+162+x2=3(x2+2)+162+x2-6≥23(2+x2)·162+x2-6=83-6,当且仅当3(2+x2)=162+x2,即x2=433-2时,等号成立.所以y的最小值是83-6.评注为了创造条件利用均值不等式,添项是常用的一种变形技巧;为了保证式子的值不变,添项后一定要再减去同一项.二、配系数(乘、除项)例2 已知x>0,y>0,且满足3x+2y=12,求lgx+lgy的最大值.分析lgx+lgy=lg(x+y),xy是二项“积”的形式,但不知其“和”的形式x+y是否定值,而已知是3x与2y的和为定值12,故应先配系数,即将xy变形为3x·2y6,再用均值不等式.解x,y>0,lgx+lgy=lg(xy)=lg3x·2y6≤lg163x+2y22=lg161222=lg6,当且仅当3x=2y,即x=2,y=3时,等号成立.所以lgx+lgy的最大值是lg6.评注本题是已知和为定值,要求积的最大值,可逆用均值不等式,即利用ab≤a+b22来解决.三、裂项例3 已知x>-1,求函数y=(x+5)(x+2)x+1的最小值.分析在分子的各因式中分别凑出(x+1),借助于裂项解决问题.解x+1>0,y=[(x+1)+4][(x+1)+1]x+1=(x+1)+4x+1+5≥2(x+1)4x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.所以ymin=9.四、取倒数例4 已知0<x<12,求函数y=(x+1)2x(1-2x)的最小值.分析分母是x与(1-2x)的积,可通过配系数,使它们的和为定值;也可通过配系数,使它们的和为(1+x)(这是解本题时真正需要的).于是通过取倒数即可解决问题.解由0<x<12,得1+x>0,1-2x>0.取倒数,得1y=x(1-2x)(1+x)2=13·3x1+x·1-2x1+x≤133x1+x+1-2x1+x22=112,当且仅当3x1+x=1-2x1+x,即x=15时,取等号.故y的最小值是12.五、平方例5 已知x>0,y>0,且2x2+y23=8,求 x6+2y2的最大值.分析条件式中的x与y都是平方式,而所求式中的x是一次式,y是平方式但带根号.初看似乎无从下手,但若把所求式 x6+2y2平方,则解题思路豁然开朗,即可利用均值不等式来解决.解(x6+2y2)2=x2(6+2y2)=3·2x21+y23≤32x2+1+y2322=3922,当且仅当2x2=1+y23,即x=32,y=422时,等号成立.故x6+2y2的最大值是923.评注本题也可将x纳入根号内,即将所求式化为x2(6+2y2),先配系数,再运用均值不等式的变式.六、换元(整体思想)例6 求函数y=x+22x+5的最大值.分析可先令x+2=t,进行换元,再使分子常数化,然后运用均值不等式来解决.解令x+2=t,则t≥0,x=t2-2,则y=t2t2+1(t≥0).当t=0时,y=0;当t>0时,y=12t+1t≤122t·1t=24.当且仅当2t=1t,即t=22时,取等号.所以x=-32时,y取最大值为24.七、逆用条件例7 已知1x+9y=1(x>0,y>0),则x+y的最小值是.分析直接利用均值不等式,只能求xy的最小值,而无法求x+y的最小值.这时可逆用条件,即由1=1x+9y,得x+y=(x+y)1x+9y,然后展开即可解决问题.解由x>0,y>0,1x+9y=1,得x+y=(x+y)1x+9y=yx+9xy+10≥2yx·9xy+10=16,当且仅当yx=9xy,即x=4,y=12时,等号成立.故x+y的最小值是16.评注若已知x>0,y>0,x+y=1(或其他定值),要求1x+9y的最大值,则同样可运用此法.八、巧组合例8 若a,b,c>0且a(a+b+c)+bc=4- 23,求2a+b+c的最小值.分析初看,这是一个三元式的最值问题,无法利用a+b≥ 2ab来解决.换个思路,可考虑将2a+b+c重新组合,变成(a+b)+(a+c),而(a+b)(b+c)等于定值4-23,于是就可以利用均值不等式了.解由a,b,c>0,知2a+b+c=(a+b)+(a+c)≥2(a+b)(a+c)=2a2+ab+ac+bc=24-23=23-2,当且仅当b=c,即b=c=3-1-a时,等号成立.故2a+b+c的最小值为23-2.九、消元例9 (江苏卷)设x,y,z为正实数,x-2y+3z=0,则y2xz的最小值是.分析本题也是三元式的最值问题.由题意得y=x+3z2,则可对y2xz进行消元,用x,z 表示,即变为二元式,然后可利用均值不等式解决问题.解由x,z>0,y=x+3z2,可得y2xz=x2+9z2+6xz4xz≥6xz+6xz4xz=3,当且仅当x=3z,即x=y,z=y3时,取“=”.故y2xz的最小值为3.巩固练习1. 当0<x<π2时,f(x)=1+cos2x+8sin2xsin2x的最小值为.2. 若x,y是正数,则x+12y2+y+12x2的最小值是.3. 已知对于x,y∈R且x<y,不等式x+y≤ax+y恒成立,求实数a的最小值.。
高中数学专题均值不等式的应用,求最小值问题,利用
好条件更简便
均值不等式在求最小值问题中是非常常用的一种方法。
具体应用时,我们可以根据题目所给出的条件,选择合适的均值不等式进行推导。
例如,若要求函数 $f(x)=\sqrt{x+\frac{1}{x}}$ 的最小值,我们可以根据函数的形式,将其化为 $\sqrt{x}+\sqrt{\frac{1}{x}}$ 的形式,然后应用均值不等式得出:
$$\sqrt{x}+\sqrt{\frac{1}{x}}\geqslant2\sqrt{\sqrt{x}\cdot\s qrt{\frac{1}{x}}}=2$$。
因此,$f(x)$ 的最小值为 $2$,当且仅当
$\sqrt{x}=\sqrt{\frac{1}{x}}$,即 $x=1$ 时取得。
在应用均值不等式求最小值时,我们需要注意条件的限制,利用条件可以更加简便地解决问题。
例如,若要求$a^2+b^2+c^2$的最小值,且已知$a+b+c=1$,我们可以直接利用均值不等式得出:
$$a^2+b^2+c^2\geqslant\frac{(a+b+c)^2}{3}=\frac{1}{3}$$。
因此,$a^2+b^2+c^2$ 的最小值为 $\frac{1}{3}$,当且仅当
$a=b=c=\frac{1}{3}$ 时取得。
通过合理选择均值不等式及利用条件,我们可以更加简便地解决求最小值问题。