六、练习
︵如图︵,A︵B是⊙O 的直径,
BC=CD DE,∠COD=35°︵,求∠︵AOE︵的度数.
E
D
解: BC CD DE
C BOC=COD=DOE=35
A
·
O
B AOE 180 335
75
七、思考
如图,已知AB、CD为⊙O 的两条弦,
︵︵
C
AD BC.求证:AB=CD.
︵︵
B′
·
O
A
·
O
A
︵
根据旋转的性质,将线段AB连同AB绕圆心O旋转,使点A与点 A ′重合,∵AB= A ′B′ ,∴线段 AB与A ′B′重合.∴点B与点B ′重
合
︵︵
AB A' B ',
∠AOB=∠A′OB′
三、定理
弧、弦与圆心角的关系定理
在同圆或等圆中,相等的圆心角所对的弧相等, 所对的弦也相等.
1、 在︵⊙o中︵,AOB AOB, AB A' B ', AB AB。 ︵︵
2、 在⊙o中,AB A' B ',
AOB AOB, AB AB。
3、
在⊙o中,AB AB,
︵
︵
AOB AOB, AB A' B。'
A′ B
·
O A
四、练习
︵ ︵ 如图,AB、CD是⊙O的两条弦. ︵ ︵ (1)如果AB=CD,那么___A_B___C_D___,_____A_O_B_____C_O_D___. ︵ ︵ (2)如果 AB CD ,那么___A_B__=_C_D____,_____A_O_B_____C_O.D
O
A DB
圆心角有: