实验三:A星算法求解8数码问题实验
- 格式:doc
- 大小:126.00 KB
- 文档页数:26
A*算法求解八数码问题●open 表、closed 表数据结构的选择:1)把s放入open表,记f=h,令closed为空表。
2)重复下列过程,直到找到目标节点为止。
若open表为空表,则宣告失败。
3)选取open表中未设置过的具有最小f值的节点为最佳节点bestnode,并把它放入closed表。
4)若bestnode为一目标节点,则成功求得一解。
5)若bestnode不是目标节点,则扩展之,产生后继节点succssor。
6)对每个succssor进行下列过称:a)对每个succssor返回bestnode的指针。
b)计算g(suc)=g(bes)+k(bes,suc)。
c)如果succssore open,称此节点为old,并填到bestnode的后继节点表中。
d)比较新旧路劲代价。
如果g(suc)<g(old),则重新确定old的父辈节点为bestnode,记下较小代价g(old),并修真f(old)值。
e)若至old节点的代价较低或一样,则停止扩展节点。
f)若succssore不再closed表中,则看其是否在closed表中。
g)若succssore在closed表中,则转向(c)。
h)若succssore既不在open表中,又不在closed表中,则把它放入open表中,并添入bestnode后裔表中,然后转向(7)。
i)计算f值j)Go loop●节点的数据结构:static int target[9]={1,2,3,8,0,4,7,6,5}; 全局静态变量,表示目标状态class eight_num{private:int num[9]; 定义八数码的初始状态int not_in_position_num; 定义不在正确位置八数码的个数int deapth; 定义了搜索的深度int eva_function; 评价函数的值,每次选取最小的进行扩展public:eight_num* parent; 指向节点的父节点eight_num* leaf_next; 指向open表的下一个节点eight_num* leaf_pre; 指向open 表的前一个节点初始状态的构造函数eight_num(int init_num[9]);eight_num(int num1,int num2,int num3,int num4,int num5,int num6,int num7,int num8,int num9){}eight_num(void){ }计算启发函数g(n)的值void eight_num::cul_para(void){}显示当前节点的状态void eight_num::show(){}复制当前节点状态到一个另数组中void eight_num::get_numbers_to(int other_num[9]){}设置当前节点状态(欲设置的状态记录的other数组中)void eight_num::set_num(int other_num[9]){}eight_num& eight_num::operator=(eight_num& another_8num){} eight_num& eight_num::operator=(int other_num[9]){}int eight_num::operator==(eight_num& another_8num){}int eight_num::operator==(int other_num[9]){}空格向上移int move_up(int num[9]){}空格向下移int move_down(int num[9]){}空格向左移int move_left(int num[9]){}空格向右移int move_right(int num[9]){}判断可否解出int icansolve(int num[9],int target[9]){}判断有无重复int existed(int num[9],eight_num *where){}寻找估价函数最小的叶子节点eight_num* find_OK_leaf(eight_num* start){}}A*算法求解框图:●分析估价函数对搜索算法的影响:估价函数就是评价函数,它用来评价子结点的好坏,因为准确评价是不可能的,所以称为估值。
A*算法解决八数码问题1 问题描述什么是八数码问题八数码游戏包括一个3×3的棋盘,棋盘上摆放着8个数字的棋子,留下一个空位。
与空位相邻的棋子可以滑动到空位中。
游戏的目的是要达到一个特定的目标状态。
标注的形式化如下:问题的搜索形式描述状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。
初始状态:任何状态都可以被指定为初始状态。
操作符:用来产生4个行动(上下左右移动)。
目标测试:用来检测状态是否能匹配上图的目标布局。
路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。
现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态。
解决方案介绍算法思想(估价函数是搜索特性的一种数学表示,是指从问题树根节点到达目标节点所要耗费的全部代价的一种估算,记为f(n)。
估价函数通常由两部分组成,其数学表达式为f(n)=g(n)+h(n)其中f(n) 是节点n从初始点到目标点的估价函数,g(n) 是在状态空间中从初始节点到n 节点的实际代价,h(n)是从n到目标节点最佳路径的估计代价。
保证找到最短路径(最优解)的条件,关键在于估价函数h(n)的选取。
估价值h(n)<= n到目标节点的距离实际值,这种情况下,搜索的点数多,搜索范围大,效率低。
但能得到最优解。
如果估价值>实际值, 搜索的点数少,搜索范围小,效率高,但不能保证得到最优解。
搜索中利用启发式信息,对当前未扩展结点根据设定的估价函数值选取离目标最近的结点进行扩展,从而缩小搜索空间,更快的得到最优解,提高效率。
启发函数进一步考虑当前结点与目标结点的距离信息,令启发函数h ( n )为当前8个数字位与目标结点对应数字位距离和(不考虑中间路径),且对于目标状态有 h ( t ) = 0,对于结点m和n (n 是m的子结点)有h ( m ) – h ( n ) <= 1 = Cost ( m, n ) 满足单调限制条件。
一、实验内容和要求八数码问题:在3×3的方格棋盘上,摆放着1到8这八个数码,有1个方格是空的,其初始状态如图1所示,要求对空格执行空格左移、空格右移、空格上移和空格下移这四个操作使得棋盘从初始状态到目标状态。
例如:图1 八数码问题示意图请任选一种盲目搜索算法(广度优先搜索或深度优先搜索)或任选一种启发式搜索方法(全局择优搜索,加权状态图搜索,A 算法或 A* 算法)编程求解八数码问题(初始状态任选)。
选择一个初始状态,画出搜索树,填写相应的OPEN 表和CLOSED表,给出解路径,对实验结果进行分析总结,得出结论。
二、实验目的1. 熟悉人工智能系统中的问题求解过程;2. 熟悉状态空间的盲目搜索和启发式搜索算法的应用;3. 熟悉对八数码问题的建模、求解及编程语言的应用。
三、实验算法A*算法是一种常用的启发式搜索算法。
在A*算法中,一个结点位置的好坏用估价函数来对它进行评估。
A*算法的估价函数可表示为:f'(n) = g'(n) + h'(n)这里,f'(n)是估价函数,g'(n)是起点到终点的最短路径值(也称为最小耗费或最小代价),h'(n)是n到目标的最短路经的启发值。
由于这个f'(n)其实是无法预先知道的,所以实际上使用的是下面的估价函数:f(n) = g(n) + h(n)其中g(n)是从初始结点到节点n的实际代价,h(n)是从结点n到目标结点的最佳路径的估计代价。
在这里主要是h(n)体现了搜索的启发信息,因为g(n)是已知的。
用f(n)作为f'(n)的近似,也就是用g(n)代替g'(n),h(n)代替h'(n)。
这样必须满足两个条件:(1)g(n)>=g'(n)(大多数情况下都是满足的,可以不用考虑),且f必须保持单调递增。
(2)h必须小于等于实际的从当前节点到达目标节点的最小耗费h(n)<=h'(n)。
八数码问题实验报告八数码问题实验报告引言:八数码问题是一种经典的数学难题,在计算机科学领域有着广泛的研究和应用。
本实验旨在通过探索八数码问题的解法,深入理解该问题的本质,并通过实验结果评估不同算法的效率和准确性。
一、问题描述:八数码问题是一个在3×3的棋盘上,由1至8的数字和一个空格组成的拼图问题。
目标是通过移动棋盘上的数字,使得棋盘上的数字排列按照从小到大的顺序排列,最终形成如下的目标状态:1 2 34 5 67 8二、解法探索:1. 深度优先搜索算法:深度优先搜索算法是一种经典的解决拼图问题的方法。
该算法通过不断尝试所有可能的移动方式,直到找到目标状态或者无法再继续移动为止。
实验结果显示,该算法在八数码问题中能够找到解,但由于搜索空间庞大,算法的时间复杂度较高。
2. 广度优先搜索算法:广度优先搜索算法是另一种常用的解决八数码问题的方法。
该算法通过逐层扩展搜索树,从初始状态开始,逐步扩展所有可能的状态,直到找到目标状态。
实验结果显示,该算法能够找到最短路径的解,但同样面临搜索空间庞大的问题。
3. A*算法:A*算法是一种启发式搜索算法,结合了深度优先搜索和广度优先搜索的优点。
该算法通过使用一个估价函数来评估每个搜索状态的优劣,并选择最有希望的状态进行扩展。
实验结果显示,A*算法在八数码问题中表现出色,能够高效地找到最优解。
三、实验结果与分析:通过对深度优先搜索、广度优先搜索和A*算法的实验,得出以下结论:1. 深度优先搜索算法虽然能够找到解,但由于搜索空间庞大,时间复杂度较高,不适用于大规模的八数码问题。
2. 广度优先搜索算法能够找到最短路径的解,但同样面临搜索空间庞大的问题,对于大规模问题效率较低。
3. A*算法在八数码问题中表现出色,通过合理的估价函数能够高效地找到最优解,对于大规模问题具有较好的效果。
四、结论与展望:本实验通过对八数码问题的解法探索,深入理解了该问题的本质,并评估了不同算法的效率和准确性。
八数码实验报告八数码实验报告引言:八数码,也称为滑块拼图,是一种经典的数字游戏。
在这个游戏中,玩家需要通过移动数字方块,将它们按照从小到大的顺序排列。
本次实验旨在通过编写八数码游戏的程序,探索并实践算法设计与实现的过程。
实验过程:1. 游戏规则设计在开始编写程序之前,首先需要明确游戏的规则。
八数码游戏的规则如下:- 有一个3x3的方格,其中有8个方块分别带有数字1到8,还有一个空白方块。
- 玩家可以通过移动数字方块,将它们按照从小到大的顺序排列。
- 移动的方式是将数字方块与空白方块进行交换,只能上下左右移动。
2. 程序设计基于以上规则,我们开始设计程序。
首先,我们需要实现游戏界面的显示与交互。
通过使用图形界面库,我们可以方便地创建一个可视化的游戏界面。
在界面中,每个数字方块都是一个可交互的按钮,玩家可以通过点击按钮来移动数字方块。
接下来,我们需要实现游戏逻辑的处理。
当玩家点击一个数字方块时,程序需要判断该方块是否与空白方块相邻,如果相邻,则进行交换。
同时,程序还需要判断玩家是否已经成功完成了游戏,即数字方块是否已经按照从小到大的顺序排列。
为了实现这些功能,我们可以使用算法来进行判断和计算。
例如,可以通过遍历每个方块,检查其周围是否有空白方块,从而确定是否可以进行移动。
另外,可以使用排序算法来判断数字方块是否已经按照顺序排列。
3. 算法实现在实现算法时,我们可以选择不同的方法。
例如,可以使用深度优先搜索算法来寻找解决方案。
深度优先搜索算法通过递归地尝试每一种移动方式,直到找到一个可行的解决方案。
另外,还可以使用启发式搜索算法,如A*算法,来提高搜索效率。
在本次实验中,我们选择使用A*算法来解决八数码问题。
A*算法通过估计每个状态与目标状态的距离,选择最有可能导致解决方案的移动方式。
通过使用合适的启发函数,A*算法可以在较短的时间内找到一个最优解。
4. 实验结果经过程序的编写和测试,我们成功地实现了八数码游戏。
江南大学物联网工程学院实验报告课程名称人工智能实验名称A*算法解决8数码问题实验日期2018.3.20班级计科1501 姓名周启航学号1030415127一、实验目的:修改A*算法,使之能解决N*N矩阵八数码问题问题描述:八数码难题:在3×3方格棋盘上,分别放置了标有数字1,2,3,4,5,6,7,8的八张牌,初始状态S0可自己随机设定,使用的操作有:空格上移,空格左移,空格右移,空格下移。
二、算法描述:1.状态描述八数码的任何一种摆法就是一个状态,所有摆法即为状态集S,他们构成了一个状态空间,其大小为9包括8个数码和一个空格,每个数码就是一个分离的独立的子空间,其所在位置为x:i/3,y:i%3.相应的操作算子就是数码的移动即:将空格向上移UP、将空格向下移DOWN、将空格向左移LEFT、将空格向右移RIGHT,经过一些操作算子后达到目标状态。
2.启发函数设计启发函数为现在的状态中各位置与目标状态各位置数码值不同的个数,例如:现在状态:w=123456780,目标状态为:t=123456708,则h(n)=2.3.规则的判断条件把未扩展的状态存入open表,排序后取出优先状态扩展搜索,将扩展后的存入closed表,循环执行直到扩展出目标状态。
4.算法流程图5.核心代码操作算子:int solve() //搜索过程{P cur;P p;while(!open.empty()){cur=open.top(); //open表open.pop();if(cur.s==t) return cur.id; //达到目标状态,返回当前节点的idint x,y;int ops=0;while(cur.s[ops]!='0') ops++;x=ops/N,y=ops%N; //空格所在位置int r=cur.id;if(x>0){ //空格向上移p.s=cur.s;swap(p.s[ops],p.s[ops-3]);if(!mp[p.s]){p.d=cur.d+1,p.w=calw(p.s),p.id=top+1;open.push(p);stack[++top]=p.s;father[top]=r;mp[p.s]=1;}}if(x<N-1){ //空格向下移p.s=cur.s;swap(p.s[ops],p.s[ops+3]);if(!mp[p.s]){p.d=cur.d+1,p.w=calw(p.s),p.id=top+1;open.push(p);stack[++top]=p.s;father[top]=r;mp[p.s]=1;}}if(y>0){ //空格向左移p.s=cur.s;swap(p.s[ops],p.s[ops-1]);if(!mp[p.s]){p.d=cur.d+1,p.w=calw(p.s),p.id=top+1;open.push(p);stack[++top]=p.s;father[top]=r;mp[p.s]=1;}}if(y<N-1){ //空格向右移p.s=cur.s;swap(p.s[ops],p.s[ops+1]);if(!mp[p.s]){p.d=cur.d+1,p.w=calw(p.s),p.id=top+1;open.push(p);stack[++top]=p.s;father[top]=r;mp[p.s]=1;}}}return -1; //搜索失败}int main(){cout<<"请输入棋盘大小N*N\nN:";cin>>N;cout<<"请输入测试的组数:\n";int tt; //测试的组数cin>>tt;for(int k=1;k<=tt;k++){cout<<"Case "<<k<<":\n";int i,j;char a;cout<<"请输入目的状态:\n";cin>>t;p.s="";cout<<"请输入初始状态:\n";for(i=0;i<N;i++){for(j=0;j<N;j++){cin>>a; //输入0~8数码p.s+=a;}}p.d=0,p.w=calw(p.s),p.id=0;father[0]=-1;mp[p.s]=1;stack[0]=p.s;open.push(p); //往open表中加入初始状态节点int id=solve();//调用搜索过程if(id==-1){cout<<"无解!\n";}else{int c=-1;while(id>=0){ //把stack中存的节点按次序放入到record中record[++c]=stack[id];id=father[id];}cout<<"原图:"<<endl;print(c); //输出初始节点cout<<"移动过程: \n\n";for(i=c-1;i>=0;i--){cout<<"Step "<<c-i<<":\n";//输出当前搜索步骤print(i);//输出当前搜索的节点}cout<<"移动结束!\n";mp.clear();while(!open.empty()) open.pop();top=0;cout<<endl;}system("pause\n");return 0;}三、实验结果:四、实验心得:只是做了简单修改,只能解决些简单的问题,过于复杂的还不能实现,不过还是体会到了A*算法的厉害,也见识到了人工智能的神奇,会继续努力学习。
八数码实验报告八数码实验报告引言:八数码,也被称为滑块拼图,是一种经典的益智游戏。
在这个实验中,我们将探索八数码问题的解决方案,并分析其算法的效率和复杂性。
通过这个实验,我们可以深入了解搜索算法在解决问题中的应用,并且探讨不同算法之间的优劣势。
1. 问题描述:八数码问题是一个在3x3的方格上进行的拼图游戏。
方格中有8个方块,分别标有1到8的数字,还有一个空方块。
游戏的目标是通过移动方块,将它们按照从左上角到右下角的顺序排列。
2. 算法一:深度优先搜索(DFS)深度优先搜索是一种经典的搜索算法,它从初始状态开始,不断地向前搜索,直到找到目标状态或者无法继续搜索为止。
在八数码问题中,深度优先搜索会尝试所有可能的移动方式,直到找到解决方案。
然而,深度优先搜索在解决八数码问题时存在一些问题。
由于搜索的深度可能非常大,算法可能会陷入无限循环,或者需要很长时间才能找到解决方案。
因此,在实际应用中,深度优先搜索并不是最优的选择。
3. 算法二:广度优先搜索(BFS)广度优先搜索是另一种常用的搜索算法,它从初始状态开始,逐层地向前搜索,直到找到目标状态。
在八数码问题中,广度优先搜索会先尝试所有可能的一步移动,然后再尝试两步移动,依此类推,直到找到解决方案。
与深度优先搜索相比,广度优先搜索可以保证找到最短路径的解决方案。
然而,广度优先搜索的时间复杂度较高,尤其是在搜索空间较大时。
因此,在实际应用中,广度优先搜索可能不太适合解决八数码问题。
4. 算法三:A*算法A*算法是一种启发式搜索算法,它在搜索过程中利用了问题的启发信息,以提高搜索效率。
在八数码问题中,A*算法会根据每个状态与目标状态之间的差异,选择最有可能的移动方式。
A*算法通过综合考虑每个状态的实际代价和启发式估计值,来评估搜索路径的优劣。
通过选择最优的路径,A*算法可以在较短的时间内找到解决方案。
然而,A*算法的实现较为复杂,需要合适的启发函数和数据结构。
用A*算法解决八数码问题一、 题目:八数码问题也称为九宫问题。
在3×3的棋盘,有八个棋子,每个棋子上标有1至8的某一数字,不同棋子上标的数字不相同。
棋盘上还有一个空格,与空格相邻的棋子可以移到空格中。
要解决的问题是:任意给出一个初始状态和一个目标状态,找出一种从初始转变成目标状态的移动棋子步数最少的移动步骤。
二、 问题的搜索形式描述状态:状态描述了8个棋子和空位在棋盘的9个方格上的分布。
初始状态:任何状态都可以被指定为初始状态。
操作符:用来产生4个行动(上下左右移动)。
目标测试:用来检测状态是否能匹配上图的目标布局。
路径费用函数:每一步的费用为1,因此整个路径的费用是路径中的步数。
现在任意给定一个初始状态,要求找到一种搜索策略,用尽可能少的步数得到上图的目标状态算法介绍三、 解决方案介绍1.A*算法的一般介绍A*(A-Star)算法是一种静态路网中求解最短路最有效的方法。
对于几何路网来说,可以取两节点间欧几理德距离(直线距离)做为估价值,即()()()()()()**f g n sqrt dx nx dx nx dy ny dy ny =+--+--;这样估价函数f 在g 值一定的情况下,会或多或少的受估价值h 的制约,节点距目标点近,h 值小,f 值相对就小,能保证最短路的搜索向终点的方向进行。
明显优于盲目搜索策略。
A star算法在静态路网中的应用2.算法伪代码创建两个表,OPEN表保存所有已生成而未考察的节点,CLOSED表中记录已访问过的节点。
算起点的估价值,将起点放入OPEN表。
while(OPEN!=NULL){从OPEN表中取估价值f最小的节点n;if(n节点==目标节点){break;}for(当前节点n 的每个子节点X){算X的估价值;if(X in OPEN){if( X的估价值小于OPEN表的估价值 ){把n设置为X的父亲;更新OPEN表中的估价值; //取最小路径的估价值}}if(X inCLOSE){if( X的估价值小于CLOSE表的估价值 ){把n设置为X的父亲;更新CLOSE表中的估价值;把X节点放入OPEN //取最小路径的估价值}}if(X not inboth){把n设置为X的父亲;求X的估价值;并将X插入OPEN表中; //还没有排序}}//end for将n节点插入CLOSE表中;按照估价值将OPEN表中的节点排序; //实际上是比较OPEN表内节点f的大小,从最小路径的节点向下进行。
实验三:A*算法求解8数码问题实验一、实验目的熟悉和掌握启发式搜索的定义、估价函数和算法过程,并利用A*算法求解N数码难题,理解求解流程和搜索顺序。
二、实验内容1、八数码问题描述所谓八数码问题起源于一种游戏:在一个3×3的方阵中放入八个数码1、2、3、4、5、6、7、8,其中一个单元格是空的。
将任意摆放的数码盘(城初始状态)逐步摆成某个指定的数码盘的排列(目标状态),如图1所示图1 八数码问题的某个初始状态和目标状态对于以上问题,我们可以把数码的移动等效城空格的移动。
如图1的初始排列,数码7右移等于空格左移。
那么对于每一个排列,可能的一次数码移动最多只有4中,即空格左移、空格右移、空格上移、空格下移。
最少有两种(当空格位于方阵的4个角时)。
所以,问题就转换成如何从初始状态开始,使空格经过最小的移动次数最后排列成目标状态。
2、八数码问题的求解算法盲目搜索宽度优先搜索算法、深度优先搜索算法启发式搜索启发式搜索算法的基本思想是:定义一个评价函数f,对当前的搜索状态进行评估,找出一个最有希望的节点来扩展。
先定义下面几个函数的含义:f*(n)=g*(n)+h*(n) (1)式中g*(n)表示从初始节点s到当前节点n的最短路径的耗散值;h*(n)表示从当前节点n到目标节点g的最短路径的耗散值,f*(n)表示从初始节点s经过n到目标节点g的最短路径的耗散值。
评价函数的形式可定义如(2)式所示:f(n)=g(n)+h(n) (2)其中n是被评价的当前节点。
f(n)、g(n)和h(n)分别表示是对f*(n)、g*(n)和h*(n)3个函数值的估计值。
利用评价函数f(n)=g(n)+h(n)来排列OPEN表节点顺序的图搜索算法称为算法A。
在A算法中,如果对所有的x,h(x)<=h*(x) (3)成立,则称好h(x)为h*(x)的下界,它表示某种偏于保守的估计。
采用h*(x)的下界h(x)为启发函数的A算法,称为A*算法。
针对八数码问题启发函数设计如下:f(n)=d(n)+p(n) (4)其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为图2 A*算法流程图p(n),意为放错的数码与正确的位置距离之和。
由于实际情况中,一个将牌的移动都是单步进行的,没有交换拍等这样的操作。
所以要把所有的不在位的将牌,移动到各自的目标位置上,至少要移动从他们各自的位置到目标位置的距离和这么多次,所以最有路径的耗散值不会比该值小,因此该启发函数h(n)满足A*算法的条件。
3、A*算法流程图,如图24、A*算法总结,把起始状态添加到开启列表。
,重复如下工作:a) 寻找开启列表中f值最低的节点,我们称它为BESTNOEb) 把它切换到关闭列表中。
c) 对相邻的4个节点中的每一个*如果它不在开启列表,也不在关闭列表,把它添加到开启列表中。
把BESTNODE作为这一节点的父节点。
记录这一节点的f 和g值*如果它已在开启或关闭列表中,用g值为参考检查新的路径是否更好。
更低的g值意味着更好的路径。
如果这样,就把这一节点的父节点改为BESTNODE,并且重新计算这一节点的f和g值,如果保持开启列表的f值排序,改变之后需要重新对开启列表排序。
d) 停止把目标节点添加到关闭列表,这时候路径被找到,或者没有找到路径,开启列表已经空了,这时候路径不存在。
,保存路径。
从目标节点开始,沿着每一节点的父节点移动直到回到起始节点。
这就是求得的路径。
5、数据结构采用结构体来保存八数码的状态、f和g的值以及该节点的父节点;struct Node{int s[3][3];//保存八数码状态,0代表空格int f,g;//启发函数中的f和g值struct Node * next;struct Node *previous;//保存其父节点};6、实验结果,如图3所示图3 A*算法求解八数码问题实验结果7、源代码//-----------------------------------------------------------------------------//代码:利用A*算法求解八数码问题。
//八数码问题的启发函数设计为:f(n)=d(n)+p(n),其中A*算法中的g(n)根据具体情况设计为d(n),意为n节点的深度,而h(n)设计为p(n),意为放错的数码与正确的位置距离之和。
//后继结点的获取:数码的移动等效为空格的移动。
首先判断空格上下左右的可移动性,其次移动空格获取后继结点。
//-----------------------------------------------------------------------------#include<>#include<>#include<>//八数码状态对应的节点结构体struct Node{int s[3][3];//保存八数码状态,0代表空格int f,g;//启发函数中的f和g值struct Node * next;struct Node *previous;//保存其父节点};int open_N=0; //记录Open列表中节点数目//八数码初始状态int inital_s[3][3]={2,8,3,1,6,4,7,0,5};//八数码目标状态int final_s[3][3]={1,2,3,8,0,4,7,6,5};//------------------------------------------------------------------------//添加节点函数入口,方法:通过插入排序向指定表添加//------------------------------------------------------------------------void Add_Node( struct Node *head, struct Node *p){struct Node *q;if(head->next)//考虑链表为空{ q = head->next;if(p->f < head->next->f){//考虑插入的节点值比链表的第一个节点值小p->next = head->next;head->next = p;}else {while(q->next)//考虑插入节点x,形如a<= x <=b{if((q->f < p->f ||q->f == p->f) && (q->next->f > p->f || q->next->f == p->f)){p->next = q->next;q->next = p;break;}q = q->next;}if(q->next == NULL) //考虑插入的节点值比链表最后一个元素的值更大q->next = p;}}else head->next = p;}//------------------------------------------------------------------------//删除节点函数入口//------------------------------------------------------------------------void del_Node(struct Node * head, struct Node *p ){struct Node *q;q = head;while(q->next){if(q->next == p){q->next = p->next;p->next = NULL;if(q->next == NULL) return;// free(p);}q = q->next;}}//------------------------------------------------------------------------//判断两个数组是否相等函数入口//------------------------------------------------------------------------int equal(int s1[3][3], int s2[3][3]){int i,j,flag=0;for(i=0; i< 3 ; i++)for(j=0; j< 3 ;j++)if(s1[i][j] != s2[i][j]){flag = 1; break;}if(!flag)return 1;else return 0;}//------------------------------------------------------------------------//判断后继节点是否存在于Open或Closed表中函数入口//------------------------------------------------------------------------int exit_Node(struct Node * head,int s[3][3], struct Node *Old_Node){struct Node *q=head->next;int flag = 0;while(q)if(equal(q->s,s)) {flag=1;Old_Node->next = q;return 1;}else q = q->next;if(!flag) return 0;}//------------------------------------------------------------------------//计算p(n)的函数入口//其中p(n)为放错位的数码与其正确的位置之间距离之和//具体方法:放错位的数码与其正确的位置对应下标差的绝对值之和//------------------------------------------------------------------------int wrong_sum(int s[3][3]){int i,j,fi,fj,sum=0;for(i=0 ; i<3; i++)for(j=0; j<3; j++){for(fi=0; fi<3; fi++)for(fj=0; fj<3; fj++)if((final_s[fi][fj] == s[i][j])){sum += fabs(i - fi) + fabs(j - fj);break;}}return sum;}//------------------------------------------------------------------------//获取后继结点函数入口//检查空格每种移动的合法性,如果合法则移动空格得到后继结点//------------------------------------------------------------------------int get_successor(struct Node * BESTNODE, int direction, struct Node *Successor)//扩展BESTNODE,产生其后继结点SUCCESSOR{int i,j,i_0,j_0,temp;for(i=0; i<3; i++)for(j=0; j<3; j++)Successor->s[i][j] = BESTNODE->s[i][j];//获取空格所在位置for(i=0; i<3; i++)for(j=0; j<3; j++)if(BESTNODE->s[i][j] == 0){i_0 = i; j_0 = j;break;}switch(direction){case 0: if((i_0-1)>-1 ){temp = Successor->s[i_0][j_0];Successor->s[i_0][j_0] = Successor->s[i_0-1][j_0];Successor->s[i_0-1][j_0] = temp;return 1;}else return 0;case 1: if((j_0-1)>-1){temp = Successor->s[i_0][j_0];Successor->s[i_0][j_0] = Successor->s[i_0][j_0-1];Successor->s[i_0][j_0-1] = temp;return 1;}else return 0;case 2: if( (j_0+1)<3){temp = Successor->s[i_0][j_0];Successor->s[i_0][j_0] = Successor->s[i_0][j_0+1];Successor->s[i_0][j_0+1] = temp;return 1;}else return 0;case 3: if((i_0+1)<3 ){temp = Successor->s[i_0][j_0];Successor->s[i_0][j_0] = Successor->s[i_0+1][j_0];Successor->s[i_0+1][j_0] = temp;return 1;}else return 0;}}//------------------------------------------------------------------------//从OPen表获取最佳节点函数入口//------------------------------------------------------------------------struct Node * get_BESTNODE(struct Node *Open){return Open->next;}//------------------------------------------------------------------------//输出最佳路径函数入口//------------------------------------------------------------------------void print_Path(struct Node * head){struct Node *q, *q1,*p;int i,j,count=1;p = (struct Node *)malloc(sizeof(struct Node));//通过头插法变更节点输出次序p->previous = NULL;q = head;while(q){q1 = q->previous;q->previous = p->previous;p->previous = q;q = q1;}q = p->previous;while(q){if(q == p->previous)printf("八数码的初始状态:\n");else if(q->previous == NULL)printf("八数码的目标状态:\n"); else printf("八数码的中间态%d\n",count++);for(i=0; i<3; i++)for(j=0; j<3; j++){printf("%4d",q->s[i][j]);if(j == 2)printf("\n");}printf("f=%d, g=%d\n\n",q->f,q->g);q = q->previous;}}//------------------------------------------------------------------------//A*子算法入口:处理后继结点//------------------------------------------------------------------------void sub_A_algorithm(struct Node * Open, struct Node * BESTNODE, struct Node * Closed,struct Node *Successor){struct Node * Old_Node = (struct Node *)malloc(sizeof(struct Node));Successor->previous = BESTNODE;//建立从successor返回BESTNODE的指针Successor->g = BESTNODE->g + 1;//计算后继结点的g值//检查后继结点是否已存在于Open和Closed表中,如果存在:该节点记为old_Node,比较后继结点的g值和表中old_Node节点//g值,前者小代表新的路径比老路径更好,将Old_Node的父节点改为BESTNODE,并修改其f,g值,后者小则什么也不做。