动能定理、机械能、能量守恒应用(一)
- 格式:doc
- 大小:228.50 KB
- 文档页数:5
动能定理和机械能守恒动能定理和机械能守恒是物理学中两个重要的概念。
这两个概念分别讨论了物体的运动和能量的转换。
本文将从定义、原理、适用范围、实际应用等方面详细讲解这两个概念。
一、动能定理动能定理是物理学中描述物体运动的定理。
它描述了一个物体的动能随时间的变化规律。
在许多情况下,物体的运动状态与物体所受力的关系密切相关,而动能定理就是描述这种关系的定理。
动能定理可以简单地表述为:物体的动能转化率等于作用于物体上的力的功率。
也就是说,动能定理描述了物体的运动是否会改变物体的动能,以及这种变化的速率和力的功率之间的关系。
动能定理可以用数学形式表示为:F·v = mvdv/dt。
其中F表示作用在物体上的力,v表示物体的速度,m表示物体的质量,v表示物体的速度。
动能定理适用于任何物体的运动,无论这个物体的质量大小、运动的速度以及受力的大小。
因此,动能定理是物理学中基础且重要的定理之一。
二、机械能守恒定律机械能守恒定律是物理学中描述能量转换的定律。
机械能即为动能与势能之和,也就是在力学系统内显性的有效能量。
机械能包括了物体在移动中的动能以及由于重物位置高度不同而产生的重力势能。
机械能守恒定律指出物体在运动过程中,机械能总是保持不变。
也就是说,当物体只受重力和弹性力两种基本力作用时,它的机械能是守恒的。
机械能守恒定律可以用数学公式表示:E=K+V,其中E表示机械能,K表示动能,V表示势能。
机械能守恒定律被广泛应用于各种力学系统中。
它不仅适用于简单系统,如质点系统、机械振子等,也适用于复杂的力学系统,例如自由落体运动、弹簧振动等。
三、应用及意义动能定理和机械能守恒定律是物理学中两个重要的概念,它们对于解决各种物理学问题都有重要的应用。
在机械动力学中,我们可以使用动能定理来解决两个主要问题。
一是确定一个运动物体的速度,需要知道物体的质量和受力情况。
二是确定力的大小,已知物体的质量和速度情况,需要求出力的功率。
动能定理和机械能及其守恒定律1.动能定理:(合外力的功等于物体动能的变化量)(1)“221mv ”是一个新的物理量(2)2221mv 是物体末状态的一个物理量,2121mv 是物体初状态的一个物理量。
其差值正好等于合力对物体做的功。
(3)物理量221mv 定为动能,其符号用E K表示,即当物体质量为m ,速度为V 时,其动能:E K=221mv (4)动能是标量,单位焦耳(J )(5)含义:动能是标量,同时也是一个状态量(6)动能具有瞬时性,是个状态量:对应一个物体的质量和速度就有一个动能的值。
①当合力做正功时,物体动能增加。
②当合力做负功时,物体动能减小。
③当物体受变力作用,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
④当物体做曲线运动时,可把过程分解成许多小段每一段按照恒力运动是直线分段求解。
2. 机械能及其守恒定律(关键是把握什么能转化为什么能,在不守恒情况下一般都是有摩擦力做功即产生热能)1、机械能(1)定义:物体的动能和势能之和称为物体的机械能。
机械能包括动能、重力势能、弹性势能。
(2)表达式:E=EK+EP这些不同形式的能是可以相互转化的,那么在相互转化的过程中,他们的总量是否发生变化?这节课我们就来探究这方面的问题。
2、机械能守恒定律推导:质量为m 的物体自由下落过程中,经过高度h 1的A 点时速度为v 1,下落至高度h 2的B 点处速度为v 2,不计空气阻力,取地面为参考平面,试写出物体在A 点时的机械能和B 点时的机械能,并找到这两个机械能之间的数量关系。
A 点 12121mgh mv E E E PA kA A+=+= B 点 22221mgh mv E E E PB kB B +=+=根据动能定理,有21222121mv mv W G -=重力做功在数值上等于物体重力势能的减少量。
21mgh mgh W G -=由以上两式可以得到121222mgh mv 21mgh mv 21+=+ 即 1122p k p k E E E E +=+即 12E E =可见:在只有重力做功的物体系统内,动能和重力势能可以相互转化,而总的机械能保持不变。
动能定理与机械能守恒定律动能定理和机械能守恒定律是物理学中两个基本的能量守恒原理。
它们在描述和解释物体运动过程中能量变化的规律方面起着重要作用,并在实际应用中具有广泛的应用。
本文将对这两个定律进行详细介绍和分析。
一、动能定理动能定理是描述物体运动中动能变化规律的定律。
它指出,当物体受到外力作用时,物体的动能会发生变化。
动能定理可以用一个简洁的数学表达式来表示:物体的净动能变化等于作用在物体上的合外力所做的功。
假设物体的质量为m,初速度为v₁,末速度为v₂。
根据动能定理,物体的动能变化ΔE_k等于合外力所做的功W:ΔE_k = W = F·d·cosθ其中,F为合外力的大小,d为物体移动的距离,θ为合外力与物体运动方向之间的夹角。
由此可以看出,动能定理将力、距离和角度等因素统一起来,明确了外力对物体运动所做的功与物体动能的关系。
在实际应用中,动能定理常常用于解析和计算物体的运动过程中的动能变化。
二、机械能守恒定律机械能守恒定律是描述物体在力学系统中机械能守恒现象的定律。
它指出,在一个封闭的力学系统中,物体的机械能总量保持不变,即机械能守恒。
机械能是由物体的动能和势能两部分组成的。
动能是由物体的运动状态引起的能量,势能是由物体所处位置的属性引起的能量。
根据机械能守恒定律,物体的机械能E_m在系统内各个位置的变化可以表示为:ΔE_m = ΔE_k + ΔE_p = 0其中,ΔE_k表示物体动能的变化,ΔE_p表示物体势能的变化。
当系统中没有外力做功或无能量转化时,物体的机械能保持不变。
机械能守恒定律在描述物体运动中能量转化和能量守恒方面起着重要作用。
例如,当物体在重力场中运动时,重力势能和动能之间发生转化,但总的机械能保持不变。
这一定律在实际应用中广泛应用于机械工程、能源利用等领域。
总结:动能定理和机械能守恒定律是物理学中两个重要的能量守恒原理。
动能定理描述了外力对物体动能变化的影响规律,机械能守恒定律描述了力学系统中机械能总量守恒的现象。
动能定理与机械能守恒知识点总结动能定理和机械能守恒是经典力学中重要的概念和定律。
它们有着广泛的应用,并且对我们理解物体运动和相互作用提供了重要的理论支持。
本文将对动能定理和机械能守恒的知识点进行总结,并探讨它们的应用。
一、动能定理动能定理是描述物体运动的定理,它表明一个物体的动能变化等于物体所受合力所做的功。
动能定理可以用数学公式表示为:FΔx = Δ(1/2 mv²)其中,F表示合力,Δx表示物体在合力方向上的位移,v表示物体的速度,m表示物体的质量。
根据动能定理,当一个物体受到合力的作用时,物体的动能会发生变化。
动能定理对于分析物体运动状态和相互作用非常重要。
它可以用来计算物体在外力作用下的速度变化,或者根据速度变化来确定物体所受的合力大小。
同时,动能定理也可以用来解释机械能转化的过程。
二、机械能守恒机械能守恒是指在无摩擦和无内能损失的情况下,一个物体的机械能保持不变。
机械能包括物体的动能和势能两个方面。
动能是物体由于速度而具有的能量,而势能是物体由于位置而具有的能量。
机械能守恒可以用数学公式表示为:E = K + U = 常数其中,E表示物体的机械能,K表示物体的动能,U表示物体的势能。
根据机械能守恒原理,当一个物体在没有外力或有限作用力的情况下运动时,它的机械能将保持不变。
机械能守恒原理对于分析各种物理问题非常有用。
它可以用来计算物体在相互作用过程中的速度和位置变化,以及物体所具有的势能。
通过应用机械能守恒,我们可以更好地理解物体运动过程中能量的转化与变化。
三、应用与实例动能定理和机械能守恒在物理学中有着广泛的应用。
以下是一些常见的应用和实例:1. 车辆碰撞:当两辆车发生碰撞时,根据动能定理可以计算出车辆碰撞前后的速度变化。
同时,通过机械能守恒可以分析车辆碰撞过程中能量的转化和损失。
2. 自由落体运动:对于自由落体运动,可以利用动能定理计算物体下落的速度变化,以及机械能守恒来分析物体从起点到终点的能量转化情况。
第6讲动能定理机械能守恒定律能量守恒定律命题规律 1.命题角度:(1)动能定理的综合应用;(2)机械能守恒定律及应用;(3)能量守恒定律及应用.2.常用方法:图像法、函数法、比较法.3.常考题型:计算题.考点一动能定理的综合应用1.应用动能定理解题的步骤图解:2.应用动能定理的四点提醒:(1)动能定理往往用于单个物体的运动过程,由于不涉及加速度及时间,比动力学方法要简捷.(2)动能定理表达式是一个标量式,在某个方向上应用动能定理是没有依据的.(3)物体在某个运动过程中包含几个运动性质不同的小过程(如加速、减速的过程),对全过程应用动能定理,往往能使问题简化.(4)多过程往复运动问题一般应用动能定理求解.例1(2022·河南信阳市质检)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来,如图是滑板运动的轨道.BC和DE是竖直平面内的两段光滑的圆弧形轨道,BC 的圆心为O点,圆心角θ=60°,半径OC与水平轨道CD垂直,滑板与水平轨道间的动摩擦因数μ=0.4.某运动员从轨道上的A点以v=4 m/s的速度水平滑出,在B点刚好沿着轨道的切线方向滑入圆弧轨道BC,经CD轨道后冲上DE轨道,到达E点时速度减为零,然后返回.已知运动员和滑板的总质量为m=60 kg,B、E两点距水平轨道CD的竖直高度分别为h=2 m 和H=3 m,忽略空气阻力.(g=10 m/s2)(1)运动员从A点运动到B点的过程中,求到达B点时的速度大小v B;(2)求水平轨道CD的长度L;(3)通过计算说明,第一次返回时,运动员能否回到B点?如能,求出回到B点时速度的大小.如果不能,求出最后停止的位置距C点的距离.答案(1)8 m/s(2)5.5 m(3)见解析解析(1)运动员从A点运动到B点的过程中做平抛运动,到达B点时,其速度沿着B点的切线方向,可知运动员到达B 点时的速度大小为v B =vcos 60°, 解得v B =8 m/s(2)从B 点到E 点,由动能定理得mgh -μmgL -mgH =0-12m v B 2代入数值得L =5.5 m(3)设运动员能到达左侧的最大高度为h ′,从E 点到第一次返回到左侧最高处,由动能定理得mgH -μmgL -mgh ′=0 解得h ′=0.8 m<2 m故运动员不能回到B 点.设运动员从E 点开始返回后,在CD 段滑行的路程为s ,全过程由动能定理得 mgH -μmgs =0 解得总路程s =7.5 m 由于L =5.5 m所以可得运动员最后停止的位置在距C 点2 m 处.考点二 机械能守恒定律及应用1.判断物体或系统机械能是否守恒的三种方法定义判断法 看动能与势能之和是否变化能量转化判断法 没有与机械能以外的其他形式的能转化时,系统机械能守恒做功判断法只有重力(或弹簧的弹力)做功时,系统机械能守恒2.机械能守恒定律的表达式3.连接体的机械能守恒问题共速率模型分清两物体位移大小与高度变化关系共角速度模型两物体角速度相同,线速率与半径成正比关联速度模型此类问题注意速度的分解,找出两物体速度关系,当某物体位移最大时,速度可能为0轻弹簧模型①同一根弹簧弹性势能大小取决于弹簧形变量的大小,在弹簧弹性限度内,形变量相等,弹性势能相等②由两个或两个以上的物体与弹簧组成的系统,当弹簧形变量最大时,弹簧两端连接的物体具有相同的速度;弹簧处于自然长度时,弹簧弹性势能最小(为零)说明:以上连接体不计阻力和摩擦力,系统(包含弹簧)机械能守恒,单个物体机械能不守恒.例2(2022·全国乙卷·16)固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P点由静止开始自由下滑,在下滑过程中,小环的速率正比于()A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积 答案 C解析 如图所示,设小环下降的高度为h ,大圆环的半径为R ,小环到P 点的距离为L ,根据机械能守恒定律得mgh =12m v 2,由几何关系可得h =L sin θ,sin θ=L 2R ,联立可得h =L 22R,则v =LgR,故C 正确,A 、B 、D 错误. 例3 (多选)(2022·黑龙江省八校高三期末)如图所示,固定的竖直光滑长杆上套有质量为m 的小圆环,圆环与水平状态的轻质弹簧一端连接,弹簧的另一端连接在墙上,且处于原长状态,现让圆环由静止开始下滑,已知弹簧原长为L ,圆环下滑到最大距离时弹簧的长度变为2L (未超过弹性限度),重力加速度为g ,则在圆环下滑到最大距离的过程中( )A .弹簧对圆环先做正功后做负功B .弹簧弹性势能增加了3mgLC .圆环重力势能与弹簧弹性势能之和先减小后增大D .圆环下滑到最大距离时,所受合力为零 答案 BC解析 弹簧一直伸长,故弹簧对圆环一直做负功,A 错误;由题可知,整个过程动能的变化量为零,根据几何关系可得圆环下落的高度h =(2L )2-L 2=3L ,根据能量守恒定律可得,弹簧弹性势能增加量等于圆环重力势能的减少量,则有ΔE p =mgh =3mgL ,B 正确;弹簧与小圆环组成的系统机械能守恒,则有ΔE k +ΔE p 重+ΔE p 弹=0,由于小圆环在下滑到最大距离的过程中先是做加速度减小的加速运动,再做加速度增大的减速运动,所以动能先增大后减小,则圆环重力势能与弹簧弹性势能之和先减小后增大,C 正确;圆环下滑到最大距离时,加速度方向竖直向上,所受合力方向为竖直向上,D 错误.例4 (2020·江苏卷·15)如图所示,鼓形轮的半径为R ,可绕固定的光滑水平轴O 转动.在轮上沿相互垂直的直径方向固定四根直杆,杆上分别固定有质量为m 的小球,球与O 的距离均为2R .在轮上绕有长绳,绳上悬挂着质量为M 的重物.重物由静止下落,带动鼓形轮转动.重物落地后鼓形轮匀速转动,转动的角速度为ω.绳与轮之间无相对滑动,忽略鼓形轮、直杆和长绳的质量,不计空气阻力,重力加速度为g .求:(1)重物落地后,小球线速度的大小v ;(2)重物落地后一小球转到水平位置A ,此时该球受到杆的作用力的大小F ; (3)重物下落的高度h .答案 (1)2ωR (2)(2mω2R )2+(mg )2 (3)M +16m 2Mg (ωR )2解析 (1)重物落地后,小球线速度大小v =ωr =2ωR (2)向心力F n =2mω2R设F 与水平方向的夹角为α,则 F cos α=F n F sin α=mg 解得F =(2mω2R )2+(mg )2(3)落地时,重物的速度v ′=ωR 由机械能守恒得12M v ′2+4×12m v 2=Mgh解得h =M +16m2Mg(ωR )2.考点三 能量守恒定律及应用1.含摩擦生热、焦耳热、电势能等多种形式能量转化的系统,优先选用能量守恒定律. 2.应用能量守恒定律的基本思路 (1)守恒:E 初=E 末,初、末总能量不变.(2)转移:E A 减=E B 增,A 物体减少的能量等于B 物体增加的能量. (3)转化:|ΔE 减|=|ΔE 增|,减少的某些能量等于增加的某些能量.例5 (2021·山东卷·18改编)如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止.现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动.已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内.(弹簧的弹性势能可表示为:E p =12kx 2,k 为弹簧的劲度系数,x 为弹簧的形变量)(1)求B 、C 向左移动的最大距离x 0和B 、C 分离时B 的动能E k ; (2)为保证A 能离开墙壁,求恒力的最小值F min ;(3)若三物块都停止时B 、C 间的距离为x BC ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与fx BC 的大小; 答案 (1)2F -4f k F 2-6fF +8f 2k(2)(3+102)f (3)W <fx BC解析 (1)从开始到B 、C 向左移动到最大距离的过程中,以B 、C 和弹簧为研究对象,由功能关系得 Fx 0=2fx 0+12kx 02弹簧恢复原长时B 、C 分离,从弹簧最短到B 、C 分离,以B 、C 和弹簧为研究对象,由能量守恒定律得 12kx 02=2fx 0+2E k联立方程解得x 0=2F -4fkE k =F 2-6fF +8f 2k.(2)当A 刚要离开墙时,设弹簧的伸长量为x ,以A 为研究对象,由平衡条件得kx =f 若A 刚要离开墙壁时B 的速度恰好等于零,这种情况下恒力为最小值F min ,从弹簧恢复原长到A 刚要离开墙的过程中,以B 和弹簧为研究对象, 由能量守恒定律得E k =12kx 2+fx结合第(1)问结果可知F min =(3±102)f 根据题意舍去F min =(3-102)f , 所以恒力的最小值为F min =(3+102)f . (3)从B 、C 分离到B 停止运动,设B 的位移为x B ,C 的位移为x C ,以B 为研究对象, 由动能定理得-W -fx B =0-E k 以C 为研究对象, 由动能定理得-fx C =0-E k 由B 、C 的运动关系得x B >x C -x BC 联立可知W <fx BC .1.(2022·江苏新沂市第一中学高三检测)如图所示,倾角为θ的斜面AB 段光滑,BP 段粗糙,一轻弹簧下端固定于斜面底端P 处,弹簧处于原长时上端位于B 点,可视为质点、质量为m 的物体与BP 之间的动摩擦因数为μ(μ<tan θ),物体从A 点由静止释放,将弹簧压缩后恰好能回到AB 的中点Q .已知A 、B 间的距离为x ,重力加速度为g ,则( )A .物体的最大动能等于mgx sin θB .弹簧的最大形变量大于12xC .物体第一次往返中克服摩擦力做的功为12mgx sin θD .物体第二次沿斜面上升的最高位置在B 点 答案 C解析 物体接触弹簧前,由机械能守恒定律可知,物体刚接触弹簧时的动能为E k =mgx sin θ,物体接触弹簧后,重力沿斜面向下的分力先大于滑动摩擦力和弹簧弹力的合力,物体先加速下滑,后来重力沿斜面向下的分力小于滑动摩擦力和弹簧弹力的合力,物体减速下滑,所以当重力沿斜面向下的分力等于滑动摩擦力和弹簧弹力的合力时物体所受的合力为零,速度最大,动能最大,所以物体的最大动能一定大于mgx sin θ,A 错误;设弹簧的最大压缩量为L ,弹性势能最大为E p ,物体从A 到最低点的过程,由能量守恒定律得mg (L +x )sin θ=μmgL cos θ+E p ,物体从最低点到Q 点的过程,由能量守恒得mg (L +x2)sin θ+μmgL cos θ=E p ,联立解得L =x tan θ4μ,由于μ<tan θ,但未知它们的具体参数,则无法说明弹簧的最大形变量是否大于12x ,B 错误;第一次往返过程中,根据能量守恒定律,可知损失的能量等于克服摩擦力做的功,则有ΔE =2μmgL cos θ=12mgx sin θ,C 正确;设从Q 到第二次最高点位置C ,有mgx QC sin θ=2μmgL ′cos θ,如果L ′=L ,则有x QC =x2,即最高点为B ,但由于物体从Q 点下滑,则弹簧的最大形变量L ′<L ,所以最高点应在B 点上方,D 错误.2.(2022·浙江温州市二模)我国选手谷爱凌在北京冬奥会自由式滑雪女子U 型场地技巧决赛中夺得金牌.如图所示,某比赛用U 型池场地长度L =160 m 、宽度d =20 m 、深度h =7.25 m ,两边竖直雪道与池底平面雪道通过圆弧雪道连接组成,横截面像“U ”字形状,池底雪道平面与水平面夹角为θ=20°.为测试赛道,将一质量m =1 kg 的小滑块从U 型池的顶端A 点以初速度v 0=0.7 m/s 滑入;滑块从B 点第一次冲出U 型池,冲出B 点的速度大小v B =10 m/s ,与竖直方向夹角为α(α未知),再从C 点重新落回U 型池(C 点图中未画出).已知A 、B 两点间直线距离为25 m ,不计滑块所受的空气阻力,sin 20°=0.34,cos 20°=0.94,tan 20°=0.36,g 取10 m/s 2.(1)A 点至B 点过程中,求小滑块克服雪道阻力所做的功W 克f ;(2)忽略雪道对滑块的阻力,若滑块从池底平面雪道离开,求滑块离开时速度的大小v;(3)若保持v B大小不变,速度v B与竖直方向的夹角调整为α0时,滑块从冲出B点至重新落回U型池的时间最长,求tan α0(结果保留两位有效数字).答案(1)1.35 J(2)35 m/s(3)0.36解析(1)小滑块从A点至B点过程中,由动能定理有mgx sin 20°-W克f=12m v B2-12m v02由几何关系得x=x AB2-d2,联立解得W克f=1.35 J(2)忽略雪道对滑块的阻力,滑块从A点运动到池底平面雪道离开的过程中,由动能定理得mgL sin 20°+mgh cos 20°=12m v2-12m v02,代入数据解得v=35 m/s(3)当滑块离开B点时,设速度方向与U型池斜面的夹角为θ,沿U型池斜面和垂直U型池方向分解速度v y=v B sin θ,v x=v B cos θ,a y=g cos 20°,a x=g sin 20°,v y=a y t1,t=2t1由此可知,当v y最大时,滑块从冲出B点至重新落回U型池的时间最长,此时v B垂直于U 型池斜面,即α0=20°tan α0=sin α0cos α0=0.340.94≈0.36.专题强化练[保分基础练]1.(2022·河北保定市高三期末)如图所示,固定在竖直面内横截面为半圆的光滑柱体(半径为R,直径水平)固定在距离地面足够高处,位于柱体两侧质量相等的小球A、B(视为质点)用细线相连,两球与截面圆的圆心O处于同一水平线上(细线处于绷紧状态).在微小扰动下,小球A 由静止沿圆弧运动到柱体的最高点P.不计空气阻力,重力加速度大小为g.小球A通过P点时的速度大小为()A.gRB.2gRC.(π2-1)gR D.π2gR 答案 C解析 对A 、B 组成的系统,从开始运动到小球A 运动到最高点的过程有mg ·πR 2-mgR =12×2m v 2,解得v =(π2-1)gR ,故选C. 2.(2022·山东泰安市模拟)如图所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过大小不计的光滑定滑轮连接着一质量也为 m 的物体Q (P 、Q 均可视为质点).开始时,用手托住物体P ,使物体P 与A 、C 两点等高在一条水平直线上,且绳子处于拉直的状态,把手放开, P 下落到图示位置时,夹角如图所示.已知AB =L ,重力加速度为g .则由开始下落到图示位置的过程中,下列说法正确的是( )A .物体Q 与物体P 的速度大小始终相等B .释放瞬间P 的加速度小于gC .图示位置时,Q 的速度大小为3gL2 D .图示位置时,Q 的速度大小为2-32gL 答案 D解析 P 与Q 的速度关系如图所示释放后,P 绕A 点做圆周运动,P 的速度沿圆周的切线方向,当绳BC 与水平夹角为30°时,绳BC 与绳AB 垂直,P 的速度方向沿CB 的延长线,此时物体Q 与物体P 的速度大小相等,之前的过程中,速度大小不相等,故A 错误;释放瞬间,P 所受合力为重力,故加速度等于g ,故B 错误;由几何关系知AC =2L ,P 处于AC 的中点时,则有BC =L ,当下降到图示位置时BC =3L ,Q 上升的高度h 1=(3-1)L ,P 下降的高度为h 2=L cos 30°=32L ,由A 项中分析知此时P 、Q 速度大小相等,设为v ,根据系统机械能守恒得mgh 2=mgh 1+12×2m v 2,解得v =2-32gL ,故D 正确,C 错误. 3.(多选)(2022·重庆市涪陵第五中学高三检测)如图所示,轻绳的一端系一质量为m 的金属环,另一端绕过定滑轮悬挂一质量为5m 的重物.金属环套在固定的竖直光滑直杆上,定滑轮与竖直杆之间的距离OQ =d ,金属环从图中P 点由静止释放,OP 与直杆之间的夹角θ=37°,不计一切摩擦,重力加速度为g ,sin 37°=0.6,cos 37°=0.8,则( )A .金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小B .金属环从P 上升到Q 的过程中,绳子拉力对重物做的功为103mgdC .金属环在Q 点的速度大小为2gd3D .若金属环最高能上升到N 点,则ON 与直杆之间的夹角α=53° 答案 AD解析 金属环在P 点时,重物的速度为零,则重物所受重力的瞬时功率为零,当环上升到Q 点,环的速度与绳垂直,则重物的速度为零,此时,重物所受重力的瞬时功率也为零,故金属环从P 上升到Q 的过程中,重物所受重力的瞬时功率先增大后减小,故A 正确;金属环从P 上升到Q 的过程中,设绳子拉力做的功为W ,对重物应用动能定理有W +W G =0,则W =-W G =-5mg (d sin θ-d )=-103mgd ,故B 错误;设金属环在Q 点的速度大小为v ,对环和重物整体,由动能定理得5mg (d sin θ-d )-mg d tan θ=12m v 2,解得v =2gd ,故C 错误;若金属环最高能上升到N 点,则整个过程中,金属环和重物整体的机械能守恒,有5mg (d sin θ-dsin α)=mg (d tan θ+d tan α),解得α=53°,故D 正确. 4.(2021·浙江1月选考·11)一辆汽车在水平高速公路上以80 km/h 的速度匀速行驶,其1 s 内能量分配情况如图所示.则汽车( )A .发动机的输出功率为70 kWB .每1 s 消耗的燃料最终转化成的内能是5.7×104 JC .每1 s 消耗的燃料最终转化成的内能是6.9×104 JD .每1 s 消耗的燃料最终转化成的内能是7.0×104 J 答案 C解析 据题意知,发动机的输出功率为P =Wt =17 kW ,故A 错误;根据能量守恒定律结合能量分配图知,1 s 消耗的燃料最终转化成的内能为进入发动机的能量,即6.9×104 J ,故B 、D 错误,C 正确.[争分提能练]5.(2022·山西太原市高三期末)如图甲所示,一物块置于粗糙水平面上,其右端通过水平弹性轻绳固定在竖直墙壁上.用力将物块向左拉至O 处后由静止释放,用传感器测出物块的位移x 和对应的速度,作出物块的动能E k -x 关系图像如图乙所示.其中0.10~0.25 m 间的图线为直线,其余部分为曲线.已知物块与水平面间的动摩擦因数为0.2,取g =10 m/s 2,弹性绳的弹力与形变始终符合胡克定律,可知( )A .物块的质量为0.2 kgB .弹性绳的劲度系数为50 N/mC .弹性绳弹性势能的最大值为0.6 JD .物块被释放时,加速度的大小为8 m/s 2 答案 D解析 由分析可知,x =0.10 m 时,弹性绳恢复原长,根据动能定理有μmg Δx =ΔE k ,则m =ΔE k μg Δx =0.300.2×10×(0.25-0.10)kg =1 kg ,所以A 错误;动能最大时弹簧弹力等于滑动摩擦力,则有k Δx 1=μmg ,Δx 1=0.10 m -0.08 m =0.02 m ,解得k =100 N/m ,所以B 错误;根据能量守恒定律有E pm =μmgx m =0.2×1×10×0.25 J =0.5 J ,所以C 错误;物块被释放时,加速度的大小为a =k Δx m -μmg m =100×0.10-0.2×1×101m/s 2=8 m/s 2,所以D 正确.6.(多选)(2022·广东揭阳市高三期末)图为某蹦极运动员从跳台无初速度下落到第一次到达最低点过程的速度-位移图像,运动员及装备的总质量为60 kg ,弹性绳原长为10 m ,不计空气阻力,g =10 m/s 2.下列说法正确的是( )A .下落过程中,运动员机械能守恒B .运动员在下落过程中的前10 m 加速度不变C .弹性绳最大的弹性势能约为15 300 JD .速度最大时,弹性绳的弹性势能约为2 250 J 答案 BCD解析 下落过程中,运动员和弹性绳组成的系统机械能守恒,运动员在绳子绷直后机械能一直减小,所以A 错误;运动员在下落过程中的前10 m 做自由落体运动,其加速度恒定,所以B 正确;在最低点时,弹性绳的形变量最大,其弹性势能最大,由能量守恒定律可知,弹性势能来自运动员减小的重力势能,由题图可知运动员下落的最大高度约为25.5 m ,所以E p =mgH m =15 300 J ,所以C 正确;由题图可知,下落约15 m 时,运动员的速度最大,根据能量守恒可知此时弹性绳的弹性势能约为E pm =mgH -12m v m 2=2 250 J ,所以D 正确.7.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧绳子始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L ,现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置为E 点,D 、E 两点间距离为L 2,若A 、B 的质量分别为4m 和m ,A 与斜面之间的动摩擦因数μ=38,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,求:(1)物体A 在从C 运动至D 的过程中的加速度大小; (2)物体A 从C 至D 点时的速度大小; (3)弹簧的最大弹性势能. 答案 (1)120g (2)gL 10 (3)38mgL 解析 (1)物体A 从C 运动到D 的过程,对物体A 、B 整体进行受力分析,根据牛顿第二定律有4mg sin 30°-mg -4μmg cos 30°=5ma 解得a =120g(2)物体A 从C 运动至D 的过程,对整体应用动能定理有4mgL sin 30°-mgL -4μmgL cos 30°=12·5m v 2 解得v =gL 10(3)当A 、B 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对A 、B 整体应用动能定理得4mg (L +L 2)sin 30°-mg (L +L 2)-μ·4mg cos 30°(L +L2)-W 弹=0-0解得W 弹=38mgL则弹簧具有的最大弹性势能 E p =W 弹=38mgL .8.(2022·江苏南京市二模)现将等宽双线在水平面内绕制成如图甲所示轨道,两段半圆形轨道半径均为R = 3 m ,两段直轨道AB 、A ′B ′长度均为l =1.35 m .在轨道上放置一个质量m =0.1 kg 的小圆柱体,如图乙所示,圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°,如图丙所示.两轨道与小圆柱体间的动摩擦因数均为μ=0.5,小圆柱尺寸和轨道间距相对轨道长度可忽略不计.初始时小圆柱位于A 点处,现使之获得沿直轨道AB 方向的初速度v 0.重力加速度大小g =10 m/s 2,求:(1)小圆柱沿AB 运动时,内、外轨道对小圆柱的摩擦力F f1、F f2的大小;(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时,外轨和内轨对小圆柱的压力F N1、F N2的大小;(3)为了让小圆柱不脱离内侧轨道,v 0的最大值以及在v 0取最大值情形下小圆柱最终滑过的路程s .答案 (1)0.5 N 0.5 N (2)1.3 N 0.7 N (3)57 m/s 2.85 m解析 (1)圆柱体与轨道两侧相切处和圆柱截面圆心O 连线的夹角θ为120°, 根据对称性可知,两侧弹力大小均与重力相等,为1 N , 内、外轨道对小圆柱的摩擦力F f1=F f2=μF N =0.5 N(2)当v 0=6 m/s ,小圆柱刚经B 点进入圆弧轨道时有12m v 2-12m v 02=-(F f1+F f2)l在B 点有F N1sin 60°-F N2sin 60°=m v 2R ,F N1cos 60°+F N2cos 60°=mg解得F N1=1.3 N ,F N2=0.7 N(3)为了让小圆柱不脱离内侧轨道,v 0最大时,在B 点恰好内轨对小圆柱的压力为0,有 F N1′sin 60°=m v m 2R ,F N1′cos 60°=mg且12m v m 2-12m v 0m 2=-(F f1+F f2)l 解得v 0m =57 m/s ,在圆弧上受摩擦力为 F f =μF N1′=μmg cos 60°=1 N即在圆弧上所受摩擦力大小与在直轨道所受总摩擦力大小相等 所以12m v 0m 2=F f s解得s =2.85 m.[尖子生选练]9.(2022·浙江1月选考·20)如图所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB 、圆心为O 1的半圆形光滑轨道BCD 、圆心为O 2的半圆形光滑细圆管轨道DEF 、倾角也为37°的粗糙直轨道FG 组成,B 、D 和F 为轨道间的相切点,弹性板垂直轨道固定在G 点(与B 点等高),B 、O 1、D 、O 2和F 点处于同一直线上.已知可视为质点的滑块质量m =0.1 kg ,轨道BCD 和DEF 的半径R =0.15 m ,轨道AB 长度l AB =3 m ,滑块与轨道FG 间的动摩擦因数μ=78,滑块与弹性板作用后,以等大速度弹回,sin 37°=0.6,cos 37°=0.8.滑块开始时均从轨道AB 上某点静止释放.(1)若释放点距B 点的长度l =0.7 m ,求滑块到最低点C 时轨道对其支持力F N 的大小; (2)设释放点距B 点的长度为l x ,滑块第一次经F 点时的速度v 与l x 之间的关系式; (3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值. 答案 (1)7 N (2)v =12l x -9.6,其中l x ≥0.85 m (3)见解析 解析 (1)滑块由静止释放到C 点过程,由能量守恒定律有 mgl sin 37°+mgR (1-cos 37°)=12m v C 2在C 点由牛顿第二定律有 F N -mg =m v C 2R解得F N =7 N(2)要保证滑块能到F 点,必须能过DEF 的最高点,当滑块恰能达到最高点时,根据动能定理可得mgl 1sin 37°-(3mgR cos 37°+mgR )=0 解得l 1=0.85 m因此要能过F 点必须满足l x ≥0.85 m能过最高点,则能到F 点,根据动能定理可得 mgl x sin 37°-4mgR cos 37°=12m v 2,解得v =12l x -9.6,其中l x ≥0.85 m.(3)设摩擦力做功为第一次到达中点时的n 倍mgl x sin 37°-mg l FG 2sin 37°-nμmg l FG 2cos 37°=0,l FG =4Rtan 37°解得l x =7n +615 m(n =1,3,5,…)又因为l AB ≥l x ≥0.85 m ,l AB =3 m , 当n =1时,l x 1=1315 m当n =3时,l x 2=95 m当n =5时,l x 3=4115m.。
动能定理与机械能守恒定律动能定理和机械能守恒定律是物理学中重要的两个定律,它们在描述物体运动和能量转化过程中扮演着重要的角色。
本文将简要介绍这两个定律并探讨它们的应用。
一、动能定理动能定理是描述物体运动中能量变化的定律。
它表明了物体动能的变化与物体所受的外力做功之间的关系。
动能定理的数学表达式为:动能变化 = 外力做功其中,动能变化表示物体动能的变化量,外力做功表示作用在物体上的外力所做的功。
动能定理可以理解为能量守恒定律在动力学中的具体应用。
动能定理的一个重要应用是用于分析物体的加速度和位移之间的关系。
根据动能定理,当一个物体以恒定的力加速时,其动能将增加。
根据牛顿第二定律,力等于物体质量乘以加速度,从而可以推导出物体的位移与加速度之间的关系。
二、机械能守恒定律机械能守恒定律是描述闭合系统中机械能守恒的定律。
在没有摩擦和空气阻力的情况下,系统的机械能保持不变。
机械能守恒定律可以分为两个部分:动能守恒和势能守恒。
动能守恒表明在系统中,物体的动能转化为其他形式的能量时,总的动能保持不变。
例如,当一个物体从高处自由下落时,其动能将逐渐转化为重力势能。
根据动能守恒定律,物体在下落的过程中其动能减小而势能增加。
势能守恒表明在系统中,势能能够转化为其他形式的能量时,总的势能保持不变。
例如,弹簧振子在振动过程中,弹性势能和动能不断转化,但总的机械能保持不变。
机械能守恒定律的应用广泛。
例如,在自行车骑行过程中,动能和势能不断转化,但总的机械能保持不变。
这一定律在机械工程和能量转化领域中有着广泛的应用。
结论动能定理和机械能守恒定律是物理学中重要的两个定律。
动能定理描述了物体动能变化与作用力做功之间的关系,而机械能守恒定律描述了闭合系统中机械能守恒的规律。
这两个定律在物体运动和能量转化的研究中起着关键的作用。
通过研究和应用动能定理和机械能守恒定律,我们可以更好地理解物体的运动和能量转化过程。
这些定律不仅在理论研究中有重要意义,也在工程和实际应用中有广泛的应用价值。
动能定理与机械能守恒动能定理和机械能守恒是物理学中两个重要的概念,它们描述了物体在不同情况下的能量转化和守恒规律。
本文将从理论和实际应用两个方面,探讨动能定理和机械能守恒的含义和重要性。
一、动能定理动能定理是描述物体动能变化的物理定律。
它表明,物体的动能变化等于物体所受的净作用力沿着物体运动方向所做的功。
动能定理的数学表达式如下:ΔK = W其中,ΔK表示物体动能的变化,W表示所受作用力所做的功。
动能定理说明了作用力对物体的动能变化有直接影响,作用力做的功越大,物体的动能变化越大。
动能定理的应用非常广泛。
例如,在汽车撞击中,撞击力会对汽车产生作用,根据动能定理可以计算出汽车的动能变化,从而评估汽车安全性能。
此外,在机械工程中,动能定理也被用于设计机械装置,优化能量利用效率。
二、机械能守恒机械能守恒是指在没有外力做功的情况下,一个封闭系统的机械能总是保持不变。
机械能包括物体的动能和势能两个部分。
动能是物体由于运动而具有的能量,势能是物体由于位置而具有的能量。
根据机械能守恒定律,一个系统的总机械能在运动过程中保持不变。
这意味着,当一个物体从一位置移动到另一位置时,动能的变化和势能的变化之间存在一个平衡。
如果物体失去一部分动能,则会相应地获得相同数量的势能。
机械能守恒在日常生活中也有许多应用。
例如,弹簧秤是通过利用机械能守恒原理测量物体质量的一种常用装置。
通过测量物体在秤的弹簧下的伸缩量,可以计算出物体的重力势能和动能,从而确定物体的质量。
总结:动能定理和机械能守恒是物理学中研究能量转化和守恒的重要定律。
动能定理描述了作用力与物体动能变化之间的关系,而机械能守恒则说明了封闭系统中的机械能总是保持不变。
这两个概念在物理学研究和实际应用中具有重要价值,可以帮助我们理解和解释物体的运动行为以及优化能源利用。
因此,深入了解和应用动能定理和机械能守恒对于物理学的学习和应用具有重要意义。
动能定理与机械能守恒动能定理和机械能守恒定律是物理学领域中非常重要的两个概念。
它们在力学和能量转化的过程中发挥着重要的作用。
本文将介绍动能定理和机械能守恒定律的定义、原理以及它们在实际应用中的意义。
一、动能定理动能定理是描述物体动能变化的定律。
它表明,在没有外力或者合外力为零的情况下,物体的动能变化等于对物体施加的合力所做的功。
动能(Kinetic energy)是物体由于运动而具有的能量。
它是与物体质量和速度平方成正比的量,即动能等于质量乘以速度的平方再乘以一个常数(1/2),可以用下式表示:K = 1/2 * m * v²其中,K代表动能,m代表物体的质量,v代表物体的速度。
根据动能定理,如果物体的速度发生变化,其动能也会发生相应的改变。
当物体受到外力作用时,会产生加速度,从而改变速度,进而改变动能。
合外力所做的功等于物体动能的变化,可以用下式表示:W = ΔK其中,W代表合外力所做的功,ΔK代表动能的变化。
二、机械能守恒机械能守恒定律是描述物体在机械能转化过程中能量守恒的规律。
在没有外力做功或者外力做功为零的情况下,一个封闭系统的机械能保持不变。
机械能(Mechanical energy)是指物体由于位置或者运动而具有的能量。
它可以分为动能和势能两个部分。
动能在前文已经介绍过。
而势能(Potential energy)是指物体由于位置而具有的能量。
它可以是重力势能、弹性势能或者其他形式的势能。
机械能就是动能和势能的总和,可以用下式表示:E = K + U其中,E代表机械能,K代表动能,U代表势能。
根据机械能守恒定律,当一个封闭系统内没有外力做功时,物体的机械能保持不变。
这意味着动能和势能之间可以相互转化,总能量不会改变。
实际应用中,动能定理和机械能守恒定律被广泛应用于各个领域。
例如,在交通工程中,为了减少车辆的耗能,可以通过改变路面材料、优化行车路线等方式来减小摩擦力,从而提高汽车的动能和机械能的利用效率。
动能定理、机械能守恒、能量守恒的应用(一)9、质量为m 的滑块沿高为h ,长为l 的粗糙斜面匀速下滑,在滑块从斜面顶端滑至低端过程中 ( AB )A .重力对滑块所做的功为mghB .滑块克服摩擦所做的功为mghC .滑块的机械能保持不变D .滑块的重力势能增加了mgh8.一质量为m 的物体被人用手由静止竖直向上以加速度a 匀加速提升h ,关于此过程下列说法中正确的是( ABD )A 、提升过程中手对物体做功m(a+g)hB 、提升过程中合外力对物体做功mahC 、提升过程中物体的动能减小D 、提升过程中物体克服重力做功mgh9.以速度v 飞行的子弹,先后连续垂直射穿两块竖直固定在地面上的厚度不同的木块。
若子弹穿过两木块后的速度分别为0.8v 和0.6v ,则两木块的厚度之比是( B )A .1∶1B .9∶7C .8∶6D .16∶910. 如图2所示,一木块静止在光滑水平面上,一子弹水平射入木块中,射入深度为d ,平均阻力为f .设木块发生位移s 时开始匀速前进,下列判断正确的是[BDE ]A .子弹损失的动能为fsB .子弹损失的动能为f (s +d )C .子弹损失的动能为fdD .子弹、木块系统总机械能的损失为fdE .木块增加的动能为fs E .木块增加的动能为f (s +d )4.物体以100J 的初动能从斜面底端的A 点沿斜面向上滑行,第一次经过B 点时,它的动能比最初减少了60J ,势能比最初增加了45J ,则该物体返回出发点A 处的动能为(不计空气阻力)( A )A.50JB.75JC.40JD.10J5.一物体静止在升降机的地板上,在升降机匀加速上升的过程中,地板对物体的支持力所做的功等于( C )A.物体克服重力所做的功B.物体动能的增加量C.物体动能增加量与重力势能增加量之和D.物体动能增加量与重力势能增加量之差11.如图,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a →b →c 的运动过程中,说法正确的是( )A.小球、弹簧和地球构成的系统总机械能守恒B.小球的重力势能随时间先减少后增加C.小球在b 点时动能最大D.到c 点时小球动能的减少量等于弹簧弹性势能的增加量11、A 18、(8分)在距地面10m 高处,以10m/s 的速度抛出一质量为1kg 的物体,已知物体落地时的速度为16m/s ,求:(1)抛出时人对物体做功为多少?(2)飞行过程中物体克服阻力做的功是多少?18、50J ,22J16.人骑自行车上坡,坡长200l m =,坡高10h m =,人和车的总质量为100M kg =,人蹬车时车受到的牵引力为100F N =。
若在坡底时车的速度为010/v m s =,到坡顶时的速度为4/m s ,求:上坡过程中人克服阻力做了多少功?图216.设上坡过程中人克服阻力做的功为f w 。
用动能定理2201122f Fl w mgh mv mv --=-,即2211100200100101010041001022f w ⨯--⨯⨯=⨯⨯-⨯⨯,得41.4210f w J =⨯。
12、如图,一质量为m=10kg 的物体,由1/4圆弧轨道上端从静止开始下滑,到达底端时的速度v=2m/s ,然后沿水平面向右滑动1m 距离后停止。
已知轨道半径R=0.4m ,g=10m/s 2则:(1)物体滑至圆弧底端时对轨道的压力是多大?(4分)(2)物体沿轨道下滑过程中克服摩擦力做多少功?(4分)(3)物体与水平面间的动摩擦因数μ是多少?(4分)12、(1)200N (2)20J (3)0.213.质量为m =1kg 的物块从一光滑的斜面顶端A 点以初速度02/v m s =下滑至底端B 点后,颠簸了一下,接着沿水平粗糙地面匀减速滑行了x =8m 位移后停止在C 点。
已知斜面的高度为h =3m ,物块与水平地面间的动摩擦因数为0.1μ=。
试求:(1)物块刚滑到斜面底端时(颠簸之前)的动能;(2)物块在B 点由于颠簸而损失的机械能E ∆。
13. (1)从顶端A 滑到底端B (颠簸之前),设此点的动能为1k E ,机械能守恒。
由E p k E ∆∆减增=,即1k mgh E =,得132k E J =――――――――――――――――①(2)设在B 点颠簸过后的动能为2k E ,从B 到C 过程,由动能定理:20k mgx E μ-=-,即20.111080k E -⨯⨯⨯=-,得28k E J =―――――② 所以,在B 点由于颠簸所损失的机械能为1232824k k E E E J ∆=-=-=―――――③20、(10分)质量均为m 的物体A 和B 分别系在一根不计质量的细绳两端,绳子跨过固定在倾角为30°的斜面顶端的定滑轮上,斜面固定在水平地面上,开始时把物体B 拉到斜面底端,这时物体A 离地面的高度为0.8米,如图所示.。
若摩擦力均不计,从静止开始放手让它们运动.(斜面足够长)求:(1) 物体A 着地时的速度;(2)物体A 着地后物体B 沿斜面上滑的最大距离.22 解:(1)运用机械能守恒,以地面为零势能面所以: mgh =mghsin30o +1/2mV A 2+1/2mV B 2 (2分)因为:V A =V B (1分)所以: V A =V B =2m/s (1分)(2) B 上升到最大高度时0230sin 21s mg mv B ∆= (2分)图11m s 4.0=∆ (1分)m s h s 2.1=∆+= (1分)17.如图所示,半径R =0.40m 的光滑半圆环轨道处于竖直平面内,半圆环与粗糙的水平地面相切于圆环的端点A . 一质量m =0.10kg 的小球,以速度v 0=7.0m/s 在水平地面上向左做加速度a =3.0m/s 2的匀减速直线运动,运动4.0m 后,冲上竖直半圆环,最后小球落在C 点,求A 、C 间的距离.17、解:匀减速运动过程中有:as v v A 2202-=-恰好做圆周运动时物体在最高点B 满足: R v m mg m 2= 得:v m =2m/s假设物体能到达圆环的最高点B ,由机械能守恒:2221221B A mv mgR mv += 联立可得:v B =2m/s因为v b >v m ,所以小球能通过最高点B .小球从B 点平抛,有:2212gt R = t v S B AC = 得:2.1=AC S m17、如图11所示,m A =4kg,m B =1kg,A 与桌面间的动摩擦因数μ=0.2,B 与地面间的距离s=0.8m,A 、B 原来静止,求:(1) B 落到地面时的速度为多大;(2) B 落地后,A 在桌面上能继续滑行多远才能静止下来。
(g 取10m/s 2)17、⑴以A 、B 物体构成的系统为对象,B 物体所受重力m B g 做正功,mA 物体所受的摩擦力对系统做负功,由动能定理得:m/s 24.3144)0.2-(18.0102m m m m gs 2V )V m (m 21gs m -gs m B A A B B 2B A A B =+⨯⨯⨯⨯=+-+=)(=即: μμ ⑵设B 物体落地后A 物体能滑行的距离为S ’,则根据动能定理得:m 24.3102.024.3421s V m 21-0s g m 2A A A =⨯⨯⨯='='μ-C动能定理、机械能守恒、能量守恒的应用(一)1、质量为m 的滑块沿高为h ,长为l 的粗糙斜面匀速下滑,在滑块从斜面顶端滑至低端过程中 ( )A .重力对滑块所做的功为mghB .滑块克服摩擦所做的功为mghC .滑块的机械能保持不变D .滑块的重力势能增加了mgh2.一质量为m 的物体被人用手由静止竖直向上以加速度a 匀加速提升h ,关于此过程下列说法中正确的是( )A 、提升过程中手对物体做功m(a+g)hB 、提升过程中合外力对物体做功mahC 、提升过程中物体的动能减小D 、提升过程中物体克服重力做功mgh3..以速度v 飞行的子弹,先后连续垂直射穿两块竖直固定在地面上的厚度不同的木块。
若子弹穿过两木块后的速度分别为0.8v 和0.6v ,则两木块的厚度之比是( )A .1∶1B .9∶7C .8∶6D .16∶94.如图2所示,一木块静止在光滑水平面上,一子弹水平射入木块中,射入深度为d ,平均阻力为f .设木块发生位移s 时开始匀速前进,下列判断正确的是( )A .子弹损失的动能为fsB .子弹损失的动能为f (s +d )C .子弹损失的动能为fdD .子弹、木块系统总机械能的损失为fdE .木块增加的动能为fs E .木块增加的动能为f (s +d )4.物体以100J 的初动能从斜面底端的A 点沿斜面向上滑行,第一次经过B 点时,它的动能比最初减少了60J ,势能比最初增加了45J ,则该物体返回出发点A 处的动能为(不计空气阻力)( )A.50JB.75JC.40JD.10J5.一物体静止在升降机的地板上,在升降机匀加速上升的过程中,地板对物体的支持力所做的功等于( )A.物体克服重力所做的功B.物体动能的增加量C.物体动能增加量与重力势能增加量之和D.物体动能增加量与重力势能增加量之差6.小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩到最短,若不计弹簧质量和空气阻力,在小球由a →b →c 的运动过程中,说法正确的是( )A.小球、弹簧和地球构成的系统总机械能守恒B.小球的重力势能随时间先减少后增加C.小球在b 点时动能最大D.到c 点时小球动能的减少量等于弹簧弹性势能的增加量7、在距地面10m 高处,以10m/s 的速度抛出一质量为1kg 的物体,已知物体落地时的速度为16m/s ,求:(1)抛出时人对物体做功为多少?(2)飞行过程中物体克服阻力做的功是多少?8.人骑自行车上坡,坡长200l m =,坡高10h m =,人和车的总质量为100M kg =,人蹬车时车受到的牵引力为100F N =。
若在坡底时车的速度为010/v m s =,到坡顶时的速度为4/m s ,求:上坡过程中人克服阻力做了多少功?图29、如图,一质量为m=10kg 的物体,由1/4圆弧轨道上端从静止开始下滑,到达底端时的速度v=2m/s ,然后沿水平面向右滑动1m 距离后停止。
已知轨道半径R=0.4m ,g=10m/s 2则:(1)物体滑至圆弧底端时对轨道的压力是多大?(2)物体沿轨道下滑过程中克服摩擦力做多少功?(3)物体与水平面间的动摩擦因数μ是多少?10.质量为m =1kg 的物块从一光滑的斜面顶端A 点以初速度02/v m s =下滑至底端B 点后,颠簸了一下,接着沿水平粗糙地面匀减速滑行了x =8m 位移后停止在C 点。