2019-2020年九年级数学下册一轮复习 第35课时 概率
- 格式:doc
- 大小:266.51 KB
- 文档页数:7
备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案简单事件概率的计算综合题专训1、(2022开鲁.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.2、(2019徐州.中考真卷) 如图,甲、乙两个转盘分别被分成了等份与等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.乙1 2 3 4积甲123(2)积为的概率为;积为偶数的概率为;(3)从这个整数中,随机选取个整数,该数不是(1)中所填数字的概率为.3、(2018山西.中考模拟) 图1所示是一枚质地均匀的骰子.骰子有六个面并分别代表数字1,2,3,4,5,6.如图2,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的点数是几,就沿正六边形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A起跳.;(1)小明随机掷一次骰子,求落回到圈A的概率P1(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P,并指出他与小明落回到圈A的可能性一样吗?24、(2018建邺.中考模拟) 超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?5、(2018玄武.中考模拟) 甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A、B、C三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.6、(2018惠州.中考模拟) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由.7、(2019洪江.中考模拟) 甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.8、(2018柳北.中考模拟) 在一个不透明的袋里装有分别标有数字1,2,3,4,5的5个小球,除所有数字不同外,小球没有其他分别,每次试验前先搅拌均匀.(1)若从中任取一球,球上的数字为奇数的概率为多少?(2)若从中任取一球不放回,再从中任取1球,请用画树状图或列表的方法求出两个球上的数字之和为偶数的概率.9、(2019玉林.中考真卷) 某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.10、(2019南充.中考真卷) 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.11、(2018遵义.中考模拟) 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.12、(2019岐山.中考模拟) 某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)13、(2019陕西.中考模拟) 有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)14、(2020长春.中考模拟) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出1个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。
概率1.(3分)小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字, 则小军能一次打开该旅行箱的概率是()A.B.C.D.2.(3分)李湘同学想给数学老师送张生日贺卡,但她只知道老师的生日在6月,那么她一次猜中老师生日的概率是()A.B.C.D.3.(8分)甲、乙两人用手指玩游戏,规则如下:i)每次游戏时,两人同时随机地各伸出一根手指;ii)两人伸出的手指中,大拇指只胜食指、食指只胜中指、中指只胜无名指、无名指只胜小拇指、小拇指只胜大拇指,否则不分胜负.依据上述规则,当甲、乙两人同时随机地各伸出一根手指时.(1)求甲伸出小拇指取胜的概率;(2)求乙取胜的概率.4.(7分)端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C).这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙棕子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.5.(7分)某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动.奖品是三种瓶装饮料,它们分别是:绿茶(500 mL)、红茶(500 mL)和可乐(600 mL).抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动.请你用列表或画树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.6.(8分)甲、乙两人利用五个小球做“找象限”游戏,这五个小球的球面上分别标有数字-2 、-1 、1 、2 、3 ,这些小球除球面上数字不同外其他完全相同.他们俩约定:把这五个小球放在一个不透明的口袋中,甲先从口袋中任摸一个小球,记下数字作为一点的横坐标,再将这个小球放回这个袋中摇匀,接着乙从口袋中任摸一个小球,记下数字作为这个点的纵坐标,这样就得到坐标平面上的一个点.若此点在第一、三象限,则甲胜,否则乙胜.这样的游戏对甲、乙双方公平吗?为什么?7.(7分)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1 、2 、3 、4 、5 、6个小圆点的小正方体)8.(8分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台,甲、乙、丙三位同学用“手心、手背”游戏(游戏时, “手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背,若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现”两同一异” 为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.9.(8分)陕西汉中有百万亩油菜花,每年春天,盛开的油菜花与青山绿水相互掩映,构成一道亮丽的风景.摄影爱好者小飞和小青计划在油菜花节进行拍摄,但是由于油菜花海分布范围广泛,所以小飞和小青决定采用抽签的方式在“1—南郑,2—西乡, 3—汉台,4—勉县,5—洋县”这五个地方中选择两个地方进行拍摄.抽签规则如下:把五个地点分别写在五张背面相同卡片的正面上,然后背面朝上放在水平桌面上搅匀后,小飞先随机抽取一张卡片,不放回,小青再抽取一张.(1)求小飞抽取到的地点是南郑的概率;(2)请用画树状图或列表的方法,求小飞和小青选择在勉县和汉台这两个地方进行拍摄的概率.10.(3分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼11.(3分)下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次12.(3分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A.B.C.D.13.(3分)从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.14.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.15.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.16.(3分)在一个不透明的口袋里有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有5 个黄球,4个蓝球,若随机摸出一个蓝球的概率为,则随机摸出一个红球的概率为()A.B.C.D.17.(3分)从长为3,5,7,10的四条线段中任意选取三条作为边,能构成三角形的概率是()A.B.C.D.118.(3分)将一枚质地均匀的硬币先后抛掷两次,则至少出现一次正面向上的概率为()A.B.C.D.19.(3分)某校举行以“激情五月,唱响青春”为主题的演讲比赛,决赛阶段只剩下甲、乙、丙、丁四名同学,则甲、乙同学获得前两名的概率是()A.B.C.D.20.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.21.(3分)毛泽东在《沁园春•雪》中提到五位历史名人:秦始皇、汉武帝、唐太宗、宋太祖、成吉思汗.小红将这五位名人简介分别写在五张完全相同的知识卡片上.小哲从中随机抽取一张,卡片上介绍的人物是唐朝以后出生的概率是______.22.(3分)如图,是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_________.23.(3分)如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为2m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.25附近,由此可估计不规则区域的面积约是_______.24.(3分)一个仅装有球的不透明布袋里共有3个球(只有颜色不同),其中2个是红球,1个是白球.从中任意摸出一个球,记下颜色后放回,搅匀,再任意摸出一个球,则两次摸出都是红球的概率是_____________.25.(3分)有5张看上去无差别的卡片,正面分别写着1,2,3,4,5,洗匀后正面向下方在桌子上,从中随机抽取2张,抽出的卡片上的数字恰好是两个连续整数的概率是___________.26.(7分)2017宜宾)端午节放假期间,小明和小华准备到宜宾的蜀南竹海(记为A)、兴文石海(记为B)、夕佳山民居(记为C)、李庄古镇(记为D)的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)小明选择去蜀南竹海旅游的概率为________;(2)用画树状图或列表的方法求小明和小华都选择去兴文石海旅游的概率.27.(7分)珊和高茽两人来兰州旅游,想品尝以下享有美誉“中华第一面”的兰州牛肉面.兰州牛肉面光滑爽口、味道鲜美,其搭配佐料也是独俱特色:一红二绿三白四黄,辣椒油红,汤上漂着鲜绿的香菜和蒜苗,几片白萝卜掺在红绿中又尤其显纯白,面条光亮透黄.大众喜欢的面型有:毛细、细的、二细、三细、韭叶、薄宽、大宽,两人同时选择面型,乔珊准备在“毛细、二细、薄宽”中选择:高茽准备在“细的、三细、韭叶、大宽”中选择,(毛细、二细、薄宽分别记为A、B、C;细的、三细、韭叶、大宽分别记为D、E、F、G).(1)用画树状图或列表的方法表示乔珊和高茽同时选择面型的所有可能结果;(2)求乔珊和高茽同时选择的面型都是“细”(毛细、细的、二细、三细)的概率.28.(7分)在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同). 用树状图(或列表法)解答下列问题:(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球.则小强两次都摸到白球的概率是多少?29.(7分)在一只不透明的布袋中放入四个大小、材质完全相同的小球,且小球上分别标有数字1、2、3、4.甲、乙两位同学玩摸球游戏,规则如下:甲同学先在袋中随机摸出一个小球(不放回),将小球上标的数字记为一个两位数的十位数字,再由乙同学在袋中随机摸出一个小球,将小球上标的数字记为这个两位数的个位数字.甲、乙两位同学摸出的数字组成一个两位数,若十位数字比个位数字大,则称这个数为“伞数”.现规定组成的两位数是“伞数”,则甲同学胜;否则,乙同学胜.(1)请你用列表法或画树状图法表示出在一次游戏中出现的所有等可能情况;(2)求一次游戏结束后甲同学取胜的概率.30.(7分)“端午节”是我国流传了上千年的传统节日,全国各地举行了丰富多彩的纪念活动.为了继承传统,减缓学生考前的心理压力,某班学生组织了一次拔河比赛,裁判员让两队队长用“石头、剪刀、布”的手势方式选择场地位置,规则是:石头胜剪刀,剪刀胜布,布胜石头,手势相同则再决胜负.(1)请用列表或画树状图法,列出甲、乙两队手势可能出现的情况;(2)裁判员的这种做法对甲、乙双方公平吗?请说明理由.31.(7分)中考报名前各校初三学生都要进行体检,某次中考体检设有A、B两处检测点,甲、乙、丙三名学生各自随机选择其中的一处进行中考体检.(1)请用列表或画树状图的方法求甲、乙、丙三名学生在同一处中考体检的概率;(2)求甲、乙、丙三名学生中至少有两人在B处体检的概率.32.(7分)由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.33.(3分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n,如果m,n满足|m -n|≤1,那么就称甲、乙两人“心领神会”. 则两人“心领神会”的概率是()A.B.C.D.34.(3分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复模球实验后发现,摸到黄球的频率稳定在30% ,那么估计盒子中小球的个数n为()A.20B.24C.28D.3035.(3分)小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为()A.B.C.D.36.(3分)在如图所示的电路中,随机闭合开关S1,S2,S3中的两个,能让灯泡L1发光的概率是________.37.(3分)如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关x的方程x2+nx+ m=0有两个相等实数根的概率是_______.38.(7分)如图,有四张背面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将这四张纸牌背面朝上洗匀.(1)从中随机摸出一张,求摸出的牌面图形是中心对称图形的概率;(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张纸牌,不放回,再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形都是轴对称图形小明获胜,否则小亮获胜,这个游戏公平吗?请用列表法(或树状图)说明理由(纸牌用A、B、C、D表示)39.(7分)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏,游戏设计者提供了一只兔子和一个有A、B、C、D、E五个出人口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的,规定:①玩家只能将小兔从A、B两个出入口放入,②如果小兔进入笼子后选择从开始进入的出入口离开,即可获得一只价值5元的小兔玩具,否则每玩一次付费3元.(1)请用表格或树状图求小美玩一次“守株待兔”游戏能得到小兔玩具的概率;(2)假设有1000人次玩此游戏,估计游戏设计者可赚多少元?40.(7分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10 元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_______元购物券,至多可得到________元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.。
第16讲《概率》要点梳理知识点1:事件类型 必然事件: ,概率: ; 不可能事件: ,概率: ;随机事件: ,概率: ;知识点2:一般地,表示一个随机事件A 发生可能性大小的_____ ,叫做这个随机事件A 发生的概率。
知识点3:1.公式法:对于简单的事件直接用公式法计算即可;所有可能的结果总数果总数事件A发生的可能的结P(A)= 2. 用频率估算概率:一般地,在大师重复试验下,随机事件A 发生的频率 _____ (这里n 是总试验次数,它必须相当大,m 是在n 次试验中事件A 发生的次数)会稳定到某个常数p.于是,我们用p 这个常数表示事件A 发生的概率,即P(A)=p.3. 列表法:当一次试验涉及两步计算时,且可能出现的结果数目较多时,可采用列表法列出所有可能的结果,再根据 nm =)(A P 计算概率; 4.画树状图:当一次试验涉及两步或两步以上的计算时,可采用画树状图表示所有可能的结果,再根据 nm =)(A P 计算概率。
1.列举法求概率的一般步骤为: (1)判断使用列或画树状图方法:列表法一般适用于两步计算;画树状图法适合于两步及两步以上求概率。
(2)不重不漏的列举出所有事件出现的可能结果,并判定每种事件发生的可能性是否相等;(3)确定所有可能出现的结果数n 及所求事件A 出现的结果数m ;(4)用公式 nm =)(A P 求事件A 发生的概率。
2.频率与概率的区别与联系(1)区别:概率是用来表示一个随机事件发生的可能性的大小,只要有一个随机事件存在,就有一个概率存在,而频率是通过试验得到的,它随着试验次数的变化而变化;(2)联系:当试验次数充分大时,频率稳定在概率的附近摆动,为了求出一个随机事件的概率,通常需要大量的重复试验,用所得的频率来估计随机事件的概率.1.(沈阳)下列事件中,是必然事件的是( )A .将油滴入水中,油会浮在水面上B .车辆随机到达一个路口,遇到红灯C .如果a 2=b 2,那么a =bD .掷一枚质地均匀的硬币,一定正面向上2.(绥化)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是( )A .541B . 5413C .131D .41 3.(东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A .74B . 73C . 72D .71 4. (海南)如图,两个转盘分别自由转运一次,当停止转动时,两个转盘的指针指向2的概率为( )A . 21B .43C . 81D .161 5.(营口)在一个不透明的箱子里装有红色、蓝色、黄色的球共20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在10%和15%,则箱子里蓝色球的个数很可能是____个.【典例精析】考点一 计算简单事件【例1】(岳阳) 从2 ,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是( )A. 51B. 52C. 53D.54 【例2】(泸州)在一个不透明袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出的白球的概率是____。
考点35〖概率〗【命题趋势】近三年来概率主要考查类型有:1、一步概率的计算;2、用列表法或画树状图计算概率(两步概率计算和三步概率计算);3、面积法求概率;4、以解答题的形式综合考查统计与概率,此类型题考查特别多。
【考查题型】选择题、填空题、解答题【常考知识】1、一步概率的计算;2、用列表法或画树状图计算概率(两步概率计算和三步概率计算);3、面积法求概率;4、以解答题的形式综合考查统计与概率。
【夺分技巧】1、对于一步实验,可采用概率公式求概率2、对于三步试验,只能通过画树状图计算。
【易错点】列举法求概率时分不清是放回还是不放回。
一、选择题1.(2020·四川·中考真卷)下列事件中,为必然事件的是()A.明天要下雨B.|a|≥0C.−2>−1D.打开电视机,它正在播广告【答案】B【考点】非负数的性质:绝对值,随机事件,非负数的性质:偶次方,必然事件,不可能事件【解析】必然事件就是一定发生的事件,即发生的概率是1的事件.2.(2020·内蒙古·中考真卷)下列事件中,属于不可能事件的是()A.瓮中捉鳖B.守株待兔C.水中捞月D.百步穿杨【答案】C【考点】随机事件,不可能事件,必然事件【解析】不可能事件是指在一定条件下,一定不发生的事件,可得答案.3.(2020·湖北·中考真卷)某班从甲、乙、丙、丁四位选手中随机选取两人参加校乒乓球比赛,恰好选中甲、乙两位选手的概率是()A.13B.14C.16D.18【答案】C【考点】列表法与树状图法,概率公式【解析】解:根据题意画树状图如下:共用12种等可能情况,其中恰好选中甲、乙两位选手的有2种,则恰好选中甲、乙两位选手的概率是212 = 16.4.(2020·新疆·中考真卷)四张看上去无差别的卡片上分别印有正方形、正五边形、正六边形和圆,现将印有图案的一面朝下,混合均匀后从中随机抽取两张,则抽到的卡片上印有的图形都是中心对称图形的概率为()A.14B.13C.12D.34【答案】C【考点】列表法与树状图法,概率公式【解析】解:分别用A、B、C、D表示正方形、正五边形、正六边形和圆,其中正方形、正六边形、圆是中心对称图形,画树状图得:∵共有12种等可能的结果,抽到卡片上印有的图案都是中心对称图形的有6种情况,∴抽到的卡片上印有的图形都是中心对称图形的概率为:612=12.5.(2020·辽宁·中考真卷)一个不透明的盒子中装有2个白球,6个红球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率是()A.34B.13C.15D.38【答案】A【考点】概率公式【解析】解:根据题意可得:一个不透明的盒子中装有2个白球,6个红球,共8个,所以摸到红球的概率P=68=34.6.(2020·北京·中考真卷)不透明的袋子中有两个小球,上面分别写着数字“1”“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.23【答案】C【考点】列表法与树状图法【解析】12123234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果, 所以两次记录的数字之和为3的概率为24=12.7.(2020·山西·中考真卷)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是( )A.13B.14C.16D.18【答案】B【考点】中点四边形,几何概率,菱形的性质【解析】由图形知阴影部分的面积是大矩形面积的14,∴ 飞镖落在阴影区域的概率是14,8.(2020·内蒙古·中考真卷)已知电流在一定时间段内正常通过电子元件“”的概率是0.5;则在一定时间段内,由该元件组成的图示电路A 、B 之间,电流能够正常通过的概率是( )A.0.75B.0.525C.05D.025【答案】A【考点】概率公式【解析】根据题意,某一个电子元件不正常工作的概率为0.5,可得两个元件同时不正常工作的概率为0.25,进而由概率的意义可得一定时间段内AB 之间电流能够正常通过的概率. 二、填空题9.(2020·山东·中考真卷)某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________. 【答案】13【考点】列表法与树状图法 【解析】解:画树状图如下:由树状图知,共有9种等可能结果, 其中抽到同一类书籍的有3种结果,所以抽到同一类书籍的概率为39=13.10.(2020·内蒙古·中考真卷)一个不透明的盒子里放置三张完全相同的卡片,分别标有数字1,2,3.随机抽取1张,放回后再随机抽取1张,则抽得的第二张卡片上的数字大于第一张卡片上的数字的概率为________.【答案】13【考点】列表法与树状图法【解析】解:用树状图表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中“第2张数字大于第1张数字”的有3种,∴P=39=13.11.(2019-2020·河南·中考真卷)为了防控新型冠状病毒感染,我区要从3名男士和2名女士中随机抽取2人做宣传活动,抽取的恰好是一名男士和一名女士的概率为________.【答案】35【考点】列表法与树状图法【解析】解:如图所示:共有20种情况,恰好是一名男士和一名女士的情况数有12种,所以概率为35.12.(2020·四川·中考真卷)在如图所示的电路图中,当随机闭合开关,,中的两个时,能够让灯泡发光的概率为________.【答案】3【考点】利用频率估计概率,列表法与树状图法,概率的意义【解析】分析电路图知:要让灯泡发光,K1必须闭合,同时K2,K3中任意一个关闭时,满足:一共有:K1,K2,K2,K3K1,K3三种情况,满足条件的有K1,K2,K1,K2两种,…能够让灯泡发光的概率为:2313.(2020·贵州·中考真卷)从−2,−1,2三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于________.【答案】3【考点】列表法与树状图法,概率公式,点的坐标【解析】画树状图如下:共有6种等可能情况,该点在第三象限的情况数有(−2,−1)和(−1,−2)这2种结果,…该点在第三象限的概率等于:26=1314.(2020·广西·中考真卷)一个正方体的平面展开图如图所示,任选该正方体的一面出现“我”字的概率是________.【答案】13【考点】概率公式,几何体的展开图【解析】∵共有六个字,“我”字有2个,∴P(“我”)=26=13.三、解答题15.(2020·湖北·中考真卷)有4张看上去无差别的卡片,上面分别写有数−1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为________;(2)随机抽取一张卡片后,从剩下的卡片中再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【考点】概率公式,列表法与树状图法【解析】用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12.故答案为:12.(2)用列表法表示所有可能出现的结果情况如下:−1258−1(2,−1)(5,−1)(8,−1)2(−1,2)(5,2)(8,2)5(−1,5)(2,5)(8,5)8(−1,8)(2,8)(5,8)共有12种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)=612=12.16.(2020·湖南·中考真卷)为丰富学生们的课余生活,学校开展第二课堂,有四类课程可选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请根据图表信息回答问题:(1)本次被抽查的学生共有________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【考点】扇形统计图,条形统计图,用样本估计总体,列表法与树状图法【解析】(1)用条形统计图中D类的人数除以扇形统计图中D类所占百分比即可求出被抽查的总人数,用条形统计图中A类的人数除以总人数再乘以360∘即可求出扇形统计图中A类所占扇形的圆心角的度数;(2)用总人数减去其它三类人数即得B类人数,进而可补全条形统计图;(3)用C类人数除以总人数再乘以600即可求出结果;(4)先利用列表法求出所有等可能的结果数,再找出王芳和小颖两名学生选择同一个项目的结果数,然后根据概率公式计算即可.【解答】解:(1)本次被抽查的学生共有:20÷40%=50(名);扇形统计图中“A.书画类”所占扇形的圆心角的度数为1050×360∘=72∘.故答案为:50;72.(2)B类人数是:50−10−8−20=12(名),补全条形统计图如图所示:(3)850×600=96(名).答:估计该校学生选择“C.社会实践类”的学生共有96名.(4)列表如下:A B C DA(A, A)(B, A)(C, A)(D, A)B(A, B)(B, B)(C, B)(D, B)C(A, C)(B, C)(C, C)(D, C)D(A, D)(B, D)(C, D)(D, D)由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率P=416=14.17.(2019-2020·河南·中考真卷)2020年3月我国因“新冠病毒”的疫情,都不能如期开学,我市某校网上开设了“书画、器乐、戏曲、棋类”四大类兴趣课程,要求学生在家选择一项网上学习.为了解全校学生对每类课程的选择情况,随机抽取了若干名学生进行调查(每人必选且只能选一类),先将调查结果绘制成如图两幅不完整的统计图:(1)本次随机调查了多少名学生?(2)补全条形统计图中“书画”、“戏曲”的空缺部分;(3)若该校共有1200名学生,请估计全校学生选择“戏曲”类的人数;(4)学校从这四类课程中随机抽取两类参加“全市青少年才艺展示活动”,用树形图或列表法求出恰好抽到“器乐”和“戏曲”类的概率.(书画、器乐、戏曲、棋类可分别用字母A,B,C,D表示)【考点】列表法与树状图法,条形统计图,扇形统计图,用样本估计总体【解析】(1)由器乐的人数及其所占百分比可得总人数;(2)总人数乘以书画对应百分比求得其人数,再根据各类型人数之和等于总人数求得戏曲人数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表或树状图将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:(1)本次随机调查的学生人数为30÷15%=200(人);(2)书画的人数为200×25%=50(人),戏曲的人数为200−(50+80+30)=40(人),补全图形如下:(3)估计全校学生选择“戏曲”类的人数约为1200×40200=240(人);(4)列表得:A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,其中恰好抽到“器乐”和“戏曲”类的有2种结果,∴恰好抽到“器乐”和“戏曲”类的概率为212=16.18.(2020·四川·中考真卷)中华文化源远流长,文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中进行了抽样调查,根据调查结果绘制成如图尚不完整的统计图.请根据以上信息,解决下列问题:(1)本次调查所得数据的众数是________部,中位数是________部;(2)扇形统计图中“4部”所在扇形的圆心角为________度;(3)请将条形统计图补充完整;(4)没有读过四大古典名著的两名学生准备从中各自随机选择一部来阅读,请用列表或画树状图的方法求他们恰好选中同一名著的概率.【考点】中位数,众数,扇形统计图,条形统计图,列表法与树状图法【解析】(1)根据读3部的人数和所占的百分比,可以求得本次调查的人数,然后即可得到众数和中位数;(2)根据统计图中的数据,可以得到扇形统计图中“4部”所在扇形的圆心角的度数;(3)根据(1)中读2部的人数,可以将条形统计图补充完整;(4)根据题意,可以画出相应的树状图,从而可以得到相应的概率.【解答】解:(1)本次调查的人数为:10÷25%=40(人),读2部的学生有:40−2−14−10−8=6(人),故本次调查所得数据的众数是1部,中位数是(2+2)÷2=2(部).故答案为:1;2.=72∘.(2)扇形统计图中“4部”所在扇形的圆心角为:360∘×840故答案为:72.(3)由(1)知,读2部的学生有6人,补全的条形统计图如图所示:.(4)《西游记》、《三国演义》、《水浒传》、《红楼梦》分别用字母A,B,C,D表示,树状图如图所示:一共有16种可能性,其中他们恰好选中同一名著的的可能性有4种,故他们恰好选中同一名著的概率是416=14,即他们恰好选中同一名著的概率是14.19.(2020·山东·中考真卷)为落实我市关于开展中小学课后服务工作的要求,某学校开设了四门校本课程供学生选择:A.趣味数学;B.博乐阅读;C.快乐英语;D.硬笔书法.某年级共有100名学生选择了A课程,为了解本年级选择A课程学生的学习情况,从这100名学生中随机抽取了30名学生进行测试,将他们的成绩(百分制)分成六组,绘制成频数分布直方图.(1)已知70≤x<80这组的数据为:72,73,74,75,76,76,79.则这组数据的中位数是________;众数是________;(2)根据题中信息,估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)该年级学生小乔随机选取了一门课程,则小乔选中课程D的概率是________;(4)该年级每名学生选两门不同的课程,小张和小王在选课程的过程中,若第一次都选了课程C,那么他俩第二次同时选择课程A或课程B的概率是多少?请用列表法或树状图的方法加以说明.【考点】众数,中位数,频数(率)分布直方图,用样本估计总体,概率公式,列表法与树状图法【解析】(1)根据中位数和众数的定义求解即可;(2)利用样本估计总体的方法即可估计该年级选择A课程学生成绩在80≤x<90的总人数;(3)直接利用概率公式计算;【解答】解:(1)在72,73,74,75,76,76,79这组已经按从小到大排列好的数据中,中位数为75,众数为76.(2)观察直方图,抽取的30名学生成绩在80≤x<90范围内选取A课程的有9人,频率为930,那么估计该年级选择A课程的100名学生中,学生成绩在80≤x<90范围内的学生为100×930=30(人).(3)因为学校开设了四门校本课程供学生选择,小乔随机选取一门课程,.所以他选中课程D的概率P=14(4)因该年级每名学生选两门不同的课程,第一次都选了课程C,列树状图如下:共有9种等可能结果,他俩第二次同时选择课程A或课程B的有2种,.所以他俩第二次同时选择课程A或课程B的概率P=2920.(2020·青海·中考真卷)某中学为了让学生掌握交通安全知识,提高安全意识,组织全校学生参加了“交通安全知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如图不完整的统计图.请你根据图1,图2中所给的信息解答下列问题:(1)该校八年级共有________名学生,“优秀”所占圆心角的度数为________;(2)请将图1中的条形统计图补充完整;(3)已知该市共有15000名学生参加了这次“交通安全知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场交通安全知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.【考点】扇形统计图,条形统计图,用样本估计总体,列表法与树状图法【解析】(1)由“良好”的人数和其所占的百分比即可求出总人数;由360∘乘以“优秀”所占的比例即可得出“优秀”所占圆心角的度数;(2)求出“一般”的人数,补全条形统计图即可;(3)由15000乘以“不合格”所占的比例即可;(4)画树状图得出所有等可能的情况数,找出必有甲同学参加的情况数,即可求出所求的概率.【解答】解:(1)该校八年级共有学生人数为200÷40%=500(名);=108∘.“优秀”所占圆心角的度数为360∘×150500故答案为:500;108∘.(2)“一般”的人数为:500−150−200−50=100(名),补全条形统计图如图1所示.(3)15000×50500=1500(名),即估计该市大约有1500名学生在这次答题中成绩不合格.(4)画树状图为:共有12种等可能的结果数,其中必有甲同学参加的结果数为6种,∴必有甲同学参加的概率为612=12.。
备考2023年中考数学一轮复习-统计与概率_数据收集与处理_扇形统计图扇形统计图专训单选题:1、(2019乐清.中考模拟) 某校在开展“爱阅读”活动中,学生某一个月的课外阅读情况的统计图如图所示.若该校的学生有 600 人,则阅读的数量是4本的学生有()A . 人B . 人C . 人D . 人2、(2017乐清.中考模拟) 小明对某校九年级所有同学校本课程选修情况进行了调查,把所得数据绘制成如图所示的扇形统计图.已知参加巧手园地的为30人,则参加趣味足球的人数是()A . 35B . 48C . 52D . 703、(2013温州.中考真卷) 小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是()A . 羽毛球B . 乒乓球C . 排球D . 篮球4、(2017武汉.中考模拟) 某校在七年级设立了六个课外兴趣小组,每个参加者只能参加一个兴趣小组,如图是六个兴趣小组不完整的频数分布直方图和扇形统计图.根据图中信息,可得下列结论不正确的是()A . 七年级共有320人参加了兴趣小组B . 体育兴趣小组对应扇形圆心角的度数为96°C . 美术兴趣小组对应扇形圆心角的度数为72°D . 各小组人数组成的数据中位数是56.5、(2019顺德.中考模拟) 在一次捐书活动中,A、B、C、D分别表示“名人传记”、图书种类 A B C D数目(本) A 175 100 d下列哪个选项是错误的()A . 共捐书500本B . a=150C . “C”所占的百分比是20%D . “扇形D”的圆心角是50°6、(2013贺州.中考真卷) 为调查某校2000名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况.随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图.根据统计图提供的信息,可估算出该校喜爱动画节目的学生约有()A . 500名B . 600名C . 700名D . 800名7、(2018云南.中考真卷) 2017年12月8日,以“[数字工匠]玉汝于成,[数字工坊]溪达四海”为主题的2017一带一路数学科技文化节•玉溪暨第10届全国三维数字化创新设计大赛(简称“全国3D大赛”)总决赛在玉溪圆满闭幕.某学校为了解学生对这次大赛的了解程度,在全校1300名学生中随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅统计图.下列四个不符合题意的是()A . 抽取的学生人数为50人B . “非常了解”的人数占抽取的学生人数的12%C . a=72°D . 全校“不了解”的人数估计有428人8、(2020遵化.中考模拟) 下列说法正确的是()A . “367人中有2人同月同日生”为必然事件B . 检测某批次灯泡的使用寿命,适宜用全面调查C . 可能性是1%的事件在一次试验中一定不会发生D . 数据3,5,4,1,-2的中位数是49、(2020上海.中考真卷) 我们经常将调查、收集得来的数据用各类统计图进行整理与表示.下列统计图中,能凸显由数据所表现出来的部分与整体的关系的是( )A . 条形图B . 扇形图C . 折线图D . 频数分布直方图10、在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()A . 300B . 90C . 75D . 85填空题:11、(2014徐州.中考真卷) 如图是某足球队全年比赛情况统计图:根据图中信息,该队全年胜了________场.12、(2017苏州.中考模拟) 某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,其中A所在扇形的圆心角为30°,则在被调查的学生中选择跳绳的人数是________.13、(2016杭州.中考真卷) 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是________.14、(2018青岛.中考模拟) 如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有________15、(2017玉林.中考真卷) 如图是小强根据全班同学喜爱四类电视节目的人数而绘制的两幅不完整的统计图,则喜爱“体育”节目的人数是________人.16、(2011资阳.中考真卷) 在资阳市团委发起的“暖冬行动”中,某班50名同学响应号召,纷纷捐出零花钱.若不同捐款金额的捐款人数百分比统计结果如图所示,则该班同学平均每人捐款________元.17、(2020海南.中考模拟) 为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩(百分制)的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表(表1)和统计图(如图).请根据图表信息解答以下问题:(1)本次调查一共随机抽取了个参赛学生的成绩;(2)表1中a=;(3)所抽取的参赛学生的成绩的中位数落在的“组别”是;(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有人.18、如图是某校初三(1)班数学考试成绩扇形统计图,已知成绩是“优秀”的有12人,那么成绩是“不及格”的有人.解答题:19、(2017嘉兴.中考模拟) 随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)求出本次接受调查的总人数,并将条形统计图补充完整;(2)表示观点B的扇形的圆心角度数为度;(3)若嘉兴市人口总数约为270万,请根据图中信息,估计湖州市民认同观点D的人数.20、(2019中山.中考模拟) 某中学初三(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如下的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)初三(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.21、(2017深圳.中考模拟) 为了解南山荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(Ⅰ)该市场6月上半月共销售这三种荔枝多少吨?(Ⅱ)补全图1的统计图并计算图2中A所在扇形的圆心角的度数.(Ⅲ)某商场计划六月下半月进货A、B、C三种荔枝共300千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?(图1)(图2)22、(2017深圳.中考模拟) 某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳90次以下的为不及格;每分钟跳90~99次的为及格;每分钟100~109次的为中等;每分钟110~119次的为良好;每分钟120次及以上的为优秀。
2019-2020年九年级数学下册一轮复习 第35课时 概率一、基础知识梳理(课前完成)1、确定事件(1)必然事件:在一定的条件下,有些事情我们事先能 ,这些事情我们称为必然事件。
(2)不可能事件:有些事情我们事先能 ,这些事情我们称为不可能事件。
2、随机事件:有许多事情我们事先 ,这些事情称为不确定事件,也称为随机事件。
不确定事件发生的可能性是有大有小的。
2.频率在n 次重复试验中,不确定事件A 发生了m 次,则比值 称为事件A 发生的频率。
3. 频率的稳定性:当实验次数很大时,事件发生的频率都会在 ,这就是频率的稳定性。
我们用这个常数来表示事件发生的可能性大小 。
4.概率:一般地,在大量重复试验中,如果事件A 发生的频率mn ,那么这个常数p 就叫做事件A 的概率。
5.必然事件发生的概率为 ,不可能事件发生的概率为 ,不确定事件发生的概率P(A)为 与 之间的一个常数。
即0≤P(A)≤1。
6. 等可能事件的概率:一般地,如果一个试验有n 种 的结果,事件A 包含其中的m 种结果,那么事件A 发生的概率为:P(A)=7.古典概型的两个特征:(1)所有可能的结果有 (有限性)(2)每种结果出现的 (等可能性)8.游戏对双方公平指:9.列表法用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
注:当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
10、树状图法就是通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
注:当一次试验要设计两个或更多的因素时,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
11、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
12、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
二、基础诊断题1. (2014•梅州)下列事件中是必然事件的是( )A . 明天太阳从西边升起B . 篮球队员在罚球线上投篮一次,未投中C . 实心铁球投入水中会沉入水底D . 抛出一枚硬币,落地后正面朝上2.(2014•苏州)如图,一个圆形转盘被分成6个圆心角都为60°的扇形,任意转动这个转盘1次,当转盘停止转动时,指针指向阴影区域的概率是( )D从中随机抽取1个,抽中数学题的概率是()A.B.C.D.4.(2014年山东烟台)在一个不透明的袋子中装有若干个除颜色外形状大小完全相同的球,如果其中有3个白球,且摸出白球的概率是,那么袋子中共有球个.5.(2014•宁夏)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.6.(2014年山东泰安)在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.三、典型例题个不透明的口袋内搅匀,从口袋内取出一个球记下数字后作为点P的横坐标x,放回袋中搅匀,然后再从袋中取出一个球记下数字后作为点P的纵坐标y,则点P(x,y)落在直线y=﹣x+5上的概率是.例3. (2014年山东省滨州市)在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.例4.(2014广州)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:(1)求,的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中至多..有一名女生的概率.例5.(2014•遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.例6.(2014•济宁)山东省第二十三届运动会将于2014年在济宁举行.下图是某大学未制作完整的三个年级省运会志愿者的统计图,请你根据图中所给信息解答下列问题:(1)请你求出三年级有多少名省运会志愿者,并将两幅统计图补充完整;(2)要求从一年级、三年级志愿者中各推荐一名队长候选人,二年级志愿者中推荐两名队长候选人,四名候选人中选出两人任队长,用列表法或树形图,求出两名队长都是二年级志愿者的概率是多少?四、达标检测题(一)基础检测1.(2014•宜宾)一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.2.(2014•武汉)如图,一个转盘被分成7个相同的扇形,颜色分为红、黄、绿三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形),则指针指向红色的概率为.3.(2014•盐城)一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是.4.(2014•云南)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.(二)能力提升1.(2014•湖州)已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A.1 B.2 C.3 D.42.(2014•潍坊)如图是某市7月1日至10日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择7月1日至7月8日中的某一天到达该市,并连续停留3天,则此人在该市停留期间有且仅有1天空气质量优良的概率是()D3.(2014年四川巴中)在四边形ABCD中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD,(4)AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是.4.(2014•菏泽)李老师为了了解所教班级学生完成数学课前预习的具体情况,对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)李老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.5.(2014•玉林)一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白B C为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?正 面 背 面7.(2014•武汉)袋中装有大小相同的2个红球和2个绿球.(1)先从袋中摸出1个球后放回,混合均匀后再摸出1个球.①求第一次摸到绿球,第二次摸到红球的概率;②求两次摸到的球中有1个绿球和1个红球的概率;(2)先从袋中摸出1个球后不放回,再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是多少?请直接写出结果.五、课后反馈1.“迎奥运,我为先”联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题.联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10张,发现有2张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是( )A.60张B.80张C.90张D.1102.完全相同的4个小球,上面分别标有数字1、-1、2、-2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次、第二次摸到的球上标有的数字分别记作m 、n ,以m 、n 分别作为一个点的横坐标与纵坐标,求点(m ,n )不在第二象限的概率.(用树状图或列表法求解)3.有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k ,第二次从余下..的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b .(1)写出k 为负数的概率;(2)求一次函数y kx b =+的图象经过二、三、四象限的概率.(用树状图或列表法求解)4.如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.5.店设置了A 、B 、C 、D 笔的可能性相同.(1)飞飞购物后,获赠A 型号钢笔的概率是多少?(2)6.下列事件中必然事件的是( )A .任意买一张电影票,座位号是偶数B .正常情况下,将水加热到100℃时水会沸腾 第9题图C .三角形的内角和是360°D .打开电视机,正在播动画片7.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为( )A .12B .13C .16D .19 8. 在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.(1)搅匀后从中随机摸出一球,请直接写出摸到红球的概率;(2)如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)9.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为A .32B .21C .31D .41 10.在一个不透明的口袋中,装有若干个出颜色不同其余都相同的球.如果口袋中装有3个红球且摸到红球的概率为51,那么口袋中球的总个数为____________.。