2017年秋季学期新版新人教版八年级数学上学期14.2.1、平方差公式导学案11
- 格式:doc
- 大小:262.50 KB
- 文档页数:3
人教版义务教育课程标准实验教科书八年级上册14.2.1《平方差公式》导学案一、学习目标1.会推导平方差公式,并能运用公式进行简单的运算.2.培养学生观察、归纳、概括的能力.3.在探索平方差公式的过程中,培养符号感和推理能力.4.在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美二、预习内容阅读课本P107 ~108 页,思考下列问题:1、平方差公式的内容是什么?2、 计算下列多项式的积,你能发现什么规律?(1)、(a+5)(b-2)= (2)、(x-3)(x+5)=(3)、(x+2)(x-2)= (4)、(2x+y)(2x-y)=3、课本P108页例1例2你能独立解答吗?三、探究学习1、趣味思考:有一个边长为a(a ﹥1)米的正方形,现在将其中一组对边增加5米,另一组对边减少5米,形成一个长方形。
请想一想:这时面积是增大,减小,还是不变。
2、几何验证:(1)请表示图(1)中阴影部分的面积.(2)将阴影部分拼成了一个长方形(图2),这个长方形的长和宽分别是多少?你能表示出它的面积吗?(3)比较前两问的结果,你有什么发现? ab bb a b -a b a b -ab四、巩固测评1、口答下列各题:(l)(-a+b)(a+b)=_________(2)(a-b)(b+a)= __________(3)(-a-b)(-a+b)=________(4)(a-b)(-a-b)=2、应用平方差公式计算。
1、(a+3b) (a-3b)2、(3+2a) (-3+2a)3、(-2+x) (-2-x)4、51×495、(-2x2-y)(-2x2+y)6、(3x+4)(3x-4)-(2x+3)(3x-2)3、[想一想]下列两个多项式相乘,哪些可以用平方差公式?哪些不能用?(1)(2x-3y)(3y-2x)(2)(-2x+3y)(2x+3y)(3)(2x-3y)(2x-3y)(4)(4)(2x+3y)(2x-3y)五、学习心得。
14.2 乘法公式14.2.1 平方差公式教学目标1.知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算.2.过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.3.情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.重、难点与关键1.重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解. 2.难点:平方差公式的应用.3.关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、•总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键.教学方法采用“合作探究”的教学方法,让学生在观察、猜想中总结出平方差公式.教学过程一、课前预习1.多项式乘以多项式的乘法法则:多项式与多项式相乘,先用一个多项式的每一项_________另一个多项式的每一项,再把所得的积_______.2.计算:①(x + 1)( x-1)=_______________;②(m + 2)( m-2)=_______________;③(2m+1)(2m-1)=_______________;④(5y +z)(5y-z)=_______________.做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现.二.合作探究想一想:观察算式结构,你发现了什么规律?计算结果后,你又发现什么规律?猜想:(a+b)(a−b)=_________1.为了验证我们的猜想,我们来计算(a+b)(a−b)=_______________=_______________。
2.还可以通过图形验证:在边长为a的正方形中剪去一个边长为b的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?总结得出平方差公式:(a+b)(a−b)=_________,即两数和与这两数差的积,等于这两数的__________.【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x-2)=x2-4;(2)(1+3a)(1-3a)=1-9a2;(3)(x+5y)(x-5y)=x2-25y2;(4)(y+3z)(y-3z)=y2-9z2.【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律.【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表现刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a-b)表示左边,那么右边就可以表示成a2-b2了,即(a+b)(a-b)=a2-b2.用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差.【教师活动】表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义.二、范例学习,应用所学【教师讲述】平方差公式的运用,关键是正确寻找公式中的a和b,只有正确找到a和b,•一切就变得容易了.现在大家来看看下面几个例子,从中得到启发.【例1】运用平方差公式计算:(1)(2x+3)(2x-3);(2)(b+3a)(3a-b);(3)(-m+n)(-m-n).填表:【例2】计算:(1)(-7m+8n)(-8n-7m).(2)(2x+y-z)(2x+y+z)通过做题,应该总结出:在两个因式中,符号相同的一项作a,符号不同的一项作b.三、随堂练习,巩固新知课本练习四、课堂总结,发展潜能本节课的内容是两数和与这两数差的积,公式指出了具有特殊关系的两个二项式积的性质.运用平方差公式应满足两点:一是找出公式中的第一个数a,•第二个数b;二是两数和乘以这两数差,这也是判断能否运用平方差公式的方法.五、布置作业,专题突破课本习题.板书设计。
一、自主预习1、计算:(x -2)(x +2) (2x +3)(2x -3) (3m +5)(3m-5)2、于是,得到一般地结论:=-⋅+)()(b a b a平方差公式:两个数的______与这两个数的____ 的 _____ ,等于这两个数的___________试一试:在边长为a 的正方形中剪去一个边长为b 的小正方形,然后把剩余的两个长方形拼成一个长方形,你能用这两个图形的面积说明平方差公式吗?剩余部分的面积为:____________ 新长方形的面积为:____________巩固练习1.下列计算结果正确的是( )A 、2)2)(2-x 2-=+x x ( B 、43)2)(2-x 32-=+x x ( C 、222c -b a 255ab c c)-ab 5=+)(( D 、14)12)(1x y 22222-=-+y x xy ( 2.判断下列式子哪些能运用平方差公式计算,如果能,并计算. (1)(a+3b ))(a-3b) (2) )2)(2(b a b a --+-(3) (xy+1)(xy-1) (4) )23)(2b 3(a b a +-+(5))2)(2(b a a b -+ (6) )32)(32(x y y x +-二、合作探究科目 数学班级:学生姓名课题 14.1 乘法公式(平方差公式) 课 型 新授 课时主备教师备课组长签字学习目标:会推导平方差公式,并能运用公式进行简单的运算,培养自己观察、归纳、概括的能力. 学习重点 把握平方差公式的结构特征,灵活应用平方差公式 学习难点 会用平方差公式简化计算,解决简单实际问题(1) )1)(1()(12-++a a a (2) 4951⨯三、展示交流(1) )23)(32()43)(43(-+--+x x x x (2)422)21()41)(x 41-x y x y -+--(四、、当堂检测 班级: 姓名: 1、运用平方差公式计算(1)(3x+2)(3x-2) (2)(-2b 2-5)(2b 2-5) (3) 54495150⨯2、下列各式计算结果为y x 1622-的是( )A、(x+2y )(x-8y) B 、(x+y)(x-16y) C 、(-4y+x)(4y+x) D 、(-x-4y)(x+4y)3、先化简,再求值:(1+3x)(1-3x)+x(9x +2)-1,其中x =12.4、(选做题)运用平方差公式计算:2007200920082⨯-。
第十四章整式的乘法与因式分解14.2乘法公式14.2.1平方差公式一、教学目标1.理解22a b a b a b +−=−()(),能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.二、教学重点及难点重点:理解平方差公式的基本结构和特征,会用符号表示公式,能用文字语言表述公式内容.难点:利用数形结合的数学思想方法解释平方差公式,及平方差公式的变式运用.三、教学用具电脑、多媒体、课件四、相关资源图片五、教学过程(一)提出问题问题1 计算下列多项式的积,你能发现什么规律?(1)11x x +−()()= ;(2)22m m +−()()= ;(3)1122a b a b +−()()= ; (4)2121x x +−()()= .设计意图:承前启后,为本节内容的引入作铺垫,让学生在每个算式的计算中进一步巩固多项式乘法法则,体会多项式乘法与本节内容的关系——“一般到特殊”.追问1:上述问题中相乘的两个多项式有什么共同点?追问2:相乘的两个多项式的各项与他们的积中的各项有什么关系?追问3:你能将发现的规律用式子表示出来吗?追问4:你能对发现的规律进行推导吗?师生活动:学生观察并独立思考,尝试着进行概括,发现相乘的两个多项式均为相同的两个数的和、两个数的差的形式,而且这两个多项式的积恰好是这个数的平方差.设计意图:让学生经历具体到抽象的过程,即经历观察、抽象、概括、推理的过程,从中体会研究数学问题的基本思想方法——“具体到抽象”.(二)合作探究,形成知识问题2:探究前面所得的式子22a b a b a b +−=−()(),被称为乘法的平方差公式,你能将平方差公式用文字语言表述吗?师生活动:学生回答问题,相互补充.可得到:两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.设计意图:让学生将符号语言转化为文字语言,发展学生的语言表达能力.问题3:你能根据图中图形的面积说明平方差公式吗?a-bHGB(1)长方形AMHG 的长和宽分别是什么?怎样求面积?(2)如果长方形AMHG 中的一部分长方形FEHG 被分割下来,并补到长方形MBCD 的位置,就形成多边形ABCDEF ,此时多边形ABCDEF 的面积又可以怎样表示?(3)上述两种方法表示的面积有什么关系?师生活动:教师提出问题,学生先独立思考,然后小组交流,学生代表展示求解过程. 设计意图:通过探究活动,让学生认识平方差公式的几何意义,使学生更好地理解这一公式,并在此过程中体会数形结合思想.(三)初步应用,巩固知识【例1】运用平方差公式计算:(1)5454x x +−()(); (2)33x y x y −+−−()()解:(1)2225454542516x x x x +−=−=−()()();(2)22223339x y x y x y x y −+−−=−−=−()()()(). 设计意图:让学生熟悉公式的结构特征,并运用公式进行计算.练习1:下面各式运用平方差公式对不对?如果不对,应当怎样改正?(1)22232323x a x b x a +−=−()()()();(×)(2)22232323a b a b a b −−=−()()()();(×)(3)2222x x x +−=−()();(×)(4)2323294a a a −−−=−()().(×)师生活动:学生独立思考,并说明答案,对错误的问题相互交流、订正答案.设计意图:通过正误辨析与纠错、改错,让学生进一步理解平方差公式的结构特征,准确运用公式进行计算.问题4:从例题1和练习1中,你认为运用公式解决问题时应注意什么?师生活动:进一步通过练习加深对平方差公式的理解,两数(式)的和与这两数(式)的差的积,即两因式中,有两个数(式)相等,有两个数(式)互为相反数.设计意图:引导学生深入分析平方差公式的结构特征,明确a ,b 的意义,在运用公式进行计算时一定要抓住关键——括号内的数有前后不变的数和前后互为相反数的数.【例题2】计算:(1)2215y y y y +−−−+()()()(); (2)102×98. 解:原式 原式=(100+2)(100-2)24669x bx ax ab=−+−224129a ab b =−+22224x x =−=−222(2)(3)49a a =−−=−22445y y y =−−+−()2210021000049996=−=−==师生活动:师生共同分析得出:(1)中的前两个多项式的积可以直接利用平方差公式,后两个多项式的积不具备平方差公式的结构特征,不能用此公式;(2)是两个数乘积的简捷计算,这两个因数恰好可以分解成两个数(100与2)的和与这两个数的差,且这两个数的平方容易计算.设计意图:使学生将平方差公式的知识迁移到新的问题情境中,既巩固新知,又能培养学生分析和解决问题的能力.(四)综合应用,深化提高练习2:运用平方差公式计算:(1))33a b a b +−()(); (2)3232a a +−+()();(3)51×49; (4)34342332x x x x +−−+−()()()()解:(1)33a b a b +−()(); (2)3232a a +−+()();2222(3)9a b a b =−=− 222(2)349a a =−=−(3)51×49; (4)34342332x x x x +−−+−()()()().2(501)(501)501250012499=+−=−=−= 222222(3)4(6496)91664663510x x x x x x x x x x ⎡⎤=−−−+−⎣⎦=−−+−+=−− 师生活动:找四名学生板书,其他学生在练习本上完成,教师巡视,指导,师生交流. 设计意图:通过同类项题的练习,帮助学生更好地理解平方差公式,较熟练地运用平方差公式进行有关计算.六、课堂小结教师与学生一起回顾本节课所学的主要内容,并请学生回答以下问题:(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么?41y =−+设计意图:通过小结,使学生梳理本节课所学的内容,把握本节课的主要内容,平方差公式及平方差公式的运用.本图片资源介绍了平方差公式及其特点,适用于平方差公式的教学.若需使用,请插入图片【知识点解析】平方差公式.七、板书设计14.2.乘法公式第1课时 平方差公式平方差公式 :22a b a b a b +−=−()() 两个数的和与这两个数的差的积,等于这两个数的平方差,这个公式叫做(乘法的)平方差公式.。
14.2 乘法公式14.2.1 平方差公式学习目标:1.能说出平方差公式的特点,并会用式子表示.2.能正确地利用平方差公式进行多项式的乘法运算.3.通过平方差公式得出的过程,体会数形结合的思想.学习重点:掌握两数和乘以它们的差的结构特征.学习难点:正确理解两数和乘以它们的差的公式的意义.学习过程:一、联系生活,设境激趣问题一:王林到小卖部去买饼干, 售货员告诉他共4.2千克,每千克3.8元.正当售货员还在用计算器计算时,王林马上说出了共15.96元,售货员很惊奇地问:“你怎么比计算器算的还快呢?”王林很得意的告诉她:这是一个秘密.同学们,你能帮售货员揭开小林快速口算出4.2×3.8的秘密吗?二.观察概括,探索验证问题二:1.经过本节课的学习,我们就能揭开这一秘密了.请同学们计算下面三道题(1)(x+3)(x-3); (2) (m+5n)(m-5n); (3) (4+y)(4-y) .2.请你观察思考以上几个多项式与多项式相乘的式子有什么特点?积有什么特点?你能用字母表示吗?观察发现:两数和乘以这两数的等于这两数的用一个数学等式表示为(a+b)(a-b)=……平方差公式.3.这个等式正确吗?你怎样验证其正确性呢?⑴利用多项式乘以多项式计算⑵你能再用以下的图形验证平方差公式吗?试一试.图13.3.1先观察图13.3.1,再用等式表示下图中图形面积的运算:= - .具有简洁美的乘法公式(a +b )(a -b )=a 2-b 2.三、理解运用,巩固提高问题三:1. 填一填①2x+21)(2x-21)=( )2-( )2 = ②(3x+6y)(3x-6y)=( )2-( )2=③(m 3+5)(m 3-5)=( )2-( )2=2. 辨一辨 ① (2x +3)(2x -3) =2x 2-9②(x +y 2)(x -y 2) = x 2-y2 ③(a +b)(a -2b) = a 2-b 23.说一说:下列各式都能用平方差公式计算吗?①(2a -3b)(3b -2a) ②(-2a+3b) (2a+3b) ③(-2a -3b)(2a -3b)④(2a -3b)(2a+3b) ⑤(2a+3b)(-2a -3b) ⑥(2a -3b)(-3b+2a)4.做一做:(1)(a +3)( a -3) (2)(2a +3b)( 2a -3b) (3)(1+2c)( 1-2c)(4)变式拓展①(-2x -y )(2x -y ) ②(-m+n)(-m-n) ③ (-2x-5y)(5y-2x)5.生活实践⑴计算:1998×2002⑵现在你能揭开小林快速口算出4.2×3.8的秘密吗?⑶街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米.问改造后的长方形草坪的面积是多少?四、实践应用,提高技能问题四: (用4分钟独立完成,看谁又快又准.)1.下列可以用两数和乘以这两数差公式计算的是()A.(x-y)(x+y)B.(x-y)(y-x)C.(x-y)(-y+x)D.(x-y)(-x+y)2.比一比:①(5+6x)(5-6x)②(3m-2n)(3m+2n)③(ab+8)(ab-8)④(2x+y)(-2x+y) ⑤(-4a-0.1)(4a+0.1)⑥(m+n)(m-n)+3n2⑦(-x +2)( -x-2) ⑧(-a+b)(a+b)3.请你独立完成课本P30练习,在经历训练中熟练运用公式运算.五、总结反思________________________________________________________________.。
新人教版八年级数学上册14.2.1《平方差公式》导学案导学目标 1.能运用多项式乘法推导并理解平方差公式,能熟练地运用平方差公式。
2.经历推导平方差公式的过程,体会公式的产生及发展过程重点掌握平方差公式难点灵活运用平方差公式进行计算及应用教学过程教学环节教学任务教师活动学生活动预见性问题及对策预习阅读教材151页,并回答下列问题:问题1.用多项式乘法法则计算:(1)(x+1)(x-1)(2)(m+2)(m-2)(3)(2x+1)(2x-1)(4)(a+b)(a-b)观察以上四个题,可用公式表示为(a+b)(a-b)= a2-b2用语言表述为________________________________________________________注:平方差公式是解决特殊多项式相乘的乘法公式,公式左边的特点是两个____项式的乘积,在两个括号中有一项,另一项______ 。
问题2计算结果。
(1)(x+1)(1+x);(2)(21a+b)(b-21a);(3)(-a+b)(a-b);(4)(x2-y)(x+y2);(5)(-a-b)(a-b);(6)(c2-d2)(d 2+c2).布置研习问题1、2的学习任务。
巡视学生独立完成后,小组自觉合作,深入小组之中,并重点关注学困生。
关注组长是否起到作用。
先独立完成学案为题1、2及变式问题。
在组长的组织下,以组为单位进行交流,达成共识。
组长纠正本组同学出现的问题,及时进行指导。
组内交流、讨论,统一答案,准备汇报。
预见性问题:平方差公式的推导过能不理解.平方差公式的形式记不住,不会用.对策:教师可给出提示,通过讲解和练习对平方差公式掌握和运用。
反 馈反 馈:一、知识梳理: 二、知识运用1.利用平方差公式计算: (1)(5+6x )(5-6x )(2)(x -2y )(x +2y )(3)(-m +n )(-m -n ) (4)(-3a-2b )(3a-2b )2.利用平方差公式简化数的计算 (1)99 x101 (2)203 x197(3)52 x 48教师指导学生梳理知识、归纳总结数学思想和学习方法倾听学生的回答,进行必要的点拨纠正学出现的问题,对重点问题进行强调。
14.2.1平方差公式 导学案 人教版八年级数学上册【学习目标】:理解平方差公式,能运用公式进行计算.2、 在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.【学习重点】:平方差公式的推导和应用.【学习难点】:理解平方差公式的结构特征,灵活应用平方差公式.【学习过程】:(一)、情景引入1、多项式与多项式相乘的法则是什么?多项式与多项式相乘:先用一个多项式的每一项 另一个多项式的每一项,再把所得的积 用字母表示为:(a+b )(p+q)= 、探究新知根据所学知识,计算下列多项式的积:(1)(1)(1)x x +-= (2)(2)(2)m m +-=(3)(21)(21)x x +-= (4)(5)(5)x y x y +-= 思考:观察上述等式,1、上述问题中相乘的两个多项式有什么特点?2、相乘的两个多项式与它们的积中的各项有什么关系?3、你能发现什么规律?你能将发现的规律用式子表示出来吗?(三)、新知学习平方差公式归纳:用文字表示为:两个数的和与这两个数的差的积,等于________________.用公式表示为: (a+b)(a -b)=___________.这个公式叫做平方差公式想一想:你能验证上面发现的结论吗?方法一:从代数的角度 计算(a+b )(a -b)方法二:从几何的角度 请从这个正方形纸板上,剪下一个边长为b 的小正方形,如图1,拼成如图2的长方形,你能根据阴影面积说明平方差公式吗?图1的阴影面积S1=图2的阴影面积S2= 图1 图2下列哪些式子可以运用平方差公式计算?哪些不能?为什么?并写出公式中对应的a,b.(l) (x -y)(y+x) (2) (-y+x)(y+x) (3) (-x+y)(x+y)(4) (-x -y)(-x+y) (5) (x -y)(-x -y) (6)(-x -y)(-x -y)(四)、例题讲解例1、用平方差公式计算 (1)(3x+2)(3x -2) (2)(-x+2y)(-x -2y)课堂练习:辨一辨:下面各式的计算对不对?如果不对,应当怎样改正?492)2)(3a -a 3-42-=-a )((课堂练习:运用平方差公式计算:(a+3b)(a - 3b); (2)(3+2a)(-3+2a);例2、 计算:(1) 102×98 (2) (y+2) (y -2) – (y -1) (y+5)课堂练习:计算(1)51×49 (2)(3x+4)(3x -4)-(2x+3)(3x -2)(五)、课堂小结1、平方差公式:2、两个二项式相乘,有一项 ,另一项 ,可用平方差公式计算.3、使用平方差公式应注意的几个问题:(1)它适用于两个项数相同的多项式相乘,注意识别相当于公式中的a 的项和相当于公式中的b 的项.(2)公式中的a 、b 可以代表具体的数,单项式或多项式.【课堂检测】:1、判断题(1) (a+b)(-a -b)=a2-b2 ( ) (2)2221)21)(21(n m n m n m -=-+ ( ) 2、填空(1)(3m+2n)(-3m+2n)=(2)(-1-n)(-n+1)=3.下列运算中,可用平方差公式计算的是( )A .(x +y)(x +y)B .(-x +y)(x -y)C .(-x -y)(y -x)D .(x +y)(-x -y)4.计算: (1) (-22x -y)(-22x +y). (2) (y+2)(y -2)-(3-y)(3+y )22)3()2()32)(3x 21a x b x a -=-+)((22)3()2()32)(3a 22b a b a b -=--)((2)2)(232-=-+x x x )((。
《平方差公式》
学习目标 1.会推导平方差公式,并能运用公式进行简单的运算.
2.培养学生观察、归纳、概括的能力.
3.在探索平方差公式的过程中,培养符号感和推理能力.
4.在计算过程中发现规律,并能用符号表示,从而体会数学的简捷美
学习重点掌握平方差公式的推导和应用.
学习难点理解平方差公式的结构特征,灵活应用平方差公式.
学具使用多媒体课件、小黑板、彩粉笔、三角板等
一、温故知新:(我最棒!)
1.多项式乘以多项式的法则是什么?请用公式表示出来 .
2.请利用多项式乘以多项式的法则计算下列各题:
()()
-+;
(2)22
x y x y
(1)12
x x
+-;()()
()()
x y x y
(4)33
-+;
x x
(3)11
-+;()()
()()
x y x y
(6)55
+-.
c d c d
(5)33
+-;()()
二、探究新知:(我能行!)
观察上面2题中(3)~(6)题的特征和计算结果,你有什么发现?
大胆猜测:()()
+-=
a b a b
即:两个数的与这两个数的的积,等于这两个数的 .
这个公式叫做(乘法的) .
三、思考讨论:
图1中长方形的面积与图2空白部分的面积有什么关系,通过对两个图形面积的计算能验证平方差公式吗?
四、拓展延伸: 下列各式能利用平方差公式计算吗?若能,请说出哪一项相当于公式中的a 和b ?若不能,请说明理由.
(1)()()3232a a +-+; (2) ()()3232a a ---; (3)()()3232a a +--. 总结规律:能利用平方差公式计算的式子:符号相同的部分相当于公式中的 ,符号不同的部分相当于公式中的 .
五、尝试应用:
1.下面各式的计算对不对?如果不对,请改正.
()()2(1)222x x x +-=- ()()2(2)323234a a a +-=-
2.计算:(1)()()33a b a b +-; (2)(23)(23)x y x y -+;
(3)()()10041004+-; (4)10298⨯.
六、拓展提升:
1.下列能利用平方差公式计算的是( ).
A. (2)(2)m n m n --
B. (3)(2)x x +-
C.(2)(2)m n n m --+
D. (2)(2)m n m n ---
2.利用平方差公式计算:
(1)()()3434m m +-+; ()()(2)2323x x ---
(3)()()(1)(2)x y x y y y -+---+-
3.计算:2
201120102012-⨯
七、达标测试:(每小题20分,共120分)
1.计算(2a+5)(2a-5)的结果是( )
A .4a 2-25
B .4a 2-5
C .2a 2-25
D .2a 2
-5
2.下列计算正确的是( )
A .(x+5)(x-5)=x 2-10
B .(x+6)(x-5)=x 2-30
C .(3x+2)(3x-2)=3x 2-4
D .(-5xy-2)(-5xy+2)=25x 2y 2-4
3.计算(1-m )(-m-1)= .
4.(原创题)观察图3中图形的变化过程,计算其中空白图形的面积能验证的公式是 .
5.计算:(43)(34)a b b a -+ .
6.先化简,再求值:(2)(2)(4)x x x x +-+-,其中2x =.。